From 61d039727a8460e369f41efb30a3bd9243555ff6 Mon Sep 17 00:00:00 2001 From: Georgi Gerganov Date: Sat, 25 Nov 2023 16:25:38 +0200 Subject: [PATCH] lookahead : initial working implementation --- examples/lookahead/lookahead.cpp | 246 +++++++++++++++++++++---------- 1 file changed, 171 insertions(+), 75 deletions(-) diff --git a/examples/lookahead/lookahead.cpp b/examples/lookahead/lookahead.cpp index c45184b14..33af03a3e 100644 --- a/examples/lookahead/lookahead.cpp +++ b/examples/lookahead/lookahead.cpp @@ -7,7 +7,11 @@ #include struct seq_ngram { - bool active = false; + bool active = false; + + llama_seq_id seq_id = -1; + + std::vector i_batch; std::vector tokens; }; @@ -34,9 +38,9 @@ int main(int argc, char ** argv) { return 1; } - const int W = 5; // lookahead window - const int N = 4; // n-gram size - const int G = 5; // max verification n-grams + const int W = 10; // lookahead window + const int N = 8; // n-gram size + const int G = 10; // max verification n-grams const bool dump_kv_cache = params.dump_kv_cache; @@ -89,7 +93,7 @@ int main(int argc, char ** argv) { llama_decode(ctx, llama_batch_get_one( inp.data(), n_input - 1, 0, 0)); llama_decode(ctx, llama_batch_get_one(&inp.back(), 1, n_input - 1, 0)); - for (int s = 0; s < W + G + 1; ++s) { + for (int s = 1; s < W + G + 1; ++s) { llama_kv_cache_seq_cp(ctx, 0, s, -1, -1); } @@ -114,15 +118,18 @@ int main(int argc, char ** argv) { struct llama_sampling_context * ctx_sampling = llama_sampling_init(params.sparams); // verification n-grams - std::vector ngrams(G); + std::vector ngrams_cur(G); // tokens for the past N - 1 Jacobi iterations std::vector tokens_j_prev(W); std::vector> tokens_j(N - 1); for (int j = 0; j < N - 1; j++) { tokens_j[j].resize(W); + for (int i = 0; i < W; i++) { - tokens_j[j][i] = all[1 + rand() % (all.size() - 1)]; + // initialize randomly from the prompt tokens + //tokens_j[j][i] = all[1 + rand() % (all.size() - 1)]; + tokens_j[j][i] = 100 + i; } } @@ -168,113 +175,202 @@ int main(int argc, char ** argv) { { llama_batch_clear(batch); + // current token - first token of the first level llama_batch_add(batch, id, n_past, seq_id_all, true); + // verification n-grams - queue this here for less KV cache fragmentation + { + const int g_cur = ngrams_observed.cnt[id]; + + ngrams_cur.resize(g_cur); + for (int g = 0; g < g_cur; g++) { + ngrams_cur[g].active = true; + ngrams_cur[g].tokens.resize(N); + ngrams_cur[g].i_batch.resize(N); + ngrams_cur[g].seq_id = W + 1 + g; + ngrams_cur[g].i_batch[0] = 0; + ngrams_cur[g].tokens [0] = id; + } + + for (int j = 0; j < N - 1; j++) { + for (int g = 0; g < g_cur; g++) { + const int idx = id*(N - 1)*G + g*(N - 1); + + const llama_token t = ngrams_observed.tokens[idx + j]; + + ngrams_cur[g].tokens [j + 1] = t; + ngrams_cur[g].i_batch[j + 1] = batch.n_tokens; + + llama_batch_add(batch, t, n_past + j + 1, { W + 1 + g }, true); + } + } + } + + // fill the remaining W - 1 tokens for the first level for (int i = 1; i < W; i++) { llama_batch_add(batch, tokens_j[0][i], n_past + i, seq_id_look, false); } + // fill the rest of the levels for (int j = 1; j < N - 1; j++) { for (int i = 0; i < W; i++) { llama_batch_add(batch, tokens_j[j][i], n_past + j + i, { i + 1 }, j == N - 2); } } - - // TODO: add verification n-grams } - llama_decode(ctx, batch); - - id = llama_sampling_sample(ctx_sampling, ctx, NULL, 0); - - llama_sampling_accept(ctx_sampling, ctx, id, true); - - { - const std::string token_str = llama_token_to_piece(ctx, id); - - printf("%s", token_str.c_str()); - fflush(stdout); - - if (id == llama_token_eos(model)) { - has_eos = true; - } + if (llama_decode(ctx, batch) != 0) { + fprintf(stderr, "\n\n%s: error: llama_decode failed - increase KV cache size\n", __func__); + return 1; } - ++n_predict; - ++n_past; + int seq_id_best = 0; - if (n_predict > params.n_predict || has_eos) { - break; - } + for (int v = 0; v < N; ++v) { + int i_batch = 0; - // print known n-grams starting with token id - if (1) { - if (ngrams_observed.cnt[id] > 0) { - printf("\n - %d n-grams starting with '%s'\n", ngrams_observed.cnt[id], llama_token_to_piece(ctx, id).c_str()); + if (v > 0) { + for (int g = 0; g < (int) ngrams_cur.size(); g++) { + if (ngrams_cur[g].active) { + i_batch = ngrams_cur[g].i_batch[v]; + seq_id_best = ngrams_cur[g].seq_id; + break; + } + } + + // no more matches + if (i_batch == 0) { + break; + } } - for (int i = 0; i < ngrams_observed.cnt[id]; i++) { - printf(" - ngram %2d: ", i); + id = llama_sampling_sample(ctx_sampling, ctx, NULL, i_batch); - const int idx = id*(N - 1)*G + i*(N - 1); + llama_sampling_accept(ctx_sampling, ctx, id, true); - for (int j = 0; j < N - 1; j++) { - const std::string token_str = llama_token_to_piece(ctx, ngrams_observed.tokens[idx + j]); + { + const std::string token_str = llama_token_to_piece(ctx, id); + if (v == 0) { printf("%s", token_str.c_str()); + } else { + // print light cyan + printf("\033[0;96m%s\033[0m", token_str.c_str()); + } + fflush(stdout); + + if (id == llama_token_eos(model)) { + has_eos = true; } - printf("\n"); - } - } - - // update Jacobi tokens (or whatever these are called) - { - for (int i = 0; i < W; i++) { - tokens_j_prev[i] = tokens_j[0][i]; + all.push_back(id); } - for (int j = 0; j < N - 2; j++) { - tokens_j[j] = tokens_j[j + 1]; + ++n_predict; + ++n_past; + + if (n_predict > params.n_predict || has_eos) { + break; } - for (int i = 0; i < W; i++) { - tokens_j[N - 2][i] = llama_sampling_sample(ctx_sampling, ctx, NULL, W*(N - 2) + i); + // verify across active n-grams + for (int g = 0; g < (int) ngrams_cur.size(); g++) { + if (ngrams_cur[g].active) { + if (v == N - 1) { + ngrams_cur[g].active = false; + } else { + if (id != ngrams_cur[g].tokens[v + 1]) { + ngrams_cur[g].active = false; + } else { + } + } + } } - } - // update observed ngrams - { - // the first token of the n-gram is determined by the index in the container so it is not stored - std::vector ngram(N - 1); - - // n-gram generation - for (int f = 0; f < W; ++f) { - for (int j = 0; j < N - 1; ++j) { - ngram[j] = tokens_j[j][f]; - }; - - const int ft = tokens_j_prev[f]; // first token of the n-gram - const int head = ngrams_observed.head[ft]; - const int idx = ft*(N - 1)*G + head*(N - 1); - - for (int i = 0; i < N - 1; i++) { - ngrams_observed.tokens[idx + i] = ngram[i]; + // print known n-grams starting with token id + if (0) { + if (ngrams_observed.cnt[id] > 0) { + printf("\n - %d n-grams starting with '%s'\n", ngrams_observed.cnt[id], llama_token_to_piece(ctx, id).c_str()); } - ngrams_observed.cnt[ft] = std::min(G, ngrams_observed.cnt[ft] + 1); - ngrams_observed.head[ft] = (head + 1) % G; + for (int i = 0; i < ngrams_observed.cnt[id]; i++) { + printf(" - ngram %2d: ", i); - ngrams_observed.n_total++; + const int idx = id*(N - 1)*G + i*(N - 1); + + for (int j = 0; j < N - 1; j++) { + const std::string token_str = llama_token_to_piece(ctx, ngrams_observed.tokens[idx + j]); + + printf("%s", token_str.c_str()); + } + + printf("\n"); + } } - } - // verification - // TODO - { + // update Jacobi tokens (or whatever these are called) + { + for (int i = 0; i < W; i++) { + tokens_j_prev[i] = tokens_j[0][i]; + } + + for (int j = 0; j < N - 2; j++) { + tokens_j[j] = tokens_j[j + 1]; + } + + if (v == 0) { + // sample from the last level + for (int i = 0; i < W; i++) { + tokens_j[N - 2][i] = llama_sampling_sample(ctx_sampling, ctx, NULL, ngrams_cur.size()*(N-1) + W*(N - 2) + i); + } + } else { + for (int i = 0; i < W; i++) { + // random init + //tokens_j[N - 2][i] = all[1 + rand() % (all.size() - 1)]; + tokens_j[N - 2][i] = tokens_j[0][i]; + } + } + } + + // update observed ngrams + { + // the first token of the n-gram is determined by the index in the container so it is not stored + std::vector ngram(N - 1); + + // n-gram generation + // ref: https://github.com/hao-ai-lab/LookaheadDecoding/issues/14#issuecomment-1826198518 + for (int f = 0; f < W; ++f) { + for (int j = 0; j < N - 1; ++j) { + ngram[j] = tokens_j[j][f]; + }; + + const int ft = tokens_j_prev[f]; // first token of the n-gram + const int head = ngrams_observed.head[ft]; + const int idx = ft*(N - 1)*G + head*(N - 1); + + for (int i = 0; i < N - 1; i++) { + ngrams_observed.tokens[idx + i] = ngram[i]; + } + + ngrams_observed.cnt[ft] = std::min(G, ngrams_observed.cnt[ft] + 1); + ngrams_observed.head[ft] = (head + 1) % G; + + ngrams_observed.n_total++; + } + } } llama_kv_cache_seq_rm(ctx, -1, n_past, -1); + + if (seq_id_best != 0) { + llama_kv_cache_seq_keep(ctx, seq_id_best); + llama_kv_cache_seq_cp (ctx, seq_id_best, 0, -1, -1); + llama_kv_cache_seq_rm (ctx, seq_id_best, -1, -1); + + for (int s = 1; s < W + G + 1; ++s) { + llama_kv_cache_seq_cp(ctx, 0, s, -1, -1); + } + } } auto t_dec_end = ggml_time_us();