gguf : new file format with flexible meta data (beta) (#2398)

* gguf : first API pass

* gguf : read header + meta data

* gguf : read tensor info

* gguf : initial model loading - not tested

* gguf : add gguf_get_tensor_name()

* gguf : do not support passing existing ggml_context to gguf_init

* gguf : simplify gguf_get_val

* gguf : gguf.c is now part of ggml.c

* gguf : read / write sample models

* gguf : add comments

* refactor : reduce code duplication and better API (#2415)

* gguf : expose the gguf_type enum through the API for now

* gguf : add array support

* gguf.py : some code style changes

* convert.py : start a new simplified implementation by removing old stuff

* convert.py : remove GGML vocab + other obsolete stuff

* GGUF : write tensor (#2426)

* WIP: Write tensor

* GGUF : Support writing tensors in Python

* refactor : rm unused import and upd todos

* fix : fix errors upd writing example

* rm example.gguf

* gitignore *.gguf

* undo formatting

* gguf : add gguf_find_key (#2438)

* gguf.cpp : find key example

* ggml.h : add gguf_find_key

* ggml.c : add gguf_find_key

* gguf : fix writing tensors

* gguf : do not hardcode tensor names to read

* gguf : write sample tensors to read

* gguf : add tokenization constants

* quick and dirty conversion example

* gguf : fix writing gguf arrays

* gguf : write tensors one by one and code reuse

* gguf : fix writing gguf arrays

* gguf : write tensors one by one

* gguf : write tensors one by one

* gguf : write tokenizer data

* gguf : upd gguf conversion script

* Update convert-llama-h5-to-gguf.py

* gguf : handle already encoded string

* ggml.h : get array str and f32

* ggml.c : get arr str and f32

* gguf.py : support any type

* Update convert-llama-h5-to-gguf.py

* gguf : fix set is not subscriptable

* gguf : update convert-llama-h5-to-gguf.py

* constants.py : add layer norm eps

* gguf.py : add layer norm eps and merges

* ggml.h : increase GGML_MAX_NAME to 64

* ggml.c : add gguf_get_arr_n

* Update convert-llama-h5-to-gguf.py

* add gptneox gguf example

* Makefile : add gptneox gguf example

* Update convert-llama-h5-to-gguf.py

* add gptneox gguf example

* Update convert-llama-h5-to-gguf.py

* Update convert-gptneox-h5-to-gguf.py

* Update convert-gptneox-h5-to-gguf.py

* Update convert-llama-h5-to-gguf.py

* gguf : support custom alignment value

* gguf : fix typo in function call

* gguf : mmap tensor data example

* fix : update convert-llama-h5-to-gguf.py

* Update convert-llama-h5-to-gguf.py

* convert-gptneox-h5-to-gguf.py : Special tokens

* gptneox-main.cpp : special tokens

* Update gptneox-main.cpp

* constants.py : special tokens

* gguf.py : accumulate kv and tensor info data + special tokens

* convert-gptneox-h5-to-gguf.py : accumulate kv and ti + special tokens

* gguf : gguf counterpart of llama-util.h

* gguf-util.h : update note

* convert-llama-h5-to-gguf.py : accumulate kv / ti + special tokens

* convert-llama-h5-to-gguf.py : special tokens

* Delete gptneox-common.cpp

* Delete gptneox-common.h

* convert-gptneox-h5-to-gguf.py : gpt2bpe tokenizer

* gptneox-main.cpp : gpt2 bpe tokenizer

* gpt2 bpe tokenizer (handles merges and unicode)

* Makefile : remove gptneox-common

* gguf.py : bytesarray for gpt2bpe tokenizer

* cmpnct_gpt2bpe.hpp : comments

* gguf.py : use custom alignment if present

* gguf : minor stuff

* Update gptneox-main.cpp

* map tensor names

* convert-gptneox-h5-to-gguf.py : map tensor names

* convert-llama-h5-to-gguf.py : map tensor names

* gptneox-main.cpp : map tensor names

* gguf : start implementing libllama in GGUF (WIP)

* gguf : start implementing libllama in GGUF (WIP)

* rm binary commited by mistake

* upd .gitignore

* gguf : calculate n_mult

* gguf :  inference with 7B model working (WIP)

* gguf : rm deprecated function

* gguf : start implementing gguf_file_saver (WIP)

* gguf : start implementing gguf_file_saver (WIP)

* gguf : start implementing gguf_file_saver (WIP)

* gguf : add gguf_get_kv_type

* gguf : add gguf_get_kv_type

* gguf : write metadata in gguf_file_saver (WIP)

* gguf : write metadata in gguf_file_saver (WIP)

* gguf : write metadata in gguf_file_saver

* gguf : rm references to old file formats

* gguf : shorter name for member variable

* gguf : rm redundant method

* gguf : get rid of n_mult, read n_ff from file

* Update gguf_tensor_map.py

* Update gptneox-main.cpp

* gguf : rm references to old file magics

* gguf : start implementing quantization (WIP)

* gguf : start implementing quantization (WIP)

* gguf : start implementing quantization (WIP)

* gguf : start implementing quantization (WIP)

* gguf : start implementing quantization (WIP)

* gguf : start implementing quantization (WIP)

* gguf : quantization is working

* gguf : roper closing of file

* gguf.py : no need to convert tensors twice

* convert-gptneox-h5-to-gguf.py : no need to convert tensors twice

* convert-llama-h5-to-gguf.py : no need to convert tensors twice

* convert-gptneox-h5-to-gguf.py : simplify nbytes

* convert-llama-h5-to-gguf.py : simplify nbytes

* gptneox-main.cpp : n_layer --> n_block

* constants.py : n_layer --> n_block

* gguf.py : n_layer --> n_block

* convert-gptneox-h5-to-gguf.py : n_layer --> n_block

* convert-llama-h5-to-gguf.py : n_layer --> n_block

* gptneox-main.cpp : n_layer --> n_block

* Update gguf_tensor_map.py

* convert-gptneox-h5-to-gguf.py : load model in parts to save memory

* convert-llama-h5-to-gguf.py : load model in parts to save memory

* convert : write more metadata for LLaMA

* convert : rm quantization version

* convert-gptneox-h5-to-gguf.py : add file_type key

* gptneox-main.cpp : add file_type key

* fix conflicts

* gguf : add todos and comments

* convert-gptneox-h5-to-gguf.py : tensor name map changes

* Create gguf_namemap.py : tensor name map changes

* Delete gguf_tensor_map.py

* gptneox-main.cpp : tensor name map changes

* convert-llama-h5-to-gguf.py : fixes

* gguf.py : dont add empty strings

* simple : minor style changes

* gguf : use UNIX line ending

* Create convert-llama-7b-pth-to-gguf.py

* llama : sync gguf-llama.cpp with latest llama.cpp (#2608)

* llama : sync gguf-llama.cpp with latest llama.cpp

* minor : indentation + assert

* llama : refactor gguf_buffer and gguf_ctx_buffer

* llama : minor

* gitignore : add gptneox-main

* llama : tokenizer fixes (#2549)

* Merge tokenizer fixes into the gguf branch.

* Add test vocabularies

* convert : update convert-new.py with tokenizer fixes (#2614)

* Merge tokenizer fixes into the gguf branch.

* Add test vocabularies

* Adapt convert-new.py (and fix a clang-cl compiler error on windows)

* llama : sync gguf-llama with llama (#2613)

* llama : sync gguf-llama with llama

* tests : fix build + warnings (test-tokenizer-1 still fails)

* tests : fix wstring_convert

* convert : fix layer names

* llama : sync gguf-llama.cpp

* convert : update HF converter to new tokenizer voodoo magics

* llama : update tokenizer style

* convert-llama-h5-to-gguf.py : add token types

* constants.py : add token types

* gguf.py : add token types

* convert-llama-7b-pth-to-gguf.py : add token types

* gguf-llama.cpp :  fix n_head_kv

* convert-llama-h5-to-gguf.py : add 70b gqa support

* gguf.py : add tensor data layout

* convert-llama-h5-to-gguf.py : add tensor data layout

* convert-llama-7b-pth-to-gguf.py : add tensor data layout

* gptneox-main.cpp : add tensor data layout

* convert-llama-h5-to-gguf.py : clarify the reverse permute

* llama : refactor model loading code (#2620)

* llama : style formatting + remove helper methods

* llama : fix quantization using gguf tool

* llama : simplify gguf_file_saver

* llama : fix method names

* llama : simplify write_header()

* llama : no need to pass full file loader to the file saver

just gguf_ctx

* llama : gguf_file_saver write I32

* llama : refactor tensor names (#2622)

* gguf: update tensor names searched in quantization

* gguf : define tensor names as constants

* gguf : initial write API (not tested yet)

* gguf : write to file API (not tested)

* gguf : initial write API ready + example

* gguf : fix header write

* gguf : fixes + simplify example + add ggml_nbytes_pad()

* gguf : minor

* llama : replace gguf_file_saver with new gguf write API

* gguf : streaming support when writing files

* gguf : remove oboslete write methods

* gguf : remove obosolete gguf_get_arr_xxx API

* llama : simplify gguf_file_loader

* llama : move hparams and vocab from gguf_file_loader to llama_model_loader

* llama : merge gguf-util.h in llama.cpp

* llama : reorder definitions in .cpp to match .h

* llama : minor simplifications

* llama : refactor llama_model_loader (WIP)

wip : remove ggml_ctx from llama_model_loader

wip : merge gguf_file_loader in llama_model_loader

* llama : fix shape prints

* llama : fix Windows build + fix norm_rms_eps key

* llama : throw error on missing KV paris in model meta data

* llama : improve printing + log meta data

* llama : switch print order of meta data

---------

Co-authored-by: M. Yusuf Sarıgöz <yusufsarigoz@gmail.com>

* gguf : deduplicate (#2629)

* gguf : better type names

* dedup : CPU + Metal is working

* ggml : fix warnings about unused results

* llama.cpp : fix line feed and compiler warning

* llama : fix strncpy warning + note token_to_str does not write null

* llama : restore the original load/save session implementation

Will migrate this to GGUF in the future

* convert-llama-h5-to-gguf.py : support alt ctx param name

* ggml : assert when using ggml_mul with non-F32 src1

* examples : dedup simple

---------

Co-authored-by: klosax <131523366+klosax@users.noreply.github.com>

* gguf.py : merge all files in gguf.py

* convert-new.py : pick #2427 for HF 70B support

* examples/gguf : no need to keep q option for quantization any more

* llama.cpp : print actual model size

* llama.cpp : use ggml_elements()

* convert-new.py : output gguf (#2635)

* convert-new.py : output gguf (WIP)

* convert-new.py : add gguf key-value pairs

* llama : add hparams.ctx_train + no longer print ftype

* convert-new.py : minor fixes

* convert-new.py : vocab-only option should work now

* llama : fix tokenizer to use llama_char_to_byte

* tests : add new ggml-vocab-llama.gguf

* convert-new.py : tensor name mapping

* convert-new.py : add map for skipping tensor serialization

* convert-new.py : convert script now works

* gguf.py : pick some of the refactoring from #2644

* convert-new.py : minor fixes

* convert.py : update to support GGUF output

* Revert "ci : disable CI temporary to not waste energy"

This reverts commit 7e82d25f40.

* convert.py : n_head_kv optional and .gguf file extension

* convert.py : better always have n_head_kv and default it to n_head

* llama : sync with recent PRs on master

* editorconfig : ignore models folder

ggml-ci

* ci : update ".bin" to ".gguf" extension

ggml-ci

* llama : fix llama_model_loader memory leak

* gptneox : move as a WIP example

* llama : fix lambda capture

ggml-ci

* ggml : fix bug in gguf_set_kv

ggml-ci

* common.h : .bin --> .gguf

* quantize-stats.cpp : .bin --> .gguf

* convert.py : fix HF tensor permuting / unpacking

ggml-ci

* llama.cpp : typo

* llama : throw error if gguf fails to init from file

ggml-ci

* llama : fix tensor name grepping during quantization

ggml-ci

* gguf.py : write tensors in a single pass (#2644)

* gguf : single pass for writing tensors + refactoring writer

* gguf : single pass for writing tensors + refactoring writer

* gguf : single pass for writing tensors + refactoring writer

* gguf : style fixes in simple conversion script

* gguf : refactor gptneox conversion script

* gguf : rename h5 to hf (for HuggingFace)

* gguf : refactor pth to gguf conversion script

* gguf : rm file_type key and method

* gguf.py : fix vertical alignment

* gguf.py : indentation

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>

* convert-gptneox-hf-to-gguf.py : fixes

* gguf.py : gptneox mapping

* convert-llama-hf-to-gguf.py : fixes

* convert-llama-7b-pth-to-gguf.py : fixes

* ggml.h : reverse GGUF_MAGIC

* gguf.py : reverse GGUF_MAGIC

* test-tokenizer-0.cpp : fix warning

* llama.cpp : print kv general.name

* llama.cpp : get special token kv and linefeed token id

* llama : print number of tensors per type + print arch + style

* tests : update vocab file with new magic

* editorconfig : fix whitespaces

* llama : re-order functions

* llama : remove C++ API + reorganize common source in /common dir

* llama : minor API updates

* llama : avoid hardcoded special tokens

* llama : fix MPI build

ggml-ci

* llama : introduce enum llama_vocab_type + remove hardcoded string constants

* convert-falcon-hf-to-gguf.py : falcon HF --> gguf conversion, not tested

* falcon-main.cpp : falcon inference example

* convert-falcon-hf-to-gguf.py : remove extra kv

* convert-gptneox-hf-to-gguf.py : remove extra kv

* convert-llama-7b-pth-to-gguf.py : remove extra kv

* convert-llama-hf-to-gguf.py : remove extra kv

* gguf.py : fix for falcon 40b

* falcon-main.cpp : fix for falcon 40b

* convert-falcon-hf-to-gguf.py : update ref

* convert-falcon-hf-to-gguf.py : add tensor data layout

* cmpnct_gpt2bpe.hpp : fixes

* falcon-main.cpp : fixes

* gptneox-main.cpp : fixes

* cmpnct_gpt2bpe.hpp : remove non-general stuff

* Update examples/server/README.md

Co-authored-by: slaren <slarengh@gmail.com>

* cmpnct_gpt2bpe.hpp : cleanup

* convert-llama-hf-to-gguf.py : special tokens

* convert-llama-7b-pth-to-gguf.py : special tokens

* convert-permute-debug.py : permute debug print

* convert-permute-debug-master.py : permute debug for master

* convert-permute-debug.py : change permute type of attn_q

* convert.py : 70b model working (change attn_q permute)

* Delete convert-permute-debug-master.py

* Delete convert-permute-debug.py

* convert-llama-hf-to-gguf.py : fix attn_q permute

* gguf.py : fix rope scale kv

* convert-llama-hf-to-gguf.py : rope scale and added tokens

* convert-llama-7b-pth-to-gguf.py : rope scale and added tokens

* llama.cpp : use rope scale kv

* convert-llama-7b-pth-to-gguf.py : rope scale fix

* convert-llama-hf-to-gguf.py : rope scale fix

* py : fix whitespace

* gguf : add Python script to convert GGMLv3 LLaMA models to GGUF (#2682)

* First pass at converting GGMLv3 LLaMA models to GGUF

* Cleanups, better output during conversion

* Fix vocab space conversion logic

* More vocab conversion fixes

* Add description to converted GGUF files

* Improve help text, expand warning

* Allow specifying name and description for output GGUF

* Allow overriding vocab and hyperparams from original model metadata

* Use correct params override var name

* Fix wrong type size for Q8_K

Better handling of original style metadata

* Set default value for gguf add_tensor raw_shape KW arg

* llama : improve token type support (#2668)

* Merge tokenizer fixes into the gguf branch.

* Add test vocabularies

* Adapt convert-new.py (and fix a clang-cl compiler error on windows)

* Improved tokenizer test

But does it work on MacOS?

* Improve token type support

- Added @klosax code to convert.py
- Improved token type support in vocabulary

* Exclude platform dependent tests

* More sentencepiece compatibility by eliminating magic numbers

* Restored accidentally removed comment

* llama : add API for token type

ggml-ci

* tests : use new tokenizer type API (#2692)

* Merge tokenizer fixes into the gguf branch.

* Add test vocabularies

* Adapt convert-new.py (and fix a clang-cl compiler error on windows)

* Improved tokenizer test

But does it work on MacOS?

* Improve token type support

- Added @klosax code to convert.py
- Improved token type support in vocabulary

* Exclude platform dependent tests

* More sentencepiece compatibility by eliminating magic numbers

* Restored accidentally removed comment

* Improve commentary

* Use token type API in test-tokenizer-1.cpp

* py : cosmetics

* readme : add notice about new file format

ggml-ci

---------

Co-authored-by: M. Yusuf Sarıgöz <yusufsarigoz@gmail.com>
Co-authored-by: klosax <131523366+klosax@users.noreply.github.com>
Co-authored-by: goerch <jhr.walter@t-online.de>
Co-authored-by: slaren <slarengh@gmail.com>
Co-authored-by: Kerfuffle <44031344+KerfuffleV2@users.noreply.github.com>
This commit is contained in:
Georgi Gerganov 2023-08-21 23:07:43 +03:00 committed by GitHub
parent dadbed99e6
commit 6381d4e110
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
54 changed files with 10020 additions and 2955 deletions

4
.gitignore vendored
View File

@ -1,6 +1,7 @@
*.o *.o
*.a *.a
*.so *.so
*.gguf
*.bin *.bin
.DS_Store .DS_Store
.build/ .build/
@ -47,6 +48,8 @@ models-mnt
/server /server
/Pipfile /Pipfile
/embd-input-test /embd-input-test
/gguf
/gguf-llama-simple
/libllama.so /libllama.so
/llama-bench /llama-bench
build-info.h build-info.h
@ -65,7 +68,6 @@ perf-*.txt
examples/jeopardy/results.txt examples/jeopardy/results.txt
pyproject.toml pyproject.toml
poetry.lock poetry.lock
poetry.toml poetry.toml

View File

@ -497,9 +497,11 @@ else()
endif() endif()
# #
# Build libraries # libraries
# #
# ggml
add_library(ggml OBJECT add_library(ggml OBJECT
ggml.c ggml.c
ggml.h ggml.h
@ -524,10 +526,11 @@ if (BUILD_SHARED_LIBS)
install(TARGETS ggml_shared LIBRARY) install(TARGETS ggml_shared LIBRARY)
endif() endif()
# llama
add_library(llama add_library(llama
llama.cpp llama.cpp
llama.h llama.h
llama-util.h
) )
target_include_directories(llama PUBLIC .) target_include_directories(llama PUBLIC .)
@ -546,6 +549,10 @@ if (BUILD_SHARED_LIBS)
install(TARGETS llama LIBRARY) install(TARGETS llama LIBRARY)
endif() endif()
#
# install
#
include(GNUInstallDirs) include(GNUInstallDirs)
install( install(
FILES convert.py FILES convert.py
@ -584,6 +591,8 @@ endif()
# programs, examples and tests # programs, examples and tests
# #
add_subdirectory(common)
if (LLAMA_BUILD_TESTS AND NOT CMAKE_JS_VERSION) if (LLAMA_BUILD_TESTS AND NOT CMAKE_JS_VERSION)
include(CTest) include(CTest)
add_subdirectory(tests) add_subdirectory(tests)

View File

@ -1,5 +1,5 @@
# Define the default target now so that it is always the first target # Define the default target now so that it is always the first target
BUILD_TARGETS = main quantize quantize-stats perplexity embedding vdot train-text-from-scratch convert-llama2c-to-ggml simple server embd-input-test llama-bench BUILD_TARGETS = main quantize quantize-stats perplexity embedding vdot train-text-from-scratch convert-llama2c-to-ggml simple server embd-input-test gguf llama-bench
# Binaries only useful for tests # Binaries only useful for tests
TEST_TARGETS = tests/test-llama-grammar tests/test-grammar-parser tests/test-double-float tests/test-grad0 tests/test-opt tests/test-quantize-fns tests/test-quantize-perf tests/test-sampling tests/test-tokenizer-0 TEST_TARGETS = tests/test-llama-grammar tests/test-grammar-parser tests/test-double-float tests/test-grad0 tests/test-opt tests/test-quantize-fns tests/test-quantize-perf tests/test-sampling tests/test-tokenizer-0
@ -46,7 +46,7 @@ else
OPT = -O3 OPT = -O3
endif endif
CFLAGS = -I. $(OPT) -std=c11 -fPIC CFLAGS = -I. $(OPT) -std=c11 -fPIC
CXXFLAGS = -I. -I./examples $(OPT) -std=c++11 -fPIC CXXFLAGS = -I. -I./common $(OPT) -std=c++11 -fPIC
LDFLAGS = LDFLAGS =
ifdef LLAMA_DEBUG ifdef LLAMA_DEBUG
@ -329,23 +329,23 @@ ggml-alloc.o: ggml-alloc.c ggml.h ggml-alloc.h
OBJS += ggml-alloc.o OBJS += ggml-alloc.o
llama.o: llama.cpp ggml.h ggml-alloc.h ggml-cuda.h ggml-metal.h llama.h llama-util.h llama.o: llama.cpp ggml.h ggml-alloc.h ggml-cuda.h ggml-metal.h llama.h
$(CXX) $(CXXFLAGS) -c $< -o $@ $(CXX) $(CXXFLAGS) -c $< -o $@
common.o: examples/common.cpp examples/common.h common.o: common/common.cpp common/common.h
$(CXX) $(CXXFLAGS) -c $< -o $@ $(CXX) $(CXXFLAGS) -c $< -o $@
console.o: examples/console.cpp examples/console.h console.o: common/console.cpp common/console.h
$(CXX) $(CXXFLAGS) -c $< -o $@ $(CXX) $(CXXFLAGS) -c $< -o $@
grammar-parser.o: examples/grammar-parser.cpp examples/grammar-parser.h grammar-parser.o: common/grammar-parser.cpp common/grammar-parser.h
$(CXX) $(CXXFLAGS) -c $< -o $@ $(CXX) $(CXXFLAGS) -c $< -o $@
libllama.so: llama.o ggml.o $(OBJS) libllama.so: llama.o ggml.o $(OBJS)
$(CXX) $(CXXFLAGS) -shared -fPIC -o $@ $^ $(LDFLAGS) $(CXX) $(CXXFLAGS) -shared -fPIC -o $@ $^ $(LDFLAGS)
clean: clean:
rm -vf *.o *.so *.dll main quantize quantize-stats perplexity embedding benchmark-matmult save-load-state server simple vdot train-text-from-scratch convert-llama2c-to-ggml embd-input-test llama-bench build-info.h $(TEST_TARGETS) rm -vf *.o *.so *.dll main quantize quantize-stats perplexity embedding benchmark-matmult save-load-state server simple vdot train-text-from-scratch convert-llama2c-to-ggml embd-input-test gguf llama-bench build-info.h $(TEST_TARGETS)
# #
# Examples # Examples
@ -385,7 +385,10 @@ $(LIB_PRE)embdinput$(DSO_EXT): examples/embd-input/embd-input.h examples/embd-in
embd-input-test: $(LIB_PRE)embdinput$(DSO_EXT) examples/embd-input/embd-input-test.cpp build-info.h ggml.o llama.o common.o $(OBJS) embd-input-test: $(LIB_PRE)embdinput$(DSO_EXT) examples/embd-input/embd-input-test.cpp build-info.h ggml.o llama.o common.o $(OBJS)
$(CXX) $(CXXFLAGS) $(filter-out %$(DSO_EXT),$(filter-out %.h,$(filter-out %.hpp,$^))) -o $@ $(LDFLAGS) -L. -lembdinput $(CXX) $(CXXFLAGS) $(filter-out %$(DSO_EXT),$(filter-out %.h,$(filter-out %.hpp,$^))) -o $@ $(LDFLAGS) -L. -lembdinput
train-text-from-scratch: examples/train-text-from-scratch/train-text-from-scratch.cpp build-info.h ggml.o llama.o $(OBJS) gguf: examples/gguf/gguf.cpp build-info.h ggml.o llama.o $(OBJS)
$(CXX) $(CXXFLAGS) $(filter-out %.h,$^) -o $@ $(LDFLAGS)
train-text-from-scratch: examples/train-text-from-scratch/train-text-from-scratch.cpp build-info.h ggml.o llama.o common.o $(OBJS)
$(CXX) $(CXXFLAGS) $(filter-out %.h,$^) -o $@ $(LDFLAGS) $(CXX) $(CXXFLAGS) $(filter-out %.h,$^) -o $@ $(LDFLAGS)
convert-llama2c-to-ggml: examples/convert-llama2c-to-ggml/convert-llama2c-to-ggml.cpp build-info.h ggml.o llama.o $(OBJS) convert-llama2c-to-ggml: examples/convert-llama2c-to-ggml/convert-llama2c-to-ggml.cpp build-info.h ggml.o llama.o $(OBJS)
@ -418,7 +421,7 @@ vdot: pocs/vdot/vdot.cpp ggml.o $(OBJS)
tests/test-llama-grammar: tests/test-llama-grammar.cpp build-info.h ggml.o llama.o common.o $(OBJS) tests/test-llama-grammar: tests/test-llama-grammar.cpp build-info.h ggml.o llama.o common.o $(OBJS)
$(CXX) $(CXXFLAGS) $(filter-out %.txt,$^) -o $@ $(LDFLAGS) $(CXX) $(CXXFLAGS) $(filter-out %.txt,$^) -o $@ $(LDFLAGS)
tests/test-grammar-parser: tests/test-grammar-parser.cpp examples/grammar-parser.cpp build-info.h ggml.o llama.o common.o $(OBJS) tests/test-grammar-parser: tests/test-grammar-parser.cpp build-info.h ggml.o llama.o common.o $(OBJS)
$(CXX) $(CXXFLAGS) $(filter-out %.txt,$^) -o $@ $(LDFLAGS) $(CXX) $(CXXFLAGS) $(filter-out %.txt,$^) -o $@ $(LDFLAGS)
tests/test-double-float: tests/test-double-float.cpp build-info.h ggml.o llama.o common.o $(OBJS) tests/test-double-float: tests/test-double-float.cpp build-info.h ggml.o llama.o common.o $(OBJS)

View File

@ -9,11 +9,17 @@
Inference of [LLaMA](https://arxiv.org/abs/2302.13971) model in pure C/C++ Inference of [LLaMA](https://arxiv.org/abs/2302.13971) model in pure C/C++
### 🚧 Incoming breaking change + refactoring: ### Hot topics
See PR https://github.com/ggerganov/llama.cpp/pull/2398 for more info. A new file format has been introduced: [GGUF](https://github.com/ggerganov/llama.cpp/pull/2398)
To devs: avoid making big changes to `llama.h` / `llama.cpp` until merged Last revision compatible with the old format: [dadbed9](https://github.com/ggerganov/llama.cpp/commit/dadbed99e65252d79f81101a392d0d6497b86caa)
### Current `master` should be considered in Beta - expect some issues for a few days!
### Be prepared to re-convert and / or re-quantize your GGUF models while this notice is up!
### Issues with non-GGUF models will be considered with low priority!
---- ----
@ -291,7 +297,7 @@ When built with Metal support, you can enable GPU inference with the `--gpu-laye
Any value larger than 0 will offload the computation to the GPU. For example: Any value larger than 0 will offload the computation to the GPU. For example:
```bash ```bash
./main -m ./models/7B/ggml-model-q4_0.bin -n 128 -ngl 1 ./main -m ./models/7B/ggml-model-q4_0.gguf -n 128 -ngl 1
``` ```
### MPI Build ### MPI Build
@ -330,7 +336,7 @@ The above will distribute the computation across 2 processes on the first host a
Finally, you're ready to run a computation using `mpirun`: Finally, you're ready to run a computation using `mpirun`:
```bash ```bash
mpirun -hostfile hostfile -n 3 ./main -m ./models/7B/ggml-model-q4_0.bin -n 128 mpirun -hostfile hostfile -n 3 ./main -m ./models/7B/ggml-model-q4_0.gguf -n 128
``` ```
### BLAS Build ### BLAS Build
@ -513,10 +519,10 @@ python3 convert.py models/7B/
python convert.py models/7B/ --vocabtype bpe python convert.py models/7B/ --vocabtype bpe
# quantize the model to 4-bits (using q4_0 method) # quantize the model to 4-bits (using q4_0 method)
./quantize ./models/7B/ggml-model-f16.bin ./models/7B/ggml-model-q4_0.bin q4_0 ./quantize ./models/7B/ggml-model-f16.gguf ./models/7B/ggml-model-q4_0.gguf q4_0
# run the inference # run the inference
./main -m ./models/7B/ggml-model-q4_0.bin -n 128 ./main -m ./models/7B/ggml-model-q4_0.gguf -n 128
``` ```
When running the larger models, make sure you have enough disk space to store all the intermediate files. When running the larger models, make sure you have enough disk space to store all the intermediate files.
@ -572,7 +578,7 @@ Here is an example of a few-shot interaction, invoked with the command
./examples/chat-13B.sh ./examples/chat-13B.sh
# custom arguments using a 13B model # custom arguments using a 13B model
./main -m ./models/13B/ggml-model-q4_0.bin -n 256 --repeat_penalty 1.0 --color -i -r "User:" -f prompts/chat-with-bob.txt ./main -m ./models/13B/ggml-model-q4_0.gguf -n 256 --repeat_penalty 1.0 --color -i -r "User:" -f prompts/chat-with-bob.txt
``` ```
Note the use of `--color` to distinguish between user input and generated text. Other parameters are explained in more detail in the [README](examples/main/README.md) for the `main` example program. Note the use of `--color` to distinguish between user input and generated text. Other parameters are explained in more detail in the [README](examples/main/README.md) for the `main` example program.
@ -635,6 +641,8 @@ OpenLLaMA is an openly licensed reproduction of Meta's original LLaMA model. It
### Using [GPT4All](https://github.com/nomic-ai/gpt4all) ### Using [GPT4All](https://github.com/nomic-ai/gpt4all)
*Note: these instructions are likely obsoleted by the GGUF update*
- Obtain the `tokenizer.model` file from LLaMA model and put it to `models` - Obtain the `tokenizer.model` file from LLaMA model and put it to `models`
- Obtain the `added_tokens.json` file from Alpaca model and put it to `models` - Obtain the `added_tokens.json` file from Alpaca model and put it to `models`
- Obtain the `gpt4all-lora-quantized.bin` file from GPT4All model and put it to `models/gpt4all-7B` - Obtain the `gpt4all-lora-quantized.bin` file from GPT4All model and put it to `models/gpt4all-7B`
@ -710,7 +718,7 @@ If your issue is with model generation quality, then please at least scan the fo
#### How to run #### How to run
1. Download/extract: https://s3.amazonaws.com/research.metamind.io/wikitext/wikitext-2-raw-v1.zip?ref=salesforce-research 1. Download/extract: https://s3.amazonaws.com/research.metamind.io/wikitext/wikitext-2-raw-v1.zip?ref=salesforce-research
2. Run `./perplexity -m models/7B/ggml-model-q4_0.bin -f wiki.test.raw` 2. Run `./perplexity -m models/7B/ggml-model-q4_0.gguf -f wiki.test.raw`
3. Output: 3. Output:
``` ```
perplexity : calculating perplexity over 655 chunks perplexity : calculating perplexity over 655 chunks
@ -809,13 +817,13 @@ docker run -v /path/to/models:/models ghcr.io/ggerganov/llama.cpp:full --all-in-
On completion, you are ready to play! On completion, you are ready to play!
```bash ```bash
docker run -v /path/to/models:/models ghcr.io/ggerganov/llama.cpp:full --run -m /models/7B/ggml-model-q4_0.bin -p "Building a website can be done in 10 simple steps:" -n 512 docker run -v /path/to/models:/models ghcr.io/ggerganov/llama.cpp:full --run -m /models/7B/ggml-model-q4_0.gguf -p "Building a website can be done in 10 simple steps:" -n 512
``` ```
or with a light image: or with a light image:
```bash ```bash
docker run -v /path/to/models:/models ghcr.io/ggerganov/llama.cpp:light -m /models/7B/ggml-model-q4_0.bin -p "Building a website can be done in 10 simple steps:" -n 512 docker run -v /path/to/models:/models ghcr.io/ggerganov/llama.cpp:light -m /models/7B/ggml-model-q4_0.gguf -p "Building a website can be done in 10 simple steps:" -n 512
``` ```
### Docker With CUDA ### Docker With CUDA
@ -846,8 +854,8 @@ The resulting images, are essentially the same as the non-CUDA images:
After building locally, Usage is similar to the non-CUDA examples, but you'll need to add the `--gpus` flag. You will also want to use the `--n-gpu-layers` flag. After building locally, Usage is similar to the non-CUDA examples, but you'll need to add the `--gpus` flag. You will also want to use the `--n-gpu-layers` flag.
```bash ```bash
docker run --gpus all -v /path/to/models:/models local/llama.cpp:full-cuda --run -m /models/7B/ggml-model-q4_0.bin -p "Building a website can be done in 10 simple steps:" -n 512 --n-gpu-layers 1 docker run --gpus all -v /path/to/models:/models local/llama.cpp:full-cuda --run -m /models/7B/ggml-model-q4_0.gguf -p "Building a website can be done in 10 simple steps:" -n 512 --n-gpu-layers 1
docker run --gpus all -v /path/to/models:/models local/llama.cpp:light-cuda -m /models/7B/ggml-model-q4_0.bin -p "Building a website can be done in 10 simple steps:" -n 512 --n-gpu-layers 1 docker run --gpus all -v /path/to/models:/models local/llama.cpp:light-cuda -m /models/7B/ggml-model-q4_0.gguf -p "Building a website can be done in 10 simple steps:" -n 512 --n-gpu-layers 1
``` ```
### Contributing ### Contributing

View File

@ -159,17 +159,17 @@ function gg_run_open_llama_3b_v2 {
python3 ../convert.py ${path_models} python3 ../convert.py ${path_models}
model_f16="${path_models}/ggml-model-f16.bin" model_f16="${path_models}/ggml-model-f16.gguf"
model_q8_0="${path_models}/ggml-model-q8_0.bin" model_q8_0="${path_models}/ggml-model-q8_0.gguf"
model_q4_0="${path_models}/ggml-model-q4_0.bin" model_q4_0="${path_models}/ggml-model-q4_0.gguf"
model_q4_1="${path_models}/ggml-model-q4_1.bin" model_q4_1="${path_models}/ggml-model-q4_1.gguf"
model_q5_0="${path_models}/ggml-model-q5_0.bin" model_q5_0="${path_models}/ggml-model-q5_0.gguf"
model_q5_1="${path_models}/ggml-model-q5_1.bin" model_q5_1="${path_models}/ggml-model-q5_1.gguf"
model_q2_k="${path_models}/ggml-model-q2_k.bin" model_q2_k="${path_models}/ggml-model-q2_k.gguf"
model_q3_k="${path_models}/ggml-model-q3_k.bin" model_q3_k="${path_models}/ggml-model-q3_k.gguf"
model_q4_k="${path_models}/ggml-model-q4_k.bin" model_q4_k="${path_models}/ggml-model-q4_k.gguf"
model_q5_k="${path_models}/ggml-model-q5_k.bin" model_q5_k="${path_models}/ggml-model-q5_k.gguf"
model_q6_k="${path_models}/ggml-model-q6_k.bin" model_q6_k="${path_models}/ggml-model-q6_k.gguf"
wiki_test_60="${path_wiki}/wiki.test-60.raw" wiki_test_60="${path_wiki}/wiki.test-60.raw"
@ -285,17 +285,17 @@ function gg_run_open_llama_7b_v2 {
python3 ../convert.py ${path_models} python3 ../convert.py ${path_models}
model_f16="${path_models}/ggml-model-f16.bin" model_f16="${path_models}/ggml-model-f16.gguf"
model_q8_0="${path_models}/ggml-model-q8_0.bin" model_q8_0="${path_models}/ggml-model-q8_0.gguf"
model_q4_0="${path_models}/ggml-model-q4_0.bin" model_q4_0="${path_models}/ggml-model-q4_0.gguf"
model_q4_1="${path_models}/ggml-model-q4_1.bin" model_q4_1="${path_models}/ggml-model-q4_1.gguf"
model_q5_0="${path_models}/ggml-model-q5_0.bin" model_q5_0="${path_models}/ggml-model-q5_0.gguf"
model_q5_1="${path_models}/ggml-model-q5_1.bin" model_q5_1="${path_models}/ggml-model-q5_1.gguf"
model_q2_k="${path_models}/ggml-model-q2_k.bin" model_q2_k="${path_models}/ggml-model-q2_k.gguf"
model_q3_k="${path_models}/ggml-model-q3_k.bin" model_q3_k="${path_models}/ggml-model-q3_k.gguf"
model_q4_k="${path_models}/ggml-model-q4_k.bin" model_q4_k="${path_models}/ggml-model-q4_k.gguf"
model_q5_k="${path_models}/ggml-model-q5_k.bin" model_q5_k="${path_models}/ggml-model-q5_k.gguf"
model_q6_k="${path_models}/ggml-model-q6_k.bin" model_q6_k="${path_models}/ggml-model-q6_k.gguf"
wiki_test="${path_wiki}/wiki.test.raw" wiki_test="${path_wiki}/wiki.test.raw"

20
common/CMakeLists.txt Normal file
View File

@ -0,0 +1,20 @@
# common
set(TARGET common)
add_library(${TARGET} OBJECT
common.h
common.cpp
console.h
console.cpp
grammar-parser.h
grammar-parser.cpp
)
if (BUILD_SHARED_LIBS)
set_target_properties(${TARGET} PROPERTIES POSITION_INDEPENDENT_CODE ON)
endif()
target_include_directories(${TARGET} PUBLIC .)
target_compile_features(${TARGET} PUBLIC cxx_std_11)
target_link_libraries(${TARGET} PRIVATE llama)

View File

@ -170,18 +170,6 @@ bool gpt_params_parse(int argc, char ** argv, gpt_params & params) {
break; break;
} }
params.n_ctx = std::stoi(argv[i]); params.n_ctx = std::stoi(argv[i]);
} else if (arg == "-gqa" || arg == "--gqa") {
if (++i >= argc) {
invalid_param = true;
break;
}
params.n_gqa = std::stoi(argv[i]);
} else if (arg == "-eps" || arg == "--rms-norm-eps") {
if (++i >= argc) {
invalid_param = true;
break;
}
params.rms_norm_eps = std::stof(argv[i]);
} else if (arg == "--rope-freq-base") { } else if (arg == "--rope-freq-base") {
if (++i >= argc) { if (++i >= argc) {
invalid_param = true; invalid_param = true;
@ -439,7 +427,7 @@ bool gpt_params_parse(int argc, char ** argv, gpt_params & params) {
} }
params.hellaswag_tasks = std::stoi(argv[i]); params.hellaswag_tasks = std::stoi(argv[i]);
} else if (arg == "--ignore-eos") { } else if (arg == "--ignore-eos") {
params.logit_bias[llama_token_eos()] = -INFINITY; params.ignore_eos = true;
} else if (arg == "--no-penalize-nl") { } else if (arg == "--no-penalize-nl") {
params.penalize_nl = false; params.penalize_nl = false;
} else if (arg == "-l" || arg == "--logit-bias") { } else if (arg == "-l" || arg == "--logit-bias") {
@ -561,8 +549,6 @@ void gpt_print_usage(int /*argc*/, char ** argv, const gpt_params & params) {
fprintf(stdout, " -n N, --n-predict N number of tokens to predict (default: %d, -1 = infinity, -2 = until context filled)\n", params.n_predict); fprintf(stdout, " -n N, --n-predict N number of tokens to predict (default: %d, -1 = infinity, -2 = until context filled)\n", params.n_predict);
fprintf(stdout, " -c N, --ctx-size N size of the prompt context (default: %d)\n", params.n_ctx); fprintf(stdout, " -c N, --ctx-size N size of the prompt context (default: %d)\n", params.n_ctx);
fprintf(stdout, " -b N, --batch-size N batch size for prompt processing (default: %d)\n", params.n_batch); fprintf(stdout, " -b N, --batch-size N batch size for prompt processing (default: %d)\n", params.n_batch);
fprintf(stdout, " -gqa N, --gqa N grouped-query attention factor (TEMP!!! use 8 for LLaMAv2 70B) (default: %d)\n", params.n_gqa);
fprintf(stdout, " -eps N, --rms-norm-eps N rms norm eps (TEMP!!! use 1e-5 for LLaMAv2) (default: %.1e)\n", params.rms_norm_eps);
fprintf(stdout, " --top-k N top-k sampling (default: %d, 0 = disabled)\n", params.top_k); fprintf(stdout, " --top-k N top-k sampling (default: %d, 0 = disabled)\n", params.top_k);
fprintf(stdout, " --top-p N top-p sampling (default: %.1f, 1.0 = disabled)\n", (double)params.top_p); fprintf(stdout, " --top-p N top-p sampling (default: %.1f, 1.0 = disabled)\n", (double)params.top_p);
fprintf(stdout, " --tfs N tail free sampling, parameter z (default: %.1f, 1.0 = disabled)\n", (double)params.tfs_z); fprintf(stdout, " --tfs N tail free sampling, parameter z (default: %.1f, 1.0 = disabled)\n", (double)params.tfs_z);
@ -650,24 +636,15 @@ std::string gpt_random_prompt(std::mt19937 & rng) {
return "The"; return "The";
} }
// TODO: not great allocating this every time //
std::vector<llama_token> llama_tokenize(struct llama_context * ctx, const std::string & text, bool add_bos) { // Model utils
// initialize to prompt numer of chars, since n_tokens <= n_prompt_chars //
std::vector<llama_token> res(text.size() + (int) add_bos);
const int n = llama_tokenize(ctx, text.c_str(), res.data(), res.size(), add_bos);
assert(n >= 0);
res.resize(n);
return res;
}
struct llama_context_params llama_context_params_from_gpt_params(const gpt_params & params) { struct llama_context_params llama_context_params_from_gpt_params(const gpt_params & params) {
auto lparams = llama_context_default_params(); auto lparams = llama_context_default_params();
lparams.n_ctx = params.n_ctx; lparams.n_ctx = params.n_ctx;
lparams.n_batch = params.n_batch; lparams.n_batch = params.n_batch;
lparams.n_gqa = params.n_gqa;
lparams.rms_norm_eps = params.rms_norm_eps;
lparams.n_gpu_layers = params.n_gpu_layers; lparams.n_gpu_layers = params.n_gpu_layers;
lparams.main_gpu = params.main_gpu; lparams.main_gpu = params.main_gpu;
lparams.tensor_split = params.tensor_split; lparams.tensor_split = params.tensor_split;
@ -685,7 +662,7 @@ struct llama_context_params llama_context_params_from_gpt_params(const gpt_param
return lparams; return lparams;
} }
std::tuple<struct llama_model *, struct llama_context *> llama_init_from_gpt_params(const gpt_params & params) { std::tuple<struct llama_model *, struct llama_context *> llama_init_from_gpt_params(gpt_params & params) {
auto lparams = llama_context_params_from_gpt_params(params); auto lparams = llama_context_params_from_gpt_params(params);
llama_model * model = llama_load_model_from_file(params.model.c_str(), lparams); llama_model * model = llama_load_model_from_file(params.model.c_str(), lparams);
@ -714,5 +691,77 @@ std::tuple<struct llama_model *, struct llama_context *> llama_init_from_gpt_par
} }
} }
if (params.ignore_eos) {
params.logit_bias[llama_token_eos(lctx)] = -INFINITY;
}
return std::make_tuple(model, lctx); return std::make_tuple(model, lctx);
} }
//
// Vocab utils
//
std::vector<llama_token> llama_tokenize(
struct llama_context * ctx,
const std::string & text,
bool add_bos) {
// upper limit for the number of tokens
int n_tokens = text.length() + add_bos;
std::vector<llama_token> result(n_tokens);
n_tokens = llama_tokenize(ctx, text.c_str(), result.data(), result.size(), add_bos);
if (n_tokens < 0) {
result.resize(-n_tokens);
int check = llama_tokenize(ctx, text.c_str(), result.data(), result.size(), add_bos);
GGML_ASSERT(check == -n_tokens);
} else {
result.resize(n_tokens);
}
return result;
}
std::string llama_token_to_str(const struct llama_context * ctx, llama_token token) {
std::vector<char> result(8, 0);
const int n_tokens = llama_token_to_str(ctx, token, result.data(), result.size());
if (n_tokens < 0) {
result.resize(-n_tokens);
int check = llama_token_to_str(ctx, token, result.data(), result.size());
GGML_ASSERT(check == -n_tokens);
} else {
result.resize(n_tokens);
}
return std::string(result.data(), result.size());
}
std::vector<llama_token> llama_tokenize_bpe(
struct llama_context * ctx,
const std::string & text,
bool add_bos) {
int n_tokens = text.length() + add_bos;
std::vector<llama_token> result(n_tokens);
n_tokens = llama_tokenize_bpe(ctx, text.c_str(), result.data(), result.size(), add_bos);
if (n_tokens < 0) {
result.resize(-n_tokens);
int check = llama_tokenize_bpe(ctx, text.c_str(), result.data(), result.size(), add_bos);
GGML_ASSERT(check == -n_tokens);
} else {
result.resize(n_tokens);
}
return result;
}
std::string llama_token_to_str_bpe(const struct llama_context * ctx, llama_token token) {
std::vector<char> result(8, 0);
const int n_tokens = llama_token_to_str_bpe(ctx, token, result.data(), result.size());
if (n_tokens < 0) {
result.resize(-n_tokens);
const int check = llama_token_to_str_bpe(ctx, token, result.data(), result.size());
GGML_ASSERT(check == -n_tokens);
} else {
result.resize(n_tokens);
}
return std::string(result.data(), result.size());
}

View File

@ -22,19 +22,16 @@ struct gpt_params {
int32_t n_predict = -1; // new tokens to predict int32_t n_predict = -1; // new tokens to predict
int32_t n_ctx = 512; // context size int32_t n_ctx = 512; // context size
int32_t n_batch = 512; // batch size for prompt processing (must be >=32 to use BLAS) int32_t n_batch = 512; // batch size for prompt processing (must be >=32 to use BLAS)
int32_t n_gqa = 1; // grouped-query attention factor (TODO: move to hparams)
int32_t n_keep = 0; // number of tokens to keep from initial prompt int32_t n_keep = 0; // number of tokens to keep from initial prompt
int32_t n_chunks = -1; // max number of chunks to process (-1 = unlimited) int32_t n_chunks = -1; // max number of chunks to process (-1 = unlimited)
int32_t n_gpu_layers = 0; // number of layers to store in VRAM int32_t n_gpu_layers = 0; // number of layers to store in VRAM
int32_t main_gpu = 0; // the GPU that is used for scratch and small tensors int32_t main_gpu = 0; // the GPU that is used for scratch and small tensors
float tensor_split[LLAMA_MAX_DEVICES] = {0}; // how split tensors should be distributed across GPUs float tensor_split[LLAMA_MAX_DEVICES] = {0}; // how split tensors should be distributed across GPUs
int32_t n_probs = 0; // if greater than 0, output the probabilities of top n_probs tokens. int32_t n_probs = 0; // if greater than 0, output the probabilities of top n_probs tokens.
float rms_norm_eps = LLAMA_DEFAULT_RMS_EPS; // rms norm epsilon
float rope_freq_base = 10000.0f; // RoPE base frequency float rope_freq_base = 10000.0f; // RoPE base frequency
float rope_freq_scale = 1.0f; // RoPE frequency scaling factor float rope_freq_scale = 1.0f; // RoPE frequency scaling factor
// sampling parameters // sampling parameters
std::unordered_map<llama_token, float> logit_bias; // logit bias for specific tokens
int32_t top_k = 40; // <= 0 to use vocab size int32_t top_k = 40; // <= 0 to use vocab size
float top_p = 0.95f; // 1.0 = disabled float top_p = 0.95f; // 1.0 = disabled
float tfs_z = 1.00f; // 1.0 = disabled float tfs_z = 1.00f; // 1.0 = disabled
@ -48,12 +45,14 @@ struct gpt_params {
float mirostat_tau = 5.00f; // target entropy float mirostat_tau = 5.00f; // target entropy
float mirostat_eta = 0.10f; // learning rate float mirostat_eta = 0.10f; // learning rate
std::unordered_map<llama_token, float> logit_bias; // logit bias for specific tokens
// Classifier-Free Guidance // Classifier-Free Guidance
// https://arxiv.org/abs/2306.17806 // https://arxiv.org/abs/2306.17806
std::string cfg_negative_prompt; // string to help guidance std::string cfg_negative_prompt; // string to help guidance
float cfg_scale = 1.f; // How strong is guidance float cfg_scale = 1.f; // How strong is guidance
std::string model = "models/7B/ggml-model.bin"; // model path std::string model = "models/7B/ggml-model-f16.gguf"; // model path
std::string model_alias = "unknown"; // model alias std::string model_alias = "unknown"; // model alias
std::string prompt = ""; std::string prompt = "";
std::string path_prompt_cache = ""; // path to file for saving/loading prompt eval state std::string path_prompt_cache = ""; // path to file for saving/loading prompt eval state
@ -83,6 +82,7 @@ struct gpt_params {
bool simple_io = false; // improves compatibility with subprocesses and limited consoles bool simple_io = false; // improves compatibility with subprocesses and limited consoles
bool input_prefix_bos = false; // prefix BOS to user inputs, preceding input_prefix bool input_prefix_bos = false; // prefix BOS to user inputs, preceding input_prefix
bool ignore_eos = false; // ignore generated EOS tokens
bool instruct = false; // instruction mode (used for Alpaca models) bool instruct = false; // instruction mode (used for Alpaca models)
bool penalize_nl = true; // consider newlines as a repeatable token bool penalize_nl = true; // consider newlines as a repeatable token
bool perplexity = false; // compute perplexity over the prompt bool perplexity = false; // compute perplexity over the prompt
@ -100,15 +100,31 @@ void gpt_print_usage(int argc, char ** argv, const gpt_params & params);
std::string gpt_random_prompt(std::mt19937 & rng); std::string gpt_random_prompt(std::mt19937 & rng);
//
// Vocab utils
//
std::vector<llama_token> llama_tokenize(struct llama_context * ctx, const std::string & text, bool add_bos);
// //
// Model utils // Model utils
// //
std::tuple<struct llama_model *, struct llama_context *> llama_init_from_gpt_params(const gpt_params & params); std::tuple<struct llama_model *, struct llama_context *> llama_init_from_gpt_params(gpt_params & params);
struct llama_context_params llama_context_params_from_gpt_params(const gpt_params & params); struct llama_context_params llama_context_params_from_gpt_params(const gpt_params & params);
//
// Vocab utils
//
std::vector<llama_token> llama_tokenize(
struct llama_context * ctx,
const std::string & text,
bool add_bos);
std::vector<llama_token> llama_tokenize_bpe(
struct llama_context * ctx,
const std::string & text,
bool add_bos);
std::string llama_token_to_str(
const struct llama_context * ctx,
llama_token token);
std::string llama_token_to_str_bpe(
const struct llama_context * ctx,
llama_token token);

View File

@ -0,0 +1,282 @@
# HF falcon--> gguf conversion
import gguf
import os
import sys
import struct
import json
import numpy as np
import torch
from typing import Any, List
from pathlib import Path
from transformers import AutoTokenizer
def bytes_to_unicode():
# ref: https://github.com/openai/gpt-2/blob/master/src/encoder.py
"""
Returns list of utf-8 byte and a corresponding list of unicode strings.
The reversible bpe codes work on unicode strings.
This means you need a large # of unicode characters in your vocab if you want to avoid UNKs.
When you're at something like a 10B token dataset you end up needing around 5K for decent coverage.
This is a significant percentage of your normal, say, 32K bpe vocab.
To avoid that, we want lookup tables between utf-8 bytes and unicode strings.
And avoids mapping to whitespace/control characters the bpe code barfs on.
"""
bs = list(range(ord("!"), ord("~")+1))+list(range(ord("¡"), ord("¬")+1))+list(range(ord("®"), ord("ÿ")+1))
cs = bs[:]
n = 0
for b in range(2**8):
if b not in bs:
bs.append(b)
cs.append(2**8+n)
n += 1
cs = [chr(n) for n in cs]
return dict(zip(bs, cs))
def count_model_parts(dir_model: str) -> int:
num_parts = 0
for filename in os.listdir(dir_model):
if filename.startswith("pytorch_model-"):
num_parts += 1
if num_parts > 0:
print("gguf: found " + str(num_parts) + " model parts")
return num_parts
if len(sys.argv) < 3:
print("Usage: convert-h5-to-ggml.py dir-model ftype\n")
print(" ftype == 0 -> float32")
print(" ftype == 1 -> float16")
sys.exit(1)
# output in the same directory as the model
dir_model = sys.argv[1]
last_dir = os.path.basename(os.path.normpath(dir_model))
# possible tensor data types
# ftype == 0 -> float32
# ftype == 1 -> float16
# map from ftype to string
ftype_str = ["f32", "f16"]
ftype = 1
if len(sys.argv) > 2:
ftype = int(sys.argv[2])
if ftype < 0 or ftype > 1:
print("Invalid ftype: " + str(ftype))
sys.exit(1)
fname_out = sys.argv[1] + "/ggml-model-" + ftype_str[ftype] + ".gguf"
print("gguf: loading model "+last_dir)
with open(dir_model + "/config.json", "r", encoding="utf-8") as f:
hparams = json.load(f)
if hparams["architectures"][0] != "RWForCausalLM":
print("Model architecture not supported: " + hparams["architectures"][0])
sys.exit()
# get number of model parts
num_parts = count_model_parts(dir_model)
ARCH=gguf.MODEL_ARCH.FALCON
gguf_writer = gguf.GGUFWriter(fname_out, gguf.MODEL_ARCH_NAMES[ARCH])
print("gguf: get model metadata")
block_count = hparams["n_layer"]
gguf_writer.add_name(last_dir)
gguf_writer.add_context_length(2048) # not in config.json
gguf_writer.add_tensor_data_layout("jploski") # qkv tensor transform
gguf_writer.add_embedding_length(hparams["hidden_size"])
gguf_writer.add_feed_forward_length(4 * hparams["hidden_size"])
gguf_writer.add_block_count(block_count)
gguf_writer.add_head_count(hparams["n_head"])
if "n_head_kv" in hparams: gguf_writer.add_head_count_kv(hparams["n_head_kv"])
gguf_writer.add_layer_norm_eps(hparams["layer_norm_epsilon"])
# TOKENIZATION
print("gguf: get tokenizer metadata")
tokens: List[str] = []
merges: List[str] = []
if Path(dir_model + "/tokenizer.json").is_file():
# gpt2 tokenizer
gguf_writer.add_tokenizer_model("gpt2")
print("gguf: get gpt2 tokenizer merges")
with open(dir_model + "/tokenizer.json", "r", encoding="utf-8") as f:
tokenizer_json = json.load(f)
merges = tokenizer_json["model"]["merges"]
gguf_writer.add_token_merges(merges)
print("gguf: get gpt2 tokenizer vocab")
vocab_size = len(tokenizer_json["model"]["vocab"])
# ref: https://github.com/cmp-nct/ggllm.cpp/blob/master/falcon_convert.py
tokenizer = AutoTokenizer.from_pretrained(dir_model)
reverse_vocab = {id: encoded_tok for encoded_tok, id in tokenizer.vocab.items()}
byte_encoder = bytes_to_unicode()
byte_decoder = {v: k for k, v in byte_encoder.items()}
for i in range(vocab_size):
if i in reverse_vocab:
try:
text = bytearray([byte_decoder[c] for c in reverse_vocab[i]])
except KeyError:
text = bytearray()
for c in reverse_vocab[i]:
if ord(c) < 256: # single byte character
text.append(byte_decoder[ord(c)])
else: # multibyte special token character
text.extend(c.encode('utf-8'))
else:
print(f"Key {i} not in tokenizer vocabulary. Padding with an arbitrary token.")
pad_token = f"[PAD{i}]".encode("utf8")
text = bytearray(pad_token)
tokens.append(text)
gguf_writer.add_token_list(tokens)
if "added_tokens" in tokenizer_json and Path(dir_model + "/tokenizer_config.json").is_file():
print("gguf: get special token ids")
with open(dir_model + "/tokenizer_config.json", "r", encoding="utf-8") as f:
tokenizer_config = json.load(f)
# find special token ids
if "bos_token" in tokenizer_config:
for key in tokenizer_json["added_tokens"]:
if key["content"] == tokenizer_config["bos_token"]:
gguf_writer.add_bos_token_id(key["id"])
if "eos_token" in tokenizer_config:
for key in tokenizer_json["added_tokens"]:
if key["content"] == tokenizer_config["eos_token"]:
gguf_writer.add_eos_token_id(key["id"])
if "unk_token" in tokenizer_config:
for key in tokenizer_json["added_tokens"]:
if key["content"] == tokenizer_config["unk_token"]:
gguf_writer.add_unk_token_id(key["id"])
if "sep_token" in tokenizer_config:
for key in tokenizer_json["added_tokens"]:
if key["content"] == tokenizer_config["sep_token"]:
gguf_writer.add_sep_token_id(key["id"])
if "pad_token" in tokenizer_config:
for key in tokenizer_json["added_tokens"]:
if key["content"] == tokenizer_config["pad_token"]:
gguf_writer.add_pad_token_id(key["id"])
# TENSORS
tensor_map = gguf.get_tensor_name_map(ARCH,block_count)
# params for qkv transform
n_head = hparams["n_head"]
n_head_kv = hparams["n_head_kv"] if "n_head_kv" in hparams else 1
head_dim = hparams["hidden_size"] // n_head
# tensor info
print("gguf: get tensor metadata")
if num_parts == 0:
part_names = ("pytorch_model.bin",)
else:
part_names = (
f"pytorch_model-{n:05}-of-{num_parts:05}.bin" for n in range(1, num_parts + 1)
)
for part_name in part_names:
print("gguf: loading model part '" + part_name + "'")
model_part = torch.load(f"{dir_model}/{part_name}", map_location="cpu")
for name in model_part.keys():
data = model_part[name]
old_dtype = data.dtype
# convert any unsupported data types to float32
if data.dtype != torch.float16 and data.dtype != torch.float32:
data = data.to(torch.float32)
# QKV tensor transform
# The original query_key_value tensor contains n_head_kv "kv groups",
# each consisting of n_head/n_head_kv query weights followed by one key
# and one value weight (shared by all query heads in the kv group).
# This layout makes it a big pain to work with in GGML.
# So we rearrange them here,, so that we have n_head query weights
# followed by n_head_kv key weights followed by n_head_kv value weights,
# in contiguous fashion.
# ref: https://github.com/jploski/ggml/blob/falcon40b/examples/falcon/convert-hf-to-ggml.py
if "query_key_value" in name:
qkv = data.view(n_head_kv, n_head // n_head_kv + 2, head_dim, head_dim * n_head)
q = qkv[:, :-2 ].reshape(n_head * head_dim, head_dim * n_head)
k = qkv[:, [-2]].reshape(n_head_kv * head_dim, head_dim * n_head)
v = qkv[:, [-1]].reshape(n_head_kv * head_dim, head_dim * n_head)
data = torch.cat((q,k,v)).reshape_as(data)
data = data.squeeze().numpy()
# map tensor names
if name.endswith(".weight") and name[:-7] in tensor_map:
name = tensor_map[name[:-7]] + ".weight"
elif name.endswith(".bias") and name[:-5] in tensor_map:
name = tensor_map[name[:-5]] + ".bias"
else:
print("Can not map tensor '" + name + "'")
sys.exit()
n_dims = len(data.shape)
data_dtype = data.dtype
# if f32 desired, convert any float16 to float32
if ftype == 0 and data_dtype == np.float16:
data = data.astype(np.float32)
# TODO: Why cant we use these float16 as-is? There should be not reason to store float16 as float32
if ftype == 1 and data_dtype == np.float16 and n_dims == 1:
data = data.astype(np.float32)
# if f16 desired, convert any float32 2-dim weight tensors to float16
if ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and n_dims == 2:
data = data.astype(np.float16)
print(name + ", n_dims = " + str(n_dims) + ", " + str(old_dtype) + " --> " + str(data.dtype))
gguf_writer.add_tensor(name, data)
print("gguf: write header")
gguf_writer.write_header_to_file()
print("gguf: write metadata")
gguf_writer.write_kv_data_to_file()
print("gguf: write tensors")
gguf_writer.write_tensors_to_file()
gguf_writer.close()
print("gguf: model successfully exported to '" + fname_out + "'")
print("")

View File

@ -0,0 +1,266 @@
# HF gptneox--> gguf conversion
import gguf
import os
import sys
import struct
import json
import numpy as np
import torch
from typing import Any, List
from pathlib import Path
from transformers import AutoTokenizer
# ref: https://github.com/openai/gpt-2/blob/master/src/encoder.py
def bytes_to_unicode():
"""
Returns list of utf-8 byte and a corresponding list of unicode strings.
The reversible bpe codes work on unicode strings.
This means you need a large # of unicode characters in your vocab if you want to avoid UNKs.
When you're at something like a 10B token dataset you end up needing around 5K for decent coverage.
This is a significant percentage of your normal, say, 32K bpe vocab.
To avoid that, we want lookup tables between utf-8 bytes and unicode strings.
And avoids mapping to whitespace/control characters the bpe code barfs on.
"""
bs = list(range(ord("!"), ord("~")+1))+list(range(ord("¡"), ord("¬")+1))+list(range(ord("®"), ord("ÿ")+1))
cs = bs[:]
n = 0
for b in range(2**8):
if b not in bs:
bs.append(b)
cs.append(2**8+n)
n += 1
cs = [chr(n) for n in cs]
return dict(zip(bs, cs))
def count_model_parts(dir_model: str) -> int:
num_parts = 0
for filename in os.listdir(dir_model):
if filename.startswith("pytorch_model-"):
num_parts += 1
if num_parts > 0:
print("gguf: found " + str(num_parts) + " model parts")
return num_parts
if len(sys.argv) < 3:
print("Usage: convert-h5-to-ggml.py dir-model ftype\n")
print(" ftype == 0 -> float32")
print(" ftype == 1 -> float16")
sys.exit(1)
# output in the same directory as the model
dir_model = sys.argv[1]
last_dir = os.path.basename(os.path.normpath(dir_model))
# possible tensor data types
# ftype == 0 -> float32
# ftype == 1 -> float16
# map from ftype to string
ftype_str = ["f32", "f16"]
ftype = 1
if len(sys.argv) > 2:
ftype = int(sys.argv[2])
if ftype < 0 or ftype > 1:
print("Invalid ftype: " + str(ftype))
sys.exit(1)
fname_out = sys.argv[1] + "/ggml-model-" + ftype_str[ftype] + ".gguf"
print("gguf: loading model "+last_dir)
with open(dir_model + "/config.json", "r", encoding="utf-8") as f:
hparams = json.load(f)
if hparams["architectures"][0] != "GPTNeoXForCausalLM":
print("Model architecture not supported: " + hparams["architectures"][0])
sys.exit()
# get number of model parts
num_parts = count_model_parts(dir_model)
ARCH=gguf.MODEL_ARCH.GPTNEOX
gguf_writer = gguf.GGUFWriter(fname_out, gguf.MODEL_ARCH_NAMES[ARCH])
print("gguf: get model metadata")
block_count = hparams["num_hidden_layers"]
gguf_writer.add_name(last_dir)
gguf_writer.add_context_length(hparams["max_position_embeddings"])
gguf_writer.add_embedding_length(hparams["hidden_size"])
gguf_writer.add_block_count(block_count)
gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
gguf_writer.add_rope_dimension_count(int(hparams["rotary_pct"]*(hparams["hidden_size"]//hparams["num_attention_heads"])))
gguf_writer.add_head_count(hparams["num_attention_heads"])
gguf_writer.add_parallel_residual(hparams["use_parallel_residual"] if "use_parallel_residual" in hparams else True)
gguf_writer.add_layer_norm_eps(hparams["layer_norm_eps"])
# TOKENIZATION
print("gguf: get tokenizer metadata")
tokens: List[str] = []
merges: List[str] = []
if Path(dir_model + "/tokenizer.json").is_file():
# gpt2 tokenizer
gguf_writer.add_tokenizer_model("gpt2")
print("gguf: get gpt2 tokenizer merges")
with open(dir_model + "/tokenizer.json", "r", encoding="utf-8") as f:
tokenizer_json = json.load(f)
merges = tokenizer_json["model"]["merges"]
gguf_writer.add_token_merges(merges)
print("gguf: get gpt2 tokenizer vocab")
vocab_size = len(tokenizer_json["model"]["vocab"])
# ref: https://github.com/cmp-nct/ggllm.cpp/blob/master/falcon_convert.py
tokenizer = AutoTokenizer.from_pretrained(dir_model)
reverse_vocab = {id: encoded_tok for encoded_tok, id in tokenizer.vocab.items()}
byte_encoder = bytes_to_unicode()
byte_decoder = {v: k for k, v in byte_encoder.items()}
for i in range(vocab_size):
if i in reverse_vocab:
try:
text = bytearray([byte_decoder[c] for c in reverse_vocab[i]])
except KeyError:
text = bytearray()
for c in reverse_vocab[i]:
if ord(c) < 256: # single byte character
text.append(byte_decoder[ord(c)])
else: # multibyte special token character
text.extend(c.encode('utf-8'))
else:
print(f"Key {i} not in tokenizer vocabulary. Padding with an arbitrary token.")
pad_token = f"[PAD{i}]".encode("utf8")
text = bytearray(pad_token)
tokens.append(text)
gguf_writer.add_token_list(tokens)
if "added_tokens" in tokenizer_json and Path(dir_model + "/tokenizer_config.json").is_file():
print("gguf: get special token ids")
with open(dir_model + "/tokenizer_config.json", "r", encoding="utf-8") as f:
tokenizer_config = json.load(f)
# find special token ids
if "bos_token" in tokenizer_config:
for key in tokenizer_json["added_tokens"]:
if key["content"] == tokenizer_config["bos_token"]:
gguf_writer.add_bos_token_id(key["id"])
if "eos_token" in tokenizer_config:
for key in tokenizer_json["added_tokens"]:
if key["content"] == tokenizer_config["eos_token"]:
gguf_writer.add_eos_token_id(key["id"])
if "unk_token" in tokenizer_config:
for key in tokenizer_json["added_tokens"]:
if key["content"] == tokenizer_config["unk_token"]:
gguf_writer.add_unk_token_id(key["id"])
if "sep_token" in tokenizer_config:
for key in tokenizer_json["added_tokens"]:
if key["content"] == tokenizer_config["sep_token"]:
gguf_writer.add_sep_token_id(key["id"])
if "pad_token" in tokenizer_config:
for key in tokenizer_json["added_tokens"]:
if key["content"] == tokenizer_config["pad_token"]:
gguf_writer.add_pad_token_id(key["id"])
# TENSORS
tensor_map = gguf.get_tensor_name_map(ARCH,block_count)
# tensor info
print("gguf: get tensor metadata")
if num_parts == 0:
part_names = ("pytorch_model.bin",)
else:
part_names = (
f"pytorch_model-{n:05}-of-{num_parts:05}.bin" for n in range(1, num_parts + 1)
)
for part_name in part_names:
print("gguf: loading model part '" + part_name + "'")
model_part = torch.load(f"{dir_model}/{part_name}", map_location="cpu")
for name in model_part.keys():
data = model_part[name]
# we don't need these
if name.endswith(".attention.masked_bias") or name.endswith(".attention.bias") or name.endswith(".attention.rotary_emb.inv_freq"):
continue
old_dtype = data.dtype
# convert any unsupported data types to float32
if data.dtype != torch.float16 and data.dtype != torch.float32:
data = data.to(torch.float32)
data = data.squeeze().numpy()
# map tensor names
if name.endswith(".weight") and name[:-7] in tensor_map:
name = tensor_map[name[:-7]] + ".weight"
elif name.endswith(".bias") and name[:-5] in tensor_map:
name = tensor_map[name[:-5]] + ".bias"
else:
print("Can not map tensor '" + name + "'")
sys.exit()
n_dims = len(data.shape)
data_dtype = data.dtype
# if f32 desired, convert any float16 to float32
if ftype == 0 and data_dtype == np.float16:
data = data.astype(np.float32)
# TODO: Why cant we use these float16 as-is? There should be not reason to store float16 as float32
if ftype == 1 and data_dtype == np.float16 and n_dims == 1:
data = data.astype(np.float32)
# if f16 desired, convert any float32 2-dim weight tensors to float16
if ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and n_dims == 2:
data = data.astype(np.float16)
print(name + ", n_dims = " + str(n_dims) + ", " + str(old_dtype) + " --> " + str(data.dtype))
gguf_writer.add_tensor(name, data)
print("gguf: write header")
gguf_writer.write_header_to_file()
print("gguf: write metadata")
gguf_writer.write_kv_data_to_file()
print("gguf: write tensors")
gguf_writer.write_tensors_to_file()
gguf_writer.close()
print("gguf: model successfully exported to '" + fname_out + "'")
print("")

View File

@ -0,0 +1,307 @@
# 7b pth llama --> gguf conversion
# Only models with a single datafile are supported, like 7B
# HF files required in the model dir: config.json tokenizer_config.json tokenizer.json tokenizer.model
import gguf
import os
import sys
import struct
import json
import numpy as np
import torch
from typing import Any, List
from pathlib import Path
from sentencepiece import SentencePieceProcessor
#NDArray = np.ndarray[Any, Any]
# compatible with python < 3.9
NDArray: 'TypeAlias' = 'np.ndarray[Any, Any]'
def count_model_parts(dir_model: str) -> int:
num_parts = 0
for filename in os.listdir(dir_model):
if filename.startswith("consolidated."):
num_parts += 1
if num_parts > 0:
print("gguf: found " + str(num_parts) + " model parts")
return num_parts
if len(sys.argv) < 3:
print("Usage: convert-h5-to-ggml.py dir-model ftype\n")
print(" ftype == 0 -> float32")
print(" ftype == 1 -> float16")
sys.exit(1)
# output in the same directory as the model
dir_model = sys.argv[1]
last_dir = os.path.basename(os.path.normpath(dir_model))
# possible tensor data types
# ftype == 0 -> float32
# ftype == 1 -> float16
# map from ftype to string
ftype_str = ["f32", "f16"]
ftype = 1
if len(sys.argv) > 2:
ftype = int(sys.argv[2])
if ftype < 0 or ftype > 1:
print("Invalid ftype: " + str(ftype))
sys.exit(1)
fname_out = sys.argv[1] + "/ggml-model-" + ftype_str[ftype] + ".gguf"
print("gguf: loading model "+last_dir)
with open(dir_model + "/config.json", "r", encoding="utf-8") as f:
hparams = json.load(f)
if hparams["architectures"][0] != "LlamaForCausalLM":
print("Model architecture not supported: " + hparams["architectures"][0])
sys.exit()
# get number of model parts
num_parts = count_model_parts(dir_model)
if num_parts > 1:
print("gguf: Only models with a single datafile are supported.")
sys.exit()
ARCH=gguf.MODEL_ARCH.LLAMA
gguf_writer = gguf.GGUFWriter(fname_out, gguf.MODEL_ARCH_NAMES[ARCH])
print("gguf: get model metadata")
block_count = hparams["num_hidden_layers"]
head_count = hparams["num_attention_heads"]
if "num_key_value_heads" in hparams:
head_count_kv = hparams["num_key_value_heads"]
else:
head_count_kv = head_count
if "_name_or_path" in hparams:
hf_repo = hparams["_name_or_path"]
else:
hf_repo = ""
if "max_sequence_length" in hparams:
ctx_length = hparams["max_sequence_length"]
elif "max_position_embeddings" in hparams:
ctx_length = hparams["max_position_embeddings"]
else:
print("gguf: can not find ctx length parameter.")
sys.exit()
gguf_writer.add_name(last_dir)
gguf_writer.add_source_hf_repo(hf_repo)
gguf_writer.add_tensor_data_layout("Meta AI original pth")
gguf_writer.add_context_length(ctx_length)
gguf_writer.add_embedding_length(hparams["hidden_size"])
gguf_writer.add_block_count(block_count)
gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
gguf_writer.add_rope_dimension_count(hparams["hidden_size"] // hparams["num_attention_heads"])
gguf_writer.add_head_count(head_count)
gguf_writer.add_head_count_kv(head_count_kv)
gguf_writer.add_layer_norm_rms_eps(hparams["rms_norm_eps"])
if "rope_scaling" in hparams and hparams["rope_scaling"] != None and "factor" in hparams["rope_scaling"]:
if "type" in hparams["rope_scaling"]:
if hparams["rope_scaling"]["type"] == "linear":
gguf_writer.add_rope_scale_linear(hparams["rope_scaling"]["factor"])
# TOKENIZATION
print("gguf: get tokenizer metadata")
tokens: List[bytes] = []
scores: List[float] = []
toktypes: List[int] = []
if Path(dir_model + "/tokenizer.model").is_file():
# vocab type sentencepiece
print("gguf: get sentencepiece tokenizer vocab and scores")
tokenizer = SentencePieceProcessor(dir_model + "/tokenizer.model")
for i in range(tokenizer.vocab_size()):
text: bytes
score: float
piece = tokenizer.id_to_piece(i)
text = piece.encode("utf-8")
score = tokenizer.get_score(i)
toktype = 1 # defualt to normal token type
if tokenizer.is_unknown(i):
toktype = 2
if tokenizer.is_control(i):
toktype = 3
# toktype = 4 is user-defined = tokens from added_tokens.json
if tokenizer.is_unused(i):
toktype = 5
if tokenizer.is_byte(i):
toktype = 6
tokens.append(text)
scores.append(score)
toktypes.append(toktype)
if Path(dir_model + "/added_tokens.json").is_file():
with open(dir_model + "/added_tokens.json", "r", encoding="utf-8") as f:
addtokens_json = json.load(f)
print("gguf: get added tokens")
for key in addtokens_json:
tokens.append( key.encode("utf-8") )
scores.append(-1000.0)
toktypes.append(4) # user-defined token type
gguf_writer.add_tokenizer_model("llama")
gguf_writer.add_token_list(tokens)
gguf_writer.add_token_scores(scores)
gguf_writer.add_token_types(toktypes)
print("gguf: get special token ids")
if Path(dir_model + "/tokenizer.json").is_file():
# Look for special tokens in tokenizer.json if it exists
with open(dir_model + "/tokenizer.json", "r", encoding="utf-8") as f:
tokenizer = json.load(f)
if "added_tokens" in tokenizer and Path(dir_model + "/tokenizer_config.json").is_file():
with open(dir_model + "/tokenizer_config.json", "r", encoding="utf-8") as f:
tokenizer_config = json.load(f)
if "bos_token" in tokenizer_config and tokenizer_config["bos_token"] != None:
for key in tokenizer["added_tokens"]:
if key["content"] == tokenizer_config["bos_token"]["content"]:
gguf_writer.add_bos_token_id(key["id"])
if "eos_token" in tokenizer_config and tokenizer_config["eos_token"] != None:
for key in tokenizer["added_tokens"]:
if key["content"] == tokenizer_config["eos_token"]["content"]:
gguf_writer.add_eos_token_id(key["id"])
if "unk_token" in tokenizer_config and tokenizer_config["unk_token"] != None:
for key in tokenizer["added_tokens"]:
if key["content"] == tokenizer_config["unk_token"]["content"]:
gguf_writer.add_unk_token_id(key["id"])
if "sep_token" in tokenizer_config and tokenizer_config["sep_token"] != None:
for key in tokenizer["added_tokens"]:
if key["content"] == tokenizer_config["sep_token"]["content"]:
gguf_writer.add_sep_token_id(key["id"])
if "pad_token" in tokenizer_config and tokenizer_config["pad_token"] != None:
for key in tokenizer["added_tokens"]:
if key["content"] == tokenizer_config["pad_token"]["content"]:
gguf_writer.add_pad_token_id(key["id"])
else:
# If no tokenizer.json: Look for special tokens in config.json
if "bos_token_id" in hparams and hparams["bos_token_id"] != None:
gguf_writer.add_bos_token_id(hparams["bos_token_id"])
if "eos_token_id" in hparams and hparams["eos_token_id"] != None:
gguf_writer.add_eos_token_id(hparams["eos_token_id"])
if "unk_token_id" in hparams and hparams["unk_token_id"] != None:
gguf_writer.add_unk_token_id(hparams["unk_token_id"])
if "sep_token_id" in hparams and hparams["sep_token_id"] != None:
gguf_writer.add_sep_token_id(hparams["sep_token_id"])
if "pad_token_id" in hparams and hparams["pad_token_id"] != None:
gguf_writer.add_pad_token_id(hparams["pad_token_id"])
# TENSORS
tensor_map = gguf.get_tensor_name_map(ARCH,block_count)
# tensor info
print("gguf: get tensor metadata")
part_names = (f"consolidated.{n:02}.pth" for n in range(0, num_parts))
for part_name in part_names:
print("gguf: loading model part '" + part_name + "'")
model_part = torch.load(f"{dir_model}/{part_name}", map_location="cpu")
for name in model_part.keys():
data = model_part[name]
# we don't need these
if name == "rope.freqs":
continue
old_dtype = data.dtype
# convert any unsupported data types to float32
if data.dtype != torch.float16 and data.dtype != torch.float32:
data = data.to(torch.float32)
data = data.squeeze().numpy()
# map tensor names
if name.endswith(".weight") and name[:-7] in tensor_map:
name = tensor_map[name[:-7]] + ".weight"
elif name.endswith(".bias") and name[:-5] in tensor_map:
name = tensor_map[name[:-5]] + ".bias"
else:
print("Can not map tensor '" + name + "'")
sys.exit()
n_dims = len(data.shape)
data_dtype = data.dtype
# if f32 desired, convert any float16 to float32
if ftype == 0 and data_dtype == np.float16:
data = data.astype(np.float32)
# TODO: Why cant we use these float16 as-is? There should be not reason to store float16 as float32
if ftype == 1 and data_dtype == np.float16 and n_dims == 1:
data = data.astype(np.float32)
# if f16 desired, convert any float32 2-dim weight tensors to float16
if ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and n_dims == 2:
data = data.astype(np.float16)
print(name + ", n_dims = " + str(n_dims) + ", " + str(old_dtype) + " --> " + str(data.dtype))
gguf_writer.add_tensor(name, data)
print("gguf: write header")
gguf_writer.write_header_to_file()
print("gguf: write metadata")
gguf_writer.write_kv_data_to_file()
print("gguf: write tensors")
gguf_writer.write_tensors_to_file()
gguf_writer.close()
print("gguf: model successfully exported to '" + fname_out + "'")
print("")

View File

@ -0,0 +1,334 @@
import sys, struct, math, argparse
from pathlib import Path
import numpy as np
import gguf
# Note: Does not support GGML_QKK_64
QK_K = 256
# Items here are (block size, type size)
GGML_QUANT_SIZES = {
gguf.GGMLQuantizationType.F32 : (1, 4),
gguf.GGMLQuantizationType.F16 : (1, 2),
gguf.GGMLQuantizationType.Q4_0 : (32, 2 + 16),
gguf.GGMLQuantizationType.Q4_1 : (32, 2 + 2 + 16),
gguf.GGMLQuantizationType.Q5_0 : (32, 2 + 4 + 16),
gguf.GGMLQuantizationType.Q5_1 : (32, 2 + 2 + 4 + 16),
gguf.GGMLQuantizationType.Q8_0 : (32, 2 + 32),
gguf.GGMLQuantizationType.Q8_1 : (32, 4 + 4 + 32),
gguf.GGMLQuantizationType.Q2_K : (256, 2 + 2 + QK_K // 16 + QK_K // 4),
gguf.GGMLQuantizationType.Q3_K : (256, 2 + QK_K // 4 + QK_K // 8 + 12),
gguf.GGMLQuantizationType.Q4_K : (256, 2 + 2 + QK_K // 2 + 12),
gguf.GGMLQuantizationType.Q5_K : (256, 2 + 2 + QK_K // 2 + QK_K // 8 + 12),
gguf.GGMLQuantizationType.Q6_K : (256, 2 + QK_K // 2 + QK_K // 4 + QK_K // 16),
gguf.GGMLQuantizationType.Q8_K : (256, 4 + QK_K + QK_K // 8),
}
class Hyperparameters:
def __init__(self):
self.n_vocab = self.n_embd = self.n_mult = self.n_head = self.n_layer = self.n_rot = self.ftype = 0
self.n_ff = 0
def set_n_ff(self, model):
ff_tensor_idx = model.tensor_map.get(b'layers.0.feed_forward.w1.weight')
assert ff_tensor_idx is not None, 'Missing layer 0 FF tensor'
ff_tensor = model.tensors[ff_tensor_idx]
self.n_ff = ff_tensor.dims[1]
def load(self, data, offset):
(
self.n_vocab,
self.n_embd,
self.n_mult,
self.n_head,
self.n_layer,
self.n_rot,
self.ftype,
) = struct.unpack('<7I', data[offset:offset + (4 * 7)])
return 4 * 7
def __str__(self):
return f'<Hyperparameters: n_vocab={self.n_vocab}, n_embd={self.n_embd}, n_mult={self.n_mult}, n_head={self.n_head}, n_layer={self.n_layer}, n_rot={self.n_rot}, n_ff={self.n_ff}, ftype={self.ftype}>'
class Vocab:
def __init__(self):
self.items = []
def load(self, data, offset, n_vocab):
orig_offset = offset
for _ in range(n_vocab):
itemlen = struct.unpack('<I', data[offset:offset + 4])[0]
assert itemlen < 4096, 'Absurd vocab item length'
offset += 4
vocab = bytes(data[offset:offset + itemlen])
offset += itemlen
score = struct.unpack('<f', data[offset:offset + 4])[0]
offset += 4
self.items.append((vocab, score))
return offset - orig_offset
class Tensor:
def __init__(self):
self.name = None
self.dims = ()
self.dtype = None
self.start_offset = 0
self.len_bytes = 0
def load(self, data, offset):
orig_offset = offset
(n_dims, name_len, dtype) = struct.unpack('<3I', data[offset:offset + 12])
assert n_dims >= 0 and n_dims <= 4, f'Invalid tensor dimensions {n_dims}'
assert name_len < 4096, 'Absurd tensor name length'
quant = GGML_QUANT_SIZES.get(dtype)
assert quant is not None, 'Unknown tensor type'
(blksize, tysize) = quant
offset += 12
self.dtype= dtype
self.dims = struct.unpack(f'<{n_dims}I', data[offset:offset + (4 * n_dims)])
offset += 4 * n_dims
self.name = bytes(data[offset:offset + name_len])
offset += name_len
pad = ((offset + 31) & ~31) - offset
offset += pad
n_elems = np.prod(self.dims)
n_bytes = (n_elems * tysize) // blksize
self.start_offset = offset
self.len_bytes = n_bytes
offset += n_bytes
# print(n_dims, name_len, dtype, self.dims, self.name, pad)
return offset - orig_offset
class GGMLV3Model:
def __init__(self):
self.hyperparameters = None
self.vocab = None
self.tensor_map = {}
self.tensors = []
def validate_header(self, data, offset):
if bytes(data[offset:offset + 4]) != b'tjgg' or struct.unpack('<I', data[offset + 4:offset + 8])[0] != 3:
raise ValueError('Only GGJTv3 supported')
return 8
def load(self, data, offset):
offset += self.validate_header(data, offset)
hp = Hyperparameters()
offset += hp.load(data, offset)
vocab = Vocab()
offset += vocab.load(data, offset, hp.n_vocab)
tensors = []
tensor_map = {}
while offset < len(data):
tensor = Tensor()
offset += tensor.load(data, offset)
tensor_map[tensor.name] = len(tensors)
tensors.append(tensor)
self.hyperparameters = hp
self.vocab = vocab
self.tensors = tensors
self.tensor_map = tensor_map
hp.set_n_ff(self)
return offset
class GGMLToGGUF:
def __init__(self, ggml_model, data, cfg, params_override = None, vocab_override = None):
hp = ggml_model.hyperparameters
self.model = ggml_model
self.data = data
self.cfg = cfg
self.params_override = params_override
self.vocab_override = vocab_override
if params_override is not None:
n_kv_head = params_override.n_head_kv
else:
if cfg.gqa == 1:
n_kv_head = hp.n_head
else:
gqa = float(cfg.gqa)
n_kv_head = None
for x in range(1, 256):
if float(hp.n_head) / float(x) == gqa:
n_kv_head = x
assert n_kv_head is not None, "Couldn't determine n_kv_head from GQA param"
print(f'- Guessed n_kv_head = {n_kv_head} based on GQA {cfg.gqa}')
self.n_kv_head = n_kv_head
self.name_map = gguf.get_tensor_name_map(gguf.MODEL_ARCH.LLAMA, ggml_model.hyperparameters.n_layer)
def save(self):
print('* Preparing to save GGUF file')
gguf_writer = gguf.GGUFWriter(self.cfg.output, gguf.MODEL_ARCH_NAMES[gguf.MODEL_ARCH.LLAMA], use_temp_file = False)
self.add_params(gguf_writer)
self.add_vocab(gguf_writer)
self.add_tensors(gguf_writer)
print(" gguf: write header")
gguf_writer.write_header_to_file()
print(" gguf: write metadata")
gguf_writer.write_kv_data_to_file()
print(" gguf: write tensors")
gguf_writer.write_tensors_to_file()
gguf_writer.close()
def add_params(self, gguf_writer):
hp = self.model.hyperparameters
cfg = self.cfg
desc = cfg.desc if cfg.desc is not None else 'converted from legacy GGJTv3 format'
try:
# Filenames aren't necessarily valid UTF8.
name = cfg.name if cfg.name is not None else cfg.input.name
except UnicodeDecodeError:
name = None
print('* Adding model parameters and KV items')
if name is not None:
gguf_writer.add_name(name)
gguf_writer.add_description(desc)
if self.params_override is not None:
po = self.params_override
assert po.n_embd == hp.n_embd, 'Model hyperparams mismatch'
assert po.n_layer == hp.n_layer, 'Model hyperparams mismatch'
assert po.n_head == hp.n_head, 'Model hyperparams mismatch'
gguf_writer.add_context_length (po.n_ctx)
gguf_writer.add_embedding_length (po.n_embd)
gguf_writer.add_block_count (po.n_layer)
gguf_writer.add_feed_forward_length (po.n_ff)
gguf_writer.add_rope_dimension_count(po.n_embd // po.n_head)
gguf_writer.add_head_count (po.n_head)
gguf_writer.add_head_count_kv (po.n_head_kv)
gguf_writer.add_layer_norm_rms_eps (po.f_norm_eps)
return
gguf_writer.add_context_length(cfg.context_length)
gguf_writer.add_embedding_length(hp.n_embd)
gguf_writer.add_block_count(hp.n_layer)
gguf_writer.add_feed_forward_length(hp.n_ff)
gguf_writer.add_rope_dimension_count(hp.n_embd // hp.n_head)
gguf_writer.add_head_count(hp.n_head)
gguf_writer.add_head_count_kv(self.n_kv_head)
gguf_writer.add_layer_norm_rms_eps(float(cfg.eps))
def add_vocab(self, gguf_writer):
hp = self.model.hyperparameters
gguf_writer.add_tokenizer_model('llama')
tokens = []
scores = []
toktypes = []
if self.vocab_override is not None:
vo = self.vocab_override
print('* Adding vocab item(s)')
for (idx, vitem) in enumerate(vo.all_tokens()):
if len(vitem) == 3:
tokens.append(vitem[0])
scores.append(vitem[1])
toktypes.append(vitem[2])
else:
# Maybe try to guess the token type here?
tokens.append(vitem[0])
scores.append(vitem[1])
assert len(tokens) == hp.n_vocab, f'Override vocab has a different number of items than hyperparameters - override = {len(tokens)} but n_vocab={hp.n_vocab}'
gguf_writer.add_token_list(tokens)
gguf_writer.add_token_scores(scores)
if len(toktypes) > 0:
gguf_writer.add_token_types(toktypes)
return
print(f'* Adding {hp.n_vocab} vocab item(s)')
for (tokid, (vbytes, vscore)) in enumerate(self.model.vocab.items):
tt = 1 # Normal
if len(vbytes) == 0:
tt = 3 # Control
elif tokid >= 3 and tokid <= 258 and len(vbytes) == 1:
hv = hex(vbytes[0])[2:].upper()
vbytes = bytes(f'<0x{hv}>', encoding = 'UTF-8')
tt = 6 # Byte
else:
vbytes = vbytes.replace(b' ', b'\xe2\x96\x81')
toktypes.append(tt)
tokens.append(vbytes)
scores.append(vscore)
gguf_writer.add_token_list(tokens)
gguf_writer.add_token_scores(scores)
gguf_writer.add_token_types(toktypes)
def add_tensors(self, gguf_writer):
nm = self.name_map
data = self.data
print(f'* Adding {len(self.model.tensors)} tensor(s)')
for tensor in self.model.tensors:
name = str(tensor.name, 'UTF-8')
if name.endswith('.weight'):
name = name[:-7]
suffix = '.weight'
elif name.endswith('.bias'):
name = name[:-5]
suffix = '.bias'
mapped_name = nm.get(name)
assert mapped_name is not None, f'Bad name {name}'
mapped_name += suffix
tempdims = list(tensor.dims[:])
if len(tempdims) > 1:
temp = tempdims[1]
tempdims[1] = tempdims[0]
tempdims[0] = temp
# print(f'+ {tensor.name} | {mapped_name} {tensor.dims} :: {tempdims}')
gguf_writer.add_tensor(mapped_name, data[tensor.start_offset:tensor.start_offset + tensor.len_bytes], raw_shape = tempdims, raw_dtype = tensor.dtype)
def handle_metadata(cfg, hp):
import convert
assert cfg.model_metadata_dir.is_dir(), 'Metadata dir is not a directory'
hf_config_path = cfg.model_metadata_dir / "config.json"
orig_config_path = cfg.model_metadata_dir / "params.json"
# We pass a fake model here. "original" mode will check the shapes of some
# tensors if information is missing in the .json file: other than that, the
# model data isn't used so this should be safe (at least for now).
fakemodel = {
'tok_embeddings.weight': convert.LazyTensor.__new__(convert.LazyTensor),
'layers.0.feed_forward.w1.weight': convert.LazyTensor.__new__(convert.LazyTensor),
}
fakemodel['tok_embeddings.weight'].shape = [hp.n_vocab]
fakemodel['layers.0.feed_forward.w1.weight'].shape = [hp.n_ff]
if hf_config_path.exists():
params = convert.Params.loadHFTransformerJson(fakemodel, hf_config_path)
elif orig_config_path.exists():
params = convert.Params.loadOriginalParamsJson(fakemodel, orig_config_path)
else:
raise ValueError('Unable to load metadata')
vocab = convert.load_vocab(cfg.vocab_dir if cfg.vocab_dir is not None else cfg.model_metadata_dir, cfg.vocabtype)
convert.check_vocab_size(params, vocab)
return (params, vocab)
def handle_args():
parser = argparse.ArgumentParser(description = 'Convert GGMLv3 models to GGUF')
parser.add_argument('--input', '-i', type = Path, help = 'Input GGMLv3 filename')
parser.add_argument('--output', '-o', type = Path, help ='Output GGUF filename')
parser.add_argument('--name', help = 'Set model name')
parser.add_argument('--desc', help = 'Set model description')
parser.add_argument('--gqa', type = int, default = 1, help = 'grouped-query attention factor (use 8 for LLaMA2 70B)')
parser.add_argument('--eps', default = '5.0e-06', help = 'RMS norm eps: Use 1e-6 for LLaMA1 and OpenLLaMA, use 1e-5 for LLaMA2')
parser.add_argument('--context-length', '-c', type=int, default = 2048, help = 'Default max context length: LLaMA1 is typically 2048, LLaMA2 is typically 4096')
parser.add_argument('--model-metadata-dir', '-m', type = Path, help ='Load HuggingFace/.pth vocab and metadata from the specified directory')
parser.add_argument("--vocab-dir", type=Path, help="directory containing tokenizer.model, if separate from model file - only meaningful with --model-metadata-dir")
parser.add_argument("--vocabtype", choices=["spm", "bpe"], help="vocab format - only meaningful with --model-metadata-dir and/or --vocab-dir (default: spm)", default="spm")
return parser.parse_args()
def main():
cfg = handle_args()
print(f'* Using config: {cfg}')
print('\n=== WARNING === Be aware that this conversion script is best-effort. Use a native GGUF model if possible. === WARNING ===\n')
data = np.memmap(cfg.input, mode = 'r')
model = GGMLV3Model()
print('* Scanning GGML input file')
offset = model.load(data, 0)
print(f'* GGML model hyperparameters: {model.hyperparameters}')
vocab_override = None
params_override = None
if cfg.model_metadata_dir is not None:
(params_override, vocab_override) = handle_metadata(cfg, model.hyperparameters)
print('!! Note: When overriding params the --gqa, --eps and --context-length options are ignored.')
print(f'* Overriding params: {params_override}')
print(f'* Overriding vocab: {vocab_override}')
else:
print('\n=== WARNING === Special tokens may not be converted correctly. Use --model-metadata-dir if possible === WARNING ===\n')
converter = GGMLToGGUF(model, data, cfg, params_override = params_override, vocab_override = vocab_override)
converter.save()
print(f'* Successful completion. Output saved to: {cfg.output}')
main()

327
convert-llama-hf-to-gguf.py Normal file
View File

@ -0,0 +1,327 @@
# HF llama --> gguf conversion
import gguf
import os
import sys
import struct
import json
import numpy as np
import torch
from typing import Any, List, Optional
from pathlib import Path
from sentencepiece import SentencePieceProcessor
#NDArray = np.ndarray[Any, Any]
# compatible with python < 3.9
NDArray: 'TypeAlias' = 'np.ndarray[Any, Any]'
# reverse HF permute back to original pth layout
# https://github.com/huggingface/transformers/blob/main/src/transformers/models/llama/convert_llama_weights_to_hf.py
def reverse_hf_permute(weights: NDArray, n_head: int, n_kv_head: Optional[int] = None) -> NDArray:
if n_kv_head is not None and n_head != n_kv_head:
n_head //= n_kv_head
return (weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
.swapaxes(1, 2)
.reshape(weights.shape))
def count_model_parts(dir_model: str) -> int:
num_parts = 0
for filename in os.listdir(dir_model):
if filename.startswith("pytorch_model-"):
num_parts += 1
if num_parts > 0:
print("gguf: found " + str(num_parts) + " model parts")
return num_parts
if len(sys.argv) < 3:
print("Usage: convert-h5-to-ggml.py dir-model ftype\n")
print(" ftype == 0 -> float32")
print(" ftype == 1 -> float16")
sys.exit(1)
# output in the same directory as the model
dir_model = sys.argv[1]
last_dir = os.path.basename(os.path.normpath(dir_model))
# possible tensor data types
# ftype == 0 -> float32
# ftype == 1 -> float16
# map from ftype to string
ftype_str = ["f32", "f16"]
ftype = 1
if len(sys.argv) > 2:
ftype = int(sys.argv[2])
if ftype < 0 or ftype > 1:
print("Invalid ftype: " + str(ftype))
sys.exit(1)
fname_out = sys.argv[1] + "/ggml-model-" + ftype_str[ftype] + ".gguf"
print("gguf: loading model "+last_dir)
with open(dir_model + "/config.json", "r", encoding="utf-8") as f:
hparams = json.load(f)
if hparams["architectures"][0] != "LlamaForCausalLM":
print("Model architecture not supported: " + hparams["architectures"][0])
sys.exit()
# get number of model parts
num_parts = count_model_parts(dir_model)
ARCH=gguf.MODEL_ARCH.LLAMA
gguf_writer = gguf.GGUFWriter(fname_out, gguf.MODEL_ARCH_NAMES[ARCH])
print("gguf: get model metadata")
block_count = hparams["num_hidden_layers"]
head_count = hparams["num_attention_heads"]
if "num_key_value_heads" in hparams:
head_count_kv = hparams["num_key_value_heads"]
else:
head_count_kv = head_count
if "_name_or_path" in hparams:
hf_repo = hparams["_name_or_path"]
else:
hf_repo = ""
if "max_sequence_length" in hparams:
ctx_length = hparams["max_sequence_length"]
elif "max_position_embeddings" in hparams:
ctx_length = hparams["max_position_embeddings"]
else:
print("gguf: can not find ctx length parameter.")
sys.exit()
gguf_writer.add_name(last_dir)
gguf_writer.add_source_hf_repo(hf_repo)
gguf_writer.add_tensor_data_layout("Meta AI original pth")
gguf_writer.add_context_length(ctx_length)
gguf_writer.add_embedding_length(hparams["hidden_size"])
gguf_writer.add_block_count(block_count)
gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
gguf_writer.add_rope_dimension_count(hparams["hidden_size"] // hparams["num_attention_heads"])
gguf_writer.add_head_count(head_count)
gguf_writer.add_head_count_kv(head_count_kv)
gguf_writer.add_layer_norm_rms_eps(hparams["rms_norm_eps"])
if "rope_scaling" in hparams and hparams["rope_scaling"] != None and "factor" in hparams["rope_scaling"]:
if "type" in hparams["rope_scaling"]:
if hparams["rope_scaling"]["type"] == "linear":
gguf_writer.add_rope_scale_linear(hparams["rope_scaling"]["factor"])
# TOKENIZATION
print("gguf: get tokenizer metadata")
tokens: List[bytes] = []
scores: List[float] = []
toktypes: List[int] = []
if Path(dir_model + "/tokenizer.model").is_file():
# vocab type sentencepiece
print("gguf: get sentencepiece tokenizer vocab, scores and token types")
tokenizer = SentencePieceProcessor(dir_model + "/tokenizer.model")
for i in range(tokenizer.vocab_size()):
text: bytes
score: float
piece = tokenizer.id_to_piece(i)
text = piece.encode("utf-8")
score = tokenizer.get_score(i)
toktype = 1 # defualt to normal token type
if tokenizer.is_unknown(i):
toktype = 2
if tokenizer.is_control(i):
toktype = 3
# toktype = 4 is user-defined = tokens from added_tokens.json
if tokenizer.is_unused(i):
toktype = 5
if tokenizer.is_byte(i):
toktype = 6
tokens.append(text)
scores.append(score)
toktypes.append(toktype)
if Path(dir_model + "/added_tokens.json").is_file():
with open(dir_model + "/added_tokens.json", "r", encoding="utf-8") as f:
addtokens_json = json.load(f)
print("gguf: get added tokens")
for key in addtokens_json:
tokens.append( key.encode("utf-8") )
scores.append(-1000.0)
toktypes.append(4) # user-defined token type
gguf_writer.add_tokenizer_model("llama")
gguf_writer.add_token_list(tokens)
gguf_writer.add_token_scores(scores)
gguf_writer.add_token_types(toktypes)
print("gguf: get special token ids")
if Path(dir_model + "/tokenizer.json").is_file():
# Look for special tokens in tokenizer.json if it exists
with open(dir_model + "/tokenizer.json", "r", encoding="utf-8") as f:
tokenizer = json.load(f)
if "added_tokens" in tokenizer and Path(dir_model + "/tokenizer_config.json").is_file():
with open(dir_model + "/tokenizer_config.json", "r", encoding="utf-8") as f:
tokenizer_config = json.load(f)
if "bos_token" in tokenizer_config and tokenizer_config["bos_token"] != None:
for key in tokenizer["added_tokens"]:
if key["content"] == tokenizer_config["bos_token"]["content"]:
gguf_writer.add_bos_token_id(key["id"])
if "eos_token" in tokenizer_config and tokenizer_config["eos_token"] != None:
for key in tokenizer["added_tokens"]:
if key["content"] == tokenizer_config["eos_token"]["content"]:
gguf_writer.add_eos_token_id(key["id"])
if "unk_token" in tokenizer_config and tokenizer_config["unk_token"] != None:
for key in tokenizer["added_tokens"]:
if key["content"] == tokenizer_config["unk_token"]["content"]:
gguf_writer.add_unk_token_id(key["id"])
if "sep_token" in tokenizer_config and tokenizer_config["sep_token"] != None:
for key in tokenizer["added_tokens"]:
if key["content"] == tokenizer_config["sep_token"]["content"]:
gguf_writer.add_sep_token_id(key["id"])
if "pad_token" in tokenizer_config and tokenizer_config["pad_token"] != None:
for key in tokenizer["added_tokens"]:
if key["content"] == tokenizer_config["pad_token"]["content"]:
gguf_writer.add_pad_token_id(key["id"])
else:
# If no tokenizer.json: Look for special tokens in config.json
if "bos_token_id" in hparams and hparams["bos_token_id"] != None:
gguf_writer.add_bos_token_id(hparams["bos_token_id"])
if "eos_token_id" in hparams and hparams["eos_token_id"] != None:
gguf_writer.add_eos_token_id(hparams["eos_token_id"])
if "unk_token_id" in hparams and hparams["unk_token_id"] != None:
gguf_writer.add_unk_token_id(hparams["unk_token_id"])
if "sep_token_id" in hparams and hparams["sep_token_id"] != None:
gguf_writer.add_sep_token_id(hparams["sep_token_id"])
if "pad_token_id" in hparams and hparams["pad_token_id"] != None:
gguf_writer.add_pad_token_id(hparams["pad_token_id"])
# TENSORS
tensor_map = gguf.get_tensor_name_map(ARCH,block_count)
# tensor info
print("gguf: get tensor metadata")
if num_parts == 0:
part_names = ("pytorch_model.bin",)
else:
part_names = (
f"pytorch_model-{n:05}-of-{num_parts:05}.bin" for n in range(1, num_parts + 1)
)
for part_name in part_names:
print("gguf: loading model part '" + part_name + "'")
model_part = torch.load(f"{dir_model}/{part_name}", map_location="cpu")
for name in model_part.keys():
data = model_part[name]
# we don't need these
if name.endswith(".rotary_emb.inv_freq"):
continue
old_dtype = data.dtype
# convert any unsupported data types to float32
if data.dtype != torch.float16 and data.dtype != torch.float32:
data = data.to(torch.float32)
data = data.squeeze().numpy()
# reverse permute these
if name.endswith(".q_proj.weight"):
data = reverse_hf_permute(data, head_count)
if name.endswith(".k_proj.weight"):
data = reverse_hf_permute(data, head_count, head_count_kv)
# map tensor names
if name.endswith(".weight") and name[:-7] in tensor_map:
name = tensor_map[name[:-7]] + ".weight"
elif name.endswith(".bias") and name[:-5] in tensor_map:
name = tensor_map[name[:-5]] + ".bias"
else:
print("Can not map tensor '" + name + "'")
sys.exit()
n_dims = len(data.shape)
data_dtype = data.dtype
# if f32 desired, convert any float16 to float32
if ftype == 0 and data_dtype == np.float16:
data = data.astype(np.float32)
# TODO: Why cant we use these float16 as-is? There should be not reason to store float16 as float32
if ftype == 1 and data_dtype == np.float16 and n_dims == 1:
data = data.astype(np.float32)
# if f16 desired, convert any float32 2-dim weight tensors to float16
if ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and n_dims == 2:
data = data.astype(np.float16)
print(name + ", n_dims = " + str(n_dims) + ", " + str(old_dtype) + " --> " + str(data.dtype))
gguf_writer.add_tensor(name, data)
print("gguf: write header")
gguf_writer.write_header_to_file()
print("gguf: write metadata")
gguf_writer.write_kv_data_to_file()
print("gguf: write tensors")
gguf_writer.write_tensors_to_file()
gguf_writer.close()
print("gguf: model successfully exported to '" + fname_out + "'")
print("")

File diff suppressed because it is too large Load Diff

View File

@ -3,7 +3,7 @@
## Verifying that the model is running on the GPU with cuBLAS ## Verifying that the model is running on the GPU with cuBLAS
Make sure you compiled llama with the correct env variables according to [this guide](../README.md#cublas), so that llama accepts the `-ngl N` (or `--n-gpu-layers N`) flag. When running llama, you may configure `N` to be very large, and llama will offload the maximum possible number of layers to the GPU, even if it's less than the number you configured. For example: Make sure you compiled llama with the correct env variables according to [this guide](../README.md#cublas), so that llama accepts the `-ngl N` (or `--n-gpu-layers N`) flag. When running llama, you may configure `N` to be very large, and llama will offload the maximum possible number of layers to the GPU, even if it's less than the number you configured. For example:
```shell ```shell
./main -m "path/to/model.bin" -ngl 200000 -p "Please sir, may I have some " ./main -m "path/to/model.gguf" -ngl 200000 -p "Please sir, may I have some "
``` ```
When running llama, before it starts the inference work, it will output diagnostic information that shows whether cuBLAS is offloading work to the GPU. Look for these lines: When running llama, before it starts the inference work, it will output diagnostic information that shows whether cuBLAS is offloading work to the GPU. Look for these lines:
@ -25,9 +25,9 @@ GPU: A6000 (48GB VRAM)
CPU: 7 physical cores CPU: 7 physical cores
RAM: 32GB RAM: 32GB
Model: `TheBloke_Wizard-Vicuna-30B-Uncensored-GGML/Wizard-Vicuna-30B-Uncensored.ggmlv3.q4_0.bin` (30B parameters, 4bit quantization, GGML) Model: `TheBloke_Wizard-Vicuna-30B-Uncensored-GGML/Wizard-Vicuna-30B-Uncensored.q4_0.gguf` (30B parameters, 4bit quantization, GGML)
Run command: `./main -m "path/to/model.bin" -p "-p "An extremely detailed description of the 10 best ethnic dishes will follow, with recipes: " -n 1000 [additional benchmark flags]` Run command: `./main -m "path/to/model.gguf" -p "An extremely detailed description of the 10 best ethnic dishes will follow, with recipes: " -n 1000 [additional benchmark flags]`
Result: Result:

View File

@ -6,27 +6,6 @@ find_package(Threads REQUIRED)
# ... # ...
# common
set(TARGET common)
add_library(${TARGET} OBJECT
common.h
common.cpp
console.h
console.cpp
grammar-parser.h
grammar-parser.cpp
)
if (BUILD_SHARED_LIBS)
set_target_properties(${TARGET} PROPERTIES POSITION_INDEPENDENT_CODE ON)
endif()
target_include_directories(${TARGET} PUBLIC .)
target_compile_features(${TARGET} PUBLIC cxx_std_11)
target_link_libraries(${TARGET} PRIVATE llama)
# examples # examples
include_directories(${CMAKE_CURRENT_SOURCE_DIR}) include_directories(${CMAKE_CURRENT_SOURCE_DIR})

View File

@ -1,5 +1,6 @@
#include "ggml.h" #include "ggml.h"
#include "llama.h" #include "llama.h"
#include <unordered_map> #include <unordered_map>
#include <vector> #include <vector>
#include <cassert> #include <cassert>
@ -138,14 +139,16 @@ void print_sample_weights(TransformerWeights *w){
struct llama_vocab { struct llama_vocab {
using id = int32_t; using id = int32_t;
using token = std::string; using token = std::string;
using ttype = llama_token_type;
struct token_score { struct token_data {
token tok; token text;
float score; float score;
ttype type;
}; };
std::unordered_map<token, id> token_to_id; std::unordered_map<token, id> token_to_id;
std::vector<token_score> id_to_token; std::vector<token_data> id_to_token;
}; };
struct my_llama_hparams { struct my_llama_hparams {
@ -502,7 +505,7 @@ bool is_ggml_file(const char *filename) {
return false; return false;
} }
uint32_t magic = file.read_u32(); uint32_t magic = file.read_u32();
return magic == LLAMA_FILE_MAGIC; return magic == GGUF_MAGIC;
} }
void load_vocab(const char *filename, Config *config, struct llama_vocab *vocab) { void load_vocab(const char *filename, Config *config, struct llama_vocab *vocab) {
@ -515,36 +518,30 @@ void load_vocab(const char *filename, Config *config, struct llama_vocab *vocab)
struct llama_model * lmodel = llama_load_model_from_file(filename, llama_params); struct llama_model * lmodel = llama_load_model_from_file(filename, llama_params);
struct llama_context * lctx = llama_new_context_with_model(lmodel, llama_params); struct llama_context * lctx = llama_new_context_with_model(lmodel, llama_params);
std::vector<const char *> strings; const int n_vocab = llama_n_vocab(lctx);
std::vector<float> scores;
int n_vocab = llama_n_vocab(lctx);
strings.resize(n_vocab, NULL);
scores.resize(n_vocab, 0);
n_vocab = llama_get_vocab(lctx, strings.data(), scores.data(), n_vocab);
GGML_ASSERT(n_vocab == llama_n_vocab(lctx));
vocab->id_to_token.resize(n_vocab); vocab->id_to_token.resize(n_vocab);
for (int i=0; i<n_vocab; ++i) { for (int i=0; i<n_vocab; ++i) {
std::string tok = std::string(strings[i]); vocab->id_to_token[i].text = llama_token_get_text(lctx, i);
float score = scores[i]; vocab->id_to_token[i].score = llama_token_get_score(lctx, i);
vocab->id_to_token[i].tok = tok; vocab->id_to_token[i].type = llama_token_get_type(lctx, i);
vocab->id_to_token[i].score = score; vocab->token_to_id.emplace(vocab->id_to_token[i].text, i);
vocab->token_to_id.emplace(tok, i);
} }
llama_free(lctx); llama_free(lctx);
llama_free_model(lmodel); llama_free_model(lmodel);
} else { // assume llama2.c vocabulary } else { // assume llama2.c vocabulary
printf("Assuming llama2.c vocabulary since %s is not a ggml file\n", filename); printf("Assuming llama2.c vocabulary since %s is not a ggml file\n", filename);
llama_file file(filename, "rb"); llama_file file(filename, "rb");
uint32_t n_vocab = config->vocab_size; const int n_vocab = config->vocab_size;
/* uint32_t max_token_length = */ file.read_u32(); // unused /* uint32_t max_token_length = */ file.read_u32(); // unused
vocab->id_to_token.resize(n_vocab); vocab->id_to_token.resize(n_vocab);
for (uint32_t i=0; i<n_vocab; ++i) { for (int i=0; i<n_vocab; ++i) {
float_t score = file.read_f32(); float_t score = file.read_f32();
uint32_t len = file.read_u32(); uint32_t len = file.read_u32();
std::string tok = file.read_string(len); std::string text = file.read_string(len);
vocab->id_to_token[i].tok = tok; vocab->id_to_token[i].text = text;
vocab->id_to_token[i].score = score; vocab->id_to_token[i].score = score;
vocab->token_to_id.emplace(tok, i); vocab->id_to_token[i].type = LLAMA_TOKEN_TYPE_UNDEFINED;
vocab->token_to_id.emplace(text, i);
} }
} }
} }
@ -590,75 +587,80 @@ void save_as_llama_model(struct llama_vocab * vocab, struct my_llama_model * mod
if (file.fp == NULL) { if (file.fp == NULL) {
return; return;
} }
// write_magic
file.write_u32(LLAMA_FILE_MAGIC); // magic
file.write_u32(LLAMA_FILE_VERSION); // version
// write_hparams
file.write_u32(model->hparams.n_vocab);
file.write_u32(model->hparams.n_embd);
file.write_u32(model->hparams.n_mult);
file.write_u32(model->hparams.n_head);
file.write_u32(model->hparams.n_layer);
file.write_u32(model->hparams.n_rot);
file.write_u32(LLAMA_FTYPE_ALL_F32);
// write_vocab - for now we are just writing the existing BPE voc. assuming karpathy's vocabulary is the same. idk. #pragma message("TODO: implement file saving using gguf")
uint32_t n_vocab = model->hparams.n_vocab; (void) vocab;
for (uint32_t i = 0; i < n_vocab; i++) { (void) model;
const auto & token_score = vocab->id_to_token.at(i); (void) w;
file.write_u32((uint32_t) token_score.tok.size()); // // write_magic
file.write_raw(token_score.tok.data(), token_score.tok.size()); // file.write_u32(LLAMA_FILE_MAGIC); // magic
file.write_raw(&token_score.score, sizeof(token_score.score)); // file.write_u32(LLAMA_FILE_VERSION); // version
} // // write_hparams
// file.write_u32(model->hparams.n_vocab);
// stuff AK weights into GG weights one by one. // file.write_u32(model->hparams.n_embd);
// w->token_embedding_table -> model->tok_embeddings // file.write_u32(model->hparams.n_mult);
// float* -> struct ggml_tensor // file.write_u32(model->hparams.n_head);
stuff_karpathy_weights_into_gg(model->tok_embeddings, w->token_embedding_table); // file.write_u32(model->hparams.n_layer);
stuff_karpathy_weights_into_gg(model->output, w->token_embedding_table); // file.write_u32(model->hparams.n_rot);
// file.write_u32(LLAMA_FTYPE_ALL_F32);
stuff_karpathy_weights_into_gg(model->norm, w->rms_final_weight); //
//print_row(model->norm, 0); // // write_vocab - for now we are just writing the existing BPE voc. assuming karpathy's vocabulary is the same. idk.
// uint32_t n_vocab = model->hparams.n_vocab;
// for rms-att-weight // for (uint32_t i = 0; i < n_vocab; i++) {
int row_length = model->hparams.n_embd; // const auto & token_data = vocab->id_to_token.at(i);
const auto & hparams = model->hparams; // file.write_u32((uint32_t) token_data.tok.size());
//int n_ff = model->hparams.n_embd; // file.write_raw(token_data.tok.data(), token_data.tok.size());
int n_ff = get_n_ff(&hparams); // file.write_raw(&token_data.score, sizeof(token_data.score));
// }
for (uint32_t i = 0; i < model->hparams.n_layer; ++i){ //
auto & layer = model->layers[i]; // // stuff AK weights into GG weights one by one.
// 1d // // w->token_embedding_table -> model->tok_embeddings
stuff_karpathy_weights_into_gg(layer.attention_norm, &w->rms_att_weight[i*row_length]); // // float* -> struct ggml_tensor
stuff_karpathy_weights_into_gg(layer.ffn_norm , &w->rms_ffn_weight[i*row_length]); // stuff_karpathy_weights_into_gg(model->tok_embeddings, w->token_embedding_table);
// stuff_karpathy_weights_into_gg(model->output, w->token_embedding_table);
// from 3d matrix layer x dim x dim to 2d matrix dim x dim //
stuff_karpathy_weights_into_gg(layer.wq , &w->wq[i*row_length*row_length]); // stuff_karpathy_weights_into_gg(model->norm, w->rms_final_weight);
stuff_karpathy_weights_into_gg(layer.wk , &w->wk[i*row_length*row_length]); // //print_row(model->norm, 0);
stuff_karpathy_weights_into_gg(layer.wv , &w->wv[i*row_length*row_length]); //
stuff_karpathy_weights_into_gg(layer.wo , &w->wo[i*row_length*row_length]); // // for rms-att-weight
// int row_length = model->hparams.n_embd;
stuff_karpathy_weights_into_gg(layer.w1 , &w->w1[i*row_length*n_ff]); // const auto & hparams = model->hparams;
stuff_karpathy_weights_into_gg(layer.w2 , &w->w2[i*n_ff*row_length]); // //int n_ff = model->hparams.n_embd;
stuff_karpathy_weights_into_gg(layer.w3 , &w->w3[i*row_length*n_ff]); // int n_ff = get_n_ff(&hparams);
} //
// write tensors // for (uint32_t i = 0; i < model->hparams.n_layer; ++i){
write_tensor(&file, model->tok_embeddings); // auto & layer = model->layers[i];
write_tensor(&file, model->norm); // // 1d
write_tensor(&file, model->output); // ? // stuff_karpathy_weights_into_gg(layer.attention_norm, &w->rms_att_weight[i*row_length]);
for (uint32_t i = 0; i < model->hparams.n_layer; ++i) { // stuff_karpathy_weights_into_gg(layer.ffn_norm , &w->rms_ffn_weight[i*row_length]);
auto & layer = model->layers[i]; //
// // from 3d matrix layer x dim x dim to 2d matrix dim x dim
write_tensor(&file, layer.attention_norm); // stuff_karpathy_weights_into_gg(layer.wq , &w->wq[i*row_length*row_length]);
write_tensor(&file, layer.wq); // stuff_karpathy_weights_into_gg(layer.wk , &w->wk[i*row_length*row_length]);
write_tensor(&file, layer.wk); // stuff_karpathy_weights_into_gg(layer.wv , &w->wv[i*row_length*row_length]);
write_tensor(&file, layer.wv); // stuff_karpathy_weights_into_gg(layer.wo , &w->wo[i*row_length*row_length]);
write_tensor(&file, layer.wo); //
write_tensor(&file, layer.ffn_norm); // stuff_karpathy_weights_into_gg(layer.w1 , &w->w1[i*row_length*n_ff]);
write_tensor(&file, layer.w1); // stuff_karpathy_weights_into_gg(layer.w2 , &w->w2[i*n_ff*row_length]);
write_tensor(&file, layer.w2); // stuff_karpathy_weights_into_gg(layer.w3 , &w->w3[i*row_length*n_ff]);
write_tensor(&file, layer.w3); // }
} // // write tensors
// write_tensor(&file, model->tok_embeddings);
// write_tensor(&file, model->norm);
// write_tensor(&file, model->output); // ?
// for (uint32_t i = 0; i < model->hparams.n_layer; ++i) {
// auto & layer = model->layers[i];
//
// write_tensor(&file, layer.attention_norm);
// write_tensor(&file, layer.wq);
// write_tensor(&file, layer.wk);
// write_tensor(&file, layer.wv);
// write_tensor(&file, layer.wo);
// write_tensor(&file, layer.ffn_norm);
// write_tensor(&file, layer.w1);
// write_tensor(&file, layer.w2);
// write_tensor(&file, layer.w3);
// }
} }
struct train_params get_default_train_params() { struct train_params get_default_train_params() {

View File

@ -167,7 +167,7 @@ llama_token sampling_id(struct MyModel* mymodel) {
llama_token_data_array candidates_p = { candidates.data(), candidates.size(), false }; llama_token_data_array candidates_p = { candidates.data(), candidates.size(), false };
// TODO: Apply penalties // TODO: Apply penalties
// float nl_logit = logits[llama_token_nl()]; // float nl_logit = logits[llama_token_nl(ctx)];
// auto last_n_repeat = std::min(std::min((int)last_n_tokens.size(), repeat_last_n), n_ctx); // auto last_n_repeat = std::min(std::min((int)last_n_tokens.size(), repeat_last_n), n_ctx);
// llama_sample_repetition_penalty(ctx, &candidates_p, // llama_sample_repetition_penalty(ctx, &candidates_p,
// last_n_tokens.data() + last_n_tokens.size() - last_n_repeat, // last_n_tokens.data() + last_n_tokens.size() - last_n_repeat,
@ -176,7 +176,7 @@ llama_token sampling_id(struct MyModel* mymodel) {
// last_n_tokens.data() + last_n_tokens.size() - last_n_repeat, // last_n_tokens.data() + last_n_tokens.size() - last_n_repeat,
// last_n_repeat, alpha_frequency, alpha_presence); // last_n_repeat, alpha_frequency, alpha_presence);
// if (!penalize_nl) { // if (!penalize_nl) {
// logits[llama_token_nl()] = nl_logit; // logits[llama_token_nl(ctx)] = nl_logit;
// } // }
if (temp <= 0) { if (temp <= 0) {
@ -211,7 +211,7 @@ const char * sampling(struct MyModel * mymodel) {
llama_context * ctx = mymodel->ctx; llama_context * ctx = mymodel->ctx;
int id = sampling_id(mymodel); int id = sampling_id(mymodel);
static std::string ret; static std::string ret;
if (id == llama_token_eos()) { if (id == llama_token_eos(ctx)) {
ret = "</s>"; ret = "</s>";
} else { } else {
ret = llama_token_to_str(ctx, id); ret = llama_token_to_str(ctx, id);

View File

@ -67,7 +67,7 @@ int main(int argc, char ** argv) {
fprintf(stderr, "%s: prompt: '%s'\n", __func__, params.prompt.c_str()); fprintf(stderr, "%s: prompt: '%s'\n", __func__, params.prompt.c_str());
fprintf(stderr, "%s: number of tokens in prompt = %zu\n", __func__, embd_inp.size()); fprintf(stderr, "%s: number of tokens in prompt = %zu\n", __func__, embd_inp.size());
for (int i = 0; i < (int) embd_inp.size(); i++) { for (int i = 0; i < (int) embd_inp.size(); i++) {
fprintf(stderr, "%6d -> '%s'\n", embd_inp[i], llama_token_to_str(ctx, embd_inp[i])); fprintf(stderr, "%6d -> '%s'\n", embd_inp[i], llama_token_to_str(ctx, embd_inp[i]).c_str());
} }
fprintf(stderr, "\n"); fprintf(stderr, "\n");
} }

246
examples/gguf/gguf.cpp Normal file
View File

@ -0,0 +1,246 @@
#include "ggml.h"
#include "llama.h"
#include <cstdio>
#include <cinttypes>
#include <string>
#include <sstream>
#include <fstream>
#include <vector>
#undef MIN
#undef MAX
#define MIN(a, b) ((a) < (b) ? (a) : (b))
#define MAX(a, b) ((a) > (b) ? (a) : (b))
template<typename T>
static std::string to_string(const T & val) {
std::stringstream ss;
ss << val;
return ss.str();
}
bool gguf_ex_write(const std::string & fname) {
struct gguf_context * ctx = gguf_init_empty();
gguf_set_val_u8 (ctx, "some.parameter.uint8", 0x12);
gguf_set_val_i8 (ctx, "some.parameter.int8", -0x13);
gguf_set_val_u16 (ctx, "some.parameter.uint16", 0x1234);
gguf_set_val_i16 (ctx, "some.parameter.int16", -0x1235);
gguf_set_val_u32 (ctx, "some.parameter.uint32", 0x12345678);
gguf_set_val_i32 (ctx, "some.parameter.int32", -0x12345679);
gguf_set_val_f32 (ctx, "some.parameter.float32", 0.123456789f);
gguf_set_val_bool(ctx, "some.parameter.bool", true);
gguf_set_val_str (ctx, "some.parameter.string", "hello world");
gguf_set_arr_data(ctx, "some.parameter.arr.i16", GGUF_TYPE_INT16, std::vector<int16_t>{ 1, 2, 3, 4, }.data(), 4);
gguf_set_arr_data(ctx, "some.parameter.arr.f32", GGUF_TYPE_FLOAT32, std::vector<float>{ 3.145f, 2.718f, 1.414f, }.data(), 3);
gguf_set_arr_str (ctx, "some.parameter.arr.str", std::vector<const char *>{ "hello", "world", "!" }.data(), 3);
struct ggml_init_params params = {
/*.mem_size =*/ 128ull*1024ull*1024ull,
/*.mem_buffer =*/ NULL,
/*.no_alloc =*/ false,
};
struct ggml_context * ctx_data = ggml_init(params);
const int n_tensors = 10;
// tensor infos
for (int i = 0; i < n_tensors; ++i) {
const std::string name = "tensor_" + to_string(i);
int64_t ne[GGML_MAX_DIMS] = { 1 };
int32_t n_dims = rand() % GGML_MAX_DIMS + 1;
for (int j = 0; j < n_dims; ++j) {
ne[j] = rand() % 10 + 1;
}
struct ggml_tensor * cur = ggml_new_tensor(ctx_data, GGML_TYPE_F32, n_dims, ne);
ggml_set_name(cur, name.c_str());
{
float * data = (float *) cur->data;
for (int j = 0; j < ggml_nelements(cur); ++j) {
data[j] = 100 + i;
}
}
gguf_add_tensor(ctx, cur);
}
gguf_write_to_file(ctx, fname.c_str(), false);
fprintf(stdout, "%s: wrote file '%s;\n", __func__, fname.c_str());
ggml_free(ctx_data);
gguf_free(ctx);
return true;
}
// just read tensor info
bool gguf_ex_read_0(const std::string & fname) {
struct gguf_init_params params = {
/*.no_alloc = */ false,
/*.ctx = */ NULL,
};
struct gguf_context * ctx = gguf_init_from_file(fname.c_str(), params);
fprintf(stdout, "%s: version: %d\n", __func__, gguf_get_version(ctx));
fprintf(stdout, "%s: alignment: %zu\n", __func__, gguf_get_alignment(ctx));
fprintf(stdout, "%s: data offset: %zu\n", __func__, gguf_get_data_offset(ctx));
// kv
{
const int n_kv = gguf_get_n_kv(ctx);
fprintf(stdout, "%s: n_kv: %d\n", __func__, n_kv);
for (int i = 0; i < n_kv; ++i) {
const char * key = gguf_get_key(ctx, i);
fprintf(stdout, "%s: kv[%d]: key = %s\n", __func__, i, key);
}
}
// find kv string
{
const char * findkey = "some.parameter.string";
const int keyidx = gguf_find_key(ctx, findkey);
if (keyidx == -1) {
fprintf(stdout, "%s: find key: %s not found.\n", __func__, findkey);
} else {
const char * key_value = gguf_get_val_str(ctx, keyidx);
fprintf(stdout, "%s: find key: %s found, kv[%d] value = %s\n", __func__, findkey, keyidx, key_value);
}
}
// tensor info
{
const int n_tensors = gguf_get_n_tensors(ctx);
fprintf(stdout, "%s: n_tensors: %d\n", __func__, n_tensors);
for (int i = 0; i < n_tensors; ++i) {
const char * name = gguf_get_tensor_name (ctx, i);
const size_t offset = gguf_get_tensor_offset(ctx, i);
fprintf(stdout, "%s: tensor[%d]: name = %s, offset = %zu\n", __func__, i, name, offset);
}
}
gguf_free(ctx);
return true;
}
// read and create ggml_context containing the tensors and their data
bool gguf_ex_read_1(const std::string & fname) {
struct ggml_context * ctx_data = NULL;
struct gguf_init_params params = {
/*.no_alloc = */ false,
/*.ctx = */ &ctx_data,
};
struct gguf_context * ctx = gguf_init_from_file(fname.c_str(), params);
fprintf(stdout, "%s: version: %d\n", __func__, gguf_get_version(ctx));
fprintf(stdout, "%s: alignment: %zu\n", __func__, gguf_get_alignment(ctx));
fprintf(stdout, "%s: data offset: %zu\n", __func__, gguf_get_data_offset(ctx));
// kv
{
const int n_kv = gguf_get_n_kv(ctx);
fprintf(stdout, "%s: n_kv: %d\n", __func__, n_kv);
for (int i = 0; i < n_kv; ++i) {
const char * key = gguf_get_key(ctx, i);
fprintf(stdout, "%s: kv[%d]: key = %s\n", __func__, i, key);
}
}
// tensor info
{
const int n_tensors = gguf_get_n_tensors(ctx);
fprintf(stdout, "%s: n_tensors: %d\n", __func__, n_tensors);
for (int i = 0; i < n_tensors; ++i) {
const char * name = gguf_get_tensor_name (ctx, i);
const size_t offset = gguf_get_tensor_offset(ctx, i);
fprintf(stdout, "%s: tensor[%d]: name = %s, offset = %zu\n", __func__, i, name, offset);
}
}
// data
{
const int n_tensors = gguf_get_n_tensors(ctx);
for (int i = 0; i < n_tensors; ++i) {
fprintf(stdout, "%s: reading tensor %d data\n", __func__, i);
const char * name = gguf_get_tensor_name(ctx, i);
struct ggml_tensor * cur = ggml_get_tensor(ctx_data, name);
fprintf(stdout, "%s: tensor[%d]: n_dims = %d, name = %s, data = %p\n", __func__, i, cur->n_dims, cur->name, cur->data);
// print first 10 elements
const float * data = (const float *) cur->data;
printf("%s data[:10] : ", name);
for (int j = 0; j < MIN(10, ggml_nelements(cur)); ++j) {
printf("%f ", data[j]);
}
printf("\n\n");
// check data
{
const float * data = (const float *) cur->data;
for (int j = 0; j < ggml_nelements(cur); ++j) {
if (data[j] != 100 + i) {
fprintf(stderr, "%s: tensor[%d]: data[%d] = %f\n", __func__, i, j, data[j]);
return false;
}
}
}
}
}
fprintf(stdout, "%s: ctx_data size: %zu\n", __func__, ggml_get_mem_size(ctx_data));
ggml_free(ctx_data);
gguf_free(ctx);
return true;
}
int main(int argc, char ** argv) {
if (argc < 3) {
fprintf(stdout, "usage: %s data.gguf r|w\n", argv[0]);
return -1;
}
const std::string fname(argv[1]);
const std::string mode (argv[2]);
GGML_ASSERT((mode == "r" || mode == "w") && "mode must be r or w");
if (mode == "w") {
GGML_ASSERT(gguf_ex_write(fname) && "failed to write gguf file");
} else if (mode == "r") {
GGML_ASSERT(gguf_ex_read_0(fname) && "failed to read gguf file");
GGML_ASSERT(gguf_ex_read_1(fname) && "failed to read gguf file");
}
return 0;
}

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

View File

@ -606,6 +606,8 @@ const std::string test::cpu_info = get_cpu_info();
const std::string test::gpu_info = get_gpu_info(); const std::string test::gpu_info = get_gpu_info();
struct printer { struct printer {
virtual ~printer() {}
FILE * fout; FILE * fout;
virtual void print_header(const cmd_params & params) { (void) params; }; virtual void print_header(const cmd_params & params) { (void) params; };
virtual void print_test(const test & t) = 0; virtual void print_test(const test & t) = 0;
@ -849,7 +851,7 @@ struct sql_printer : public printer {
}; };
static void test_prompt(llama_context * ctx, int n_prompt, int n_past, int n_batch, int n_threads) { static void test_prompt(llama_context * ctx, int n_prompt, int n_past, int n_batch, int n_threads) {
std::vector<llama_token> tokens(n_batch, llama_token_bos()); std::vector<llama_token> tokens(n_batch, llama_token_bos(ctx));
int n_processed = 0; int n_processed = 0;
while (n_processed < n_prompt) { while (n_processed < n_prompt) {
int n_tokens = std::min(n_prompt - n_processed, n_batch); int n_tokens = std::min(n_prompt - n_processed, n_batch);
@ -859,7 +861,7 @@ static void test_prompt(llama_context * ctx, int n_prompt, int n_past, int n_bat
} }
static void test_gen(llama_context * ctx, int n_gen, int n_past, int n_threads) { static void test_gen(llama_context * ctx, int n_gen, int n_past, int n_threads) {
llama_token token = llama_token_bos(); llama_token token = llama_token_bos(ctx);
for (int i = 0; i < n_gen; i++) { for (int i = 0; i < n_gen; i++) {
llama_eval(ctx, &token, 1, n_past + i, n_threads); llama_eval(ctx, &token, 1, n_past + i, n_threads);
} }

View File

@ -143,7 +143,7 @@ int main(int argc, char ** argv) {
{ {
fprintf(stderr, "%s: testing memory usage for n_batch = %d, n_ctx = %d\n", __func__, params.n_batch, params.n_ctx); fprintf(stderr, "%s: testing memory usage for n_batch = %d, n_ctx = %d\n", __func__, params.n_batch, params.n_ctx);
const std::vector<llama_token> tmp(params.n_batch, llama_token_bos()); const std::vector<llama_token> tmp(params.n_batch, llama_token_bos(ctx));
llama_eval(ctx, tmp.data(), tmp.size(), params.n_ctx, params.n_threads); llama_eval(ctx, tmp.data(), tmp.size(), params.n_ctx, params.n_threads);
} }
@ -191,10 +191,6 @@ int main(int argc, char ** argv) {
// tokenize the prompt // tokenize the prompt
std::vector<llama_token> embd_inp; std::vector<llama_token> embd_inp;
// Add a space in front of the first character to match OG llama tokenizer behavior
params.prompt.insert(0, 1, ' ');
if (params.interactive_first || params.instruct || !params.prompt.empty() || session_tokens.empty()) { if (params.interactive_first || params.instruct || !params.prompt.empty() || session_tokens.empty()) {
embd_inp = ::llama_tokenize(ctx, params.prompt, true); embd_inp = ::llama_tokenize(ctx, params.prompt, true);
} else { } else {
@ -270,15 +266,12 @@ int main(int argc, char ** argv) {
params.interactive = true; params.interactive = true;
} }
// determine newline token
auto llama_token_newline = ::llama_tokenize(ctx, "\n", false);
if (params.verbose_prompt) { if (params.verbose_prompt) {
fprintf(stderr, "\n"); fprintf(stderr, "\n");
fprintf(stderr, "%s: prompt: '%s'\n", __func__, params.prompt.c_str()); fprintf(stderr, "%s: prompt: '%s'\n", __func__, params.prompt.c_str());
fprintf(stderr, "%s: number of tokens in prompt = %zu\n", __func__, embd_inp.size()); fprintf(stderr, "%s: number of tokens in prompt = %zu\n", __func__, embd_inp.size());
for (int i = 0; i < (int) embd_inp.size(); i++) { for (int i = 0; i < (int) embd_inp.size(); i++) {
fprintf(stderr, "%6d -> '%s'\n", embd_inp[i], llama_token_to_str(ctx, embd_inp[i])); fprintf(stderr, "%6d -> '%s'\n", embd_inp[i], llama_token_to_str(ctx, embd_inp[i]).c_str());
} }
if (ctx_guidance) { if (ctx_guidance) {
@ -286,14 +279,14 @@ int main(int argc, char ** argv) {
fprintf(stderr, "%s: negative prompt: '%s'\n", __func__, params.cfg_negative_prompt.c_str()); fprintf(stderr, "%s: negative prompt: '%s'\n", __func__, params.cfg_negative_prompt.c_str());
fprintf(stderr, "%s: number of tokens in negative prompt = %zu\n", __func__, guidance_inp.size()); fprintf(stderr, "%s: number of tokens in negative prompt = %zu\n", __func__, guidance_inp.size());
for (int i = 0; i < (int) guidance_inp.size(); i++) { for (int i = 0; i < (int) guidance_inp.size(); i++) {
fprintf(stderr, "%6d -> '%s'\n", guidance_inp[i], llama_token_to_str(ctx, guidance_inp[i])); fprintf(stderr, "%6d -> '%s'\n", guidance_inp[i], llama_token_to_str(ctx, guidance_inp[i]).c_str());
} }
} }
if (params.n_keep > 0) { if (params.n_keep > 0) {
fprintf(stderr, "%s: static prompt based on n_keep: '", __func__); fprintf(stderr, "%s: static prompt based on n_keep: '", __func__);
for (int i = 0; i < params.n_keep; i++) { for (int i = 0; i < params.n_keep; i++) {
fprintf(stderr, "%s", llama_token_to_str(ctx, embd_inp[i])); fprintf(stderr, "%s", llama_token_to_str(ctx, embd_inp[i]).c_str());
} }
fprintf(stderr, "'\n"); fprintf(stderr, "'\n");
} }
@ -311,7 +304,7 @@ int main(int argc, char ** argv) {
auto console_ctrl_handler = +[](DWORD ctrl_type) -> BOOL { auto console_ctrl_handler = +[](DWORD ctrl_type) -> BOOL {
return (ctrl_type == CTRL_C_EVENT) ? (sigint_handler(SIGINT), true) : false; return (ctrl_type == CTRL_C_EVENT) ? (sigint_handler(SIGINT), true) : false;
}; };
SetConsoleCtrlHandler(static_cast<PHANDLER_ROUTINE>(console_ctrl_handler), true); SetConsoleCtrlHandler(reinterpret_cast<PHANDLER_ROUTINE>(console_ctrl_handler), true);
#endif #endif
fprintf(stderr, "%s: interactive mode on.\n", __func__); fprintf(stderr, "%s: interactive mode on.\n", __func__);
@ -352,10 +345,9 @@ int main(int argc, char ** argv) {
fprintf(stderr, "\n"); fprintf(stderr, "\n");
{ {
auto it = params.logit_bias.find(llama_token_eos()); auto it = params.logit_bias.find(llama_token_eos(ctx));
if (it != params.logit_bias.end() && it->second == -INFINITY) { if (it != params.logit_bias.end() && it->second == -INFINITY) {
fprintf(stderr, fprintf(stderr, "%s: warning: EOS token is disabled, which will cause most grammars to fail\n", __func__);
"%s: warning: EOS token is disabled, which will cause most grammars to fail\n", __func__);
} }
} }
@ -405,7 +397,7 @@ int main(int argc, char ** argv) {
// do one empty run to warm up the model // do one empty run to warm up the model
{ {
const std::vector<llama_token> tmp = { llama_token_bos(), }; const std::vector<llama_token> tmp = { llama_token_bos(ctx), };
llama_eval(ctx, tmp.data(), tmp.size(), 0, params.n_threads); llama_eval(ctx, tmp.data(), tmp.size(), 0, params.n_threads);
llama_reset_timings(ctx); llama_reset_timings(ctx);
} }
@ -589,7 +581,7 @@ int main(int argc, char ** argv) {
} }
// Apply penalties // Apply penalties
float nl_logit = logits[llama_token_nl()]; float nl_logit = logits[llama_token_nl(ctx)];
auto last_n_repeat = std::min(std::min((int)last_n_tokens.size(), repeat_last_n), n_ctx); auto last_n_repeat = std::min(std::min((int)last_n_tokens.size(), repeat_last_n), n_ctx);
llama_sample_repetition_penalty(ctx, &candidates_p, llama_sample_repetition_penalty(ctx, &candidates_p,
last_n_tokens.data() + last_n_tokens.size() - last_n_repeat, last_n_tokens.data() + last_n_tokens.size() - last_n_repeat,
@ -598,7 +590,7 @@ int main(int argc, char ** argv) {
last_n_tokens.data() + last_n_tokens.size() - last_n_repeat, last_n_tokens.data() + last_n_tokens.size() - last_n_repeat,
last_n_repeat, alpha_frequency, alpha_presence); last_n_repeat, alpha_frequency, alpha_presence);
if (!penalize_nl) { if (!penalize_nl) {
logits[llama_token_nl()] = nl_logit; logits[llama_token_nl(ctx)] = nl_logit;
} }
if (grammar != NULL) { if (grammar != NULL) {
@ -662,7 +654,7 @@ int main(int argc, char ** argv) {
// display text // display text
if (input_echo) { if (input_echo) {
for (auto id : embd) { for (auto id : embd) {
printf("%s", llama_token_to_str(ctx, id)); printf("%s", llama_token_to_str(ctx, id).c_str());
} }
fflush(stdout); fflush(stdout);
} }
@ -704,7 +696,7 @@ int main(int argc, char ** argv) {
} }
// deal with end of text token in interactive mode // deal with end of text token in interactive mode
if (last_n_tokens.back() == llama_token_eos()) { if (last_n_tokens.back() == llama_token_eos(ctx)) {
if (params.interactive) { if (params.interactive) {
if (params.antiprompt.size() != 0) { if (params.antiprompt.size() != 0) {
// tokenize and inject first reverse prompt // tokenize and inject first reverse prompt
@ -728,7 +720,7 @@ int main(int argc, char ** argv) {
} }
if (params.input_prefix_bos) { if (params.input_prefix_bos) {
embd_inp.push_back(llama_token_bos()); embd_inp.push_back(llama_token_bos(ctx));
} }
std::string buffer; std::string buffer;
@ -782,8 +774,7 @@ int main(int argc, char ** argv) {
if (grammar != NULL) { if (grammar != NULL) {
llama_grammar_free(grammar); llama_grammar_free(grammar);
std::vector<const llama_grammar_element *> grammar_rules( std::vector<const llama_grammar_element *> grammar_rules( parsed_grammar.c_rules());
parsed_grammar.c_rules());
grammar = llama_grammar_init( grammar = llama_grammar_init(
grammar_rules.data(), grammar_rules.size(), grammar_rules.data(), grammar_rules.size(),
parsed_grammar.symbol_ids.at("root")); parsed_grammar.symbol_ids.at("root"));
@ -794,7 +785,7 @@ int main(int argc, char ** argv) {
} }
// end of text token // end of text token
if (!embd.empty() && embd.back() == llama_token_eos() && !(params.instruct || params.interactive)) { if (!embd.empty() && embd.back() == llama_token_eos(ctx) && !(params.instruct || params.interactive)) {
fprintf(stderr, " [end of text]\n"); fprintf(stderr, " [end of text]\n");
break; break;
} }

View File

@ -2,7 +2,7 @@
// //
// - First, export a LLaMA graph: // - First, export a LLaMA graph:
// //
// $ ./bin/main -m ../models/7B/ggml-model-q4_0.bin --export // $ ./bin/main -m ../models/7B/ggml-model-q4_0.gguf --export
// //
// - Run this tool to evaluate the exported graph: // - Run this tool to evaluate the exported graph:
// //

View File

@ -64,7 +64,7 @@ void perplexity(llama_context * ctx, const gpt_params & params) {
// add BOS token for the first batch of each chunk // add BOS token for the first batch of each chunk
if (j == 0) { if (j == 0) {
tokens[batch_start] = llama_token_bos(); tokens[batch_start] = llama_token_bos(ctx);
} }
if (llama_eval(ctx, tokens.data() + batch_start, batch_size, j * n_batch, params.n_threads)) { if (llama_eval(ctx, tokens.data() + batch_start, batch_size, j * n_batch, params.n_threads)) {

View File

@ -24,7 +24,7 @@
#endif #endif
struct quantize_stats_params { struct quantize_stats_params {
std::string model = "models/7B/ggml-model-f16.bin"; std::string model = "models/7B/ggml-model-f16.gguf";
bool verbose = false; bool verbose = false;
bool per_layer_stats = false; bool per_layer_stats = false;
bool print_histogram = false; bool print_histogram = false;

View File

@ -68,10 +68,10 @@ bool try_parse_ftype(const std::string & ftype_str_in, llama_ftype & ftype, std:
} }
// usage: // usage:
// ./quantize [--allow-requantize] [--leave-output-tensor] models/llama/ggml-model.bin [models/llama/ggml-model-quant.bin] type [nthreads] // ./quantize [--allow-requantize] [--leave-output-tensor] models/llama/ggml-model.gguf [models/llama/ggml-model-quant.gguf] type [nthreads]
// //
void usage(const char * executable) { void usage(const char * executable) {
fprintf(stderr, "usage: %s [--help] [--allow-requantize] [--leave-output-tensor] model-f32.bin [model-quant.bin] type [nthreads]\n\n", executable); fprintf(stderr, "usage: %s [--help] [--allow-requantize] [--leave-output-tensor] model-f32.gguf [model-quant.gguf] type [nthreads]\n\n", executable);
fprintf(stderr, " --allow-requantize: Allows requantizing tensors that have already been quantized. Warning: This can severely reduce quality compared to quantizing from 16bit or 32bit\n"); fprintf(stderr, " --allow-requantize: Allows requantizing tensors that have already been quantized. Warning: This can severely reduce quality compared to quantizing from 16bit or 32bit\n");
fprintf(stderr, " --leave-output-tensor: Will leave output.weight un(re)quantized. Increases model size but may also increase quality, especially when requantizing\n"); fprintf(stderr, " --leave-output-tensor: Will leave output.weight un(re)quantized. Increases model size but may also increase quality, especially when requantizing\n");
fprintf(stderr, "\nAllowed quantization types:\n"); fprintf(stderr, "\nAllowed quantization types:\n");
@ -118,8 +118,8 @@ int main(int argc, char ** argv) {
if (pos != std::string::npos) { if (pos != std::string::npos) {
fpath = fname_inp.substr(0, pos + 1); fpath = fname_inp.substr(0, pos + 1);
} }
// export as [inp path]/ggml-model-[ftype].bin // export as [inp path]/ggml-model-[ftype].gguf
fname_out = fpath + "ggml-model-" + ftype_str + ".bin"; fname_out = fpath + "ggml-model-" + ftype_str + ".gguf";
arg_idx++; arg_idx++;
} }
else { else {

View File

@ -26,7 +26,6 @@ int main(int argc, char ** argv) {
auto lparams = llama_context_default_params(); auto lparams = llama_context_default_params();
lparams.n_ctx = params.n_ctx; lparams.n_ctx = params.n_ctx;
lparams.n_gqa = params.n_gqa;
lparams.seed = params.seed; lparams.seed = params.seed;
lparams.f16_kv = params.memory_f16; lparams.f16_kv = params.memory_f16;
lparams.use_mmap = params.use_mmap; lparams.use_mmap = params.use_mmap;
@ -45,9 +44,8 @@ int main(int argc, char ** argv) {
llama_free_model(model); llama_free_model(model);
return 1; return 1;
} }
auto tokens = std::vector<llama_token>(params.n_ctx); auto tokens = llama_tokenize(ctx, params.prompt.c_str(), true);
auto n_prompt_tokens = llama_tokenize(ctx, params.prompt.c_str(), tokens.data(), int(tokens.size()), true); auto n_prompt_tokens = tokens.size();
if (n_prompt_tokens < 1) { if (n_prompt_tokens < 1) {
fprintf(stderr, "%s : failed to tokenize prompt\n", __func__); fprintf(stderr, "%s : failed to tokenize prompt\n", __func__);
llama_free(ctx); llama_free(ctx);
@ -92,7 +90,7 @@ int main(int argc, char ** argv) {
auto next_token_str = llama_token_to_str(ctx, next_token); auto next_token_str = llama_token_to_str(ctx, next_token);
last_n_tokens_data.push_back(next_token); last_n_tokens_data.push_back(next_token);
printf("%s", next_token_str); printf("%s", next_token_str.c_str());
if (llama_eval(ctx, &next_token, 1, n_past, params.n_threads)) { if (llama_eval(ctx, &next_token, 1, n_past, params.n_threads)) {
fprintf(stderr, "\n%s : failed to evaluate\n", __func__); fprintf(stderr, "\n%s : failed to evaluate\n", __func__);
llama_free(ctx); llama_free(ctx);
@ -152,7 +150,7 @@ int main(int argc, char ** argv) {
auto next_token_str = llama_token_to_str(ctx2, next_token); auto next_token_str = llama_token_to_str(ctx2, next_token);
last_n_tokens_data.push_back(next_token); last_n_tokens_data.push_back(next_token);
printf("%s", next_token_str); printf("%s", next_token_str.c_str());
if (llama_eval(ctx2, &next_token, 1, n_past, params.n_threads)) { if (llama_eval(ctx2, &next_token, 1, n_past, params.n_threads)) {
fprintf(stderr, "\n%s : failed to evaluate\n", __func__); fprintf(stderr, "\n%s : failed to evaluate\n", __func__);
llama_free(ctx2); llama_free(ctx2);

View File

@ -5,7 +5,7 @@ This example demonstrates a simple HTTP API server and a simple web front end to
Command line options: Command line options:
- `--threads N`, `-t N`: Set the number of threads to use during computation. - `--threads N`, `-t N`: Set the number of threads to use during computation.
- `-m FNAME`, `--model FNAME`: Specify the path to the LLaMA model file (e.g., `models/7B/ggml-model.bin`). - `-m FNAME`, `--model FNAME`: Specify the path to the LLaMA model file (e.g., `models/7B/ggml-model.gguf`).
- `-m ALIAS`, `--alias ALIAS`: Set an alias for the model. The alias will be returned in API responses. - `-m ALIAS`, `--alias ALIAS`: Set an alias for the model. The alias will be returned in API responses.
- `-c N`, `--ctx-size N`: Set the size of the prompt context. The default is 512, but LLaMA models were built with a context of 2048, which will provide better results for longer input/inference. The size may differ in other models, for example, baichuan models were build with a context of 4096. - `-c N`, `--ctx-size N`: Set the size of the prompt context. The default is 512, but LLaMA models were built with a context of 2048, which will provide better results for longer input/inference. The size may differ in other models, for example, baichuan models were build with a context of 4096.
- `-ngl N`, `--n-gpu-layers N`: When compiled with appropriate support (currently CLBlast or cuBLAS), this option allows offloading some layers to the GPU for computation. Generally results in increased performance. - `-ngl N`, `--n-gpu-layers N`: When compiled with appropriate support (currently CLBlast or cuBLAS), this option allows offloading some layers to the GPU for computation. Generally results in increased performance.
@ -48,15 +48,14 @@ To get started right away, run the following command, making sure to use the cor
### Unix-based systems (Linux, macOS, etc.): ### Unix-based systems (Linux, macOS, etc.):
```bash ```bash
./server -m models/7B/ggml-model.bin -c 2048 ./server -m models/7B/ggml-model.gguf -c 2048
``` ```
### Windows: ### Windows:
```powershell ```powershell
server.exe -m models\7B\ggml-model.bin -c 2048 server.exe -m models\7B\ggml-model.gguf -c 2048
``` ```
The above command will start a server that by default listens on `127.0.0.1:8080`. The above command will start a server that by default listens on `127.0.0.1:8080`.
You can consume the endpoints with Postman or NodeJS with axios library. You can visit the web front end at the same url. You can consume the endpoints with Postman or NodeJS with axios library. You can visit the web front end at the same url.

View File

@ -279,7 +279,7 @@ struct llama_server_context
grammar_parser::print_grammar(stderr, parsed_grammar); grammar_parser::print_grammar(stderr, parsed_grammar);
{ {
auto it = params.logit_bias.find(llama_token_eos()); auto it = params.logit_bias.find(llama_token_eos(ctx));
if (it != params.logit_bias.end() && it->second == -INFINITY) { if (it != params.logit_bias.end() && it->second == -INFINITY) {
LOG_WARNING("EOS token is disabled, which will cause most grammars to fail", {}); LOG_WARNING("EOS token is disabled, which will cause most grammars to fail", {});
} }
@ -402,7 +402,7 @@ struct llama_server_context
if (params.n_predict == 0) if (params.n_predict == 0)
{ {
has_next_token = false; has_next_token = false;
result.tok = llama_token_eos(); result.tok = llama_token_eos(ctx);
return result; return result;
} }
@ -442,7 +442,7 @@ struct llama_server_context
llama_token_data_array candidates_p = {candidates.data(), candidates.size(), false}; llama_token_data_array candidates_p = {candidates.data(), candidates.size(), false};
// Apply penalties // Apply penalties
float nl_logit = logits[llama_token_nl()]; float nl_logit = logits[llama_token_nl(ctx)];
auto last_n_repeat = std::min(std::min((int)last_n_tokens.size(), repeat_last_n), params.n_ctx); auto last_n_repeat = std::min(std::min((int)last_n_tokens.size(), repeat_last_n), params.n_ctx);
llama_sample_repetition_penalty(ctx, &candidates_p, llama_sample_repetition_penalty(ctx, &candidates_p,
last_n_tokens.data() + last_n_tokens.size() - last_n_repeat, last_n_tokens.data() + last_n_tokens.size() - last_n_repeat,
@ -452,7 +452,7 @@ struct llama_server_context
last_n_repeat, alpha_frequency, alpha_presence); last_n_repeat, alpha_frequency, alpha_presence);
if (!penalize_nl) if (!penalize_nl)
{ {
logits[llama_token_nl()] = nl_logit; logits[llama_token_nl(ctx)] = nl_logit;
} }
if (grammar != nullptr) { if (grammar != nullptr) {
@ -515,7 +515,7 @@ struct llama_server_context
// decrement remaining sampling budget // decrement remaining sampling budget
--n_remain; --n_remain;
if (!embd.empty() && embd.back() == llama_token_eos()) if (!embd.empty() && embd.back() == llama_token_eos(ctx))
{ {
// stopping_word = llama_token_to_str(ctx, embd.back()); // stopping_word = llama_token_to_str(ctx, embd.back());
has_next_token = false; has_next_token = false;
@ -652,8 +652,6 @@ static void server_print_usage(const char *argv0, const gpt_params &params,
fprintf(stdout, " -v, --verbose verbose output (default: %s)\n", server_verbose ? "enabled" : "disabled"); fprintf(stdout, " -v, --verbose verbose output (default: %s)\n", server_verbose ? "enabled" : "disabled");
fprintf(stdout, " -t N, --threads N number of threads to use during computation (default: %d)\n", params.n_threads); fprintf(stdout, " -t N, --threads N number of threads to use during computation (default: %d)\n", params.n_threads);
fprintf(stdout, " -c N, --ctx-size N size of the prompt context (default: %d)\n", params.n_ctx); fprintf(stdout, " -c N, --ctx-size N size of the prompt context (default: %d)\n", params.n_ctx);
fprintf(stdout, " -gqa N, --gqa N grouped-query attention factor (TEMP!!! use 8 for LLaMAv2 70B) (default: %d)\n", params.n_gqa);
fprintf(stdout, " -eps N, --rms-norm-eps N rms norm eps (TEMP!!! use 1e-5 for LLaMAv2) (default: %.1e)\n", params.rms_norm_eps);
fprintf(stdout, " --rope-freq-base N RoPE base frequency (default: %.1f)\n", params.rope_freq_base); fprintf(stdout, " --rope-freq-base N RoPE base frequency (default: %.1f)\n", params.rope_freq_base);
fprintf(stdout, " --rope-freq-scale N RoPE frequency scaling factor (default: %g)\n", params.rope_freq_scale); fprintf(stdout, " --rope-freq-scale N RoPE frequency scaling factor (default: %g)\n", params.rope_freq_scale);
fprintf(stdout, " -b N, --batch-size N batch size for prompt processing (default: %d)\n", params.n_batch); fprintf(stdout, " -b N, --batch-size N batch size for prompt processing (default: %d)\n", params.n_batch);
@ -774,23 +772,6 @@ static void server_params_parse(int argc, char **argv, server_params &sparams,
} }
params.n_ctx = std::stoi(argv[i]); params.n_ctx = std::stoi(argv[i]);
} }
else if (arg == "-gqa" || arg == "--gqa")
{
if (++i >= argc)
{
invalid_param = true;
break;
}
params.n_gqa = std::stoi(argv[i]);
}
else if (arg == "-eps" || arg == "--rms-norm-eps") {
if (++i >= argc)
{
invalid_param = true;
break;
}
params.rms_norm_eps = std::stof(argv[i]);
}
else if (arg == "--rope-freq-base") else if (arg == "--rope-freq-base")
{ {
if (++i >= argc) if (++i >= argc)
@ -968,7 +949,7 @@ static void server_params_parse(int argc, char **argv, server_params &sparams,
static json format_generation_settings(llama_server_context &llama) static json format_generation_settings(llama_server_context &llama)
{ {
const auto eos_bias = llama.params.logit_bias.find(llama_token_eos()); const auto eos_bias = llama.params.logit_bias.find(llama_token_eos(llama.ctx));
const bool ignore_eos = eos_bias != llama.params.logit_bias.end() && const bool ignore_eos = eos_bias != llama.params.logit_bias.end() &&
eos_bias->second < 0.0f && std::isinf(eos_bias->second); eos_bias->second < 0.0f && std::isinf(eos_bias->second);
@ -1103,7 +1084,7 @@ static void parse_options_completion(const json &body, llama_server_context &lla
llama.params.logit_bias.clear(); llama.params.logit_bias.clear();
if (body.value("ignore_eos", false)) if (body.value("ignore_eos", false))
{ {
llama.params.logit_bias[llama_token_eos()] = -INFINITY; llama.params.logit_bias[llama_token_eos(llama.ctx)] = -INFINITY;
} }
const auto &logit_bias = body.find("logit_bias"); const auto &logit_bias = body.find("logit_bias");

View File

@ -2,180 +2,129 @@
#define _GNU_SOURCE #define _GNU_SOURCE
#endif #endif
#include "common.h"
#include "llama.h"
#include "build-info.h" #include "build-info.h"
#include <cassert> #include "common.h"
#include <cinttypes> #include "llama.h"
#include <cmath> #include <cmath>
#include <cstdio> #include <cstdio>
#include <cstring>
#include <ctime>
#include <fstream>
#include <iostream>
#include <string> #include <string>
#include <vector> #include <vector>
#if defined (__unix__) || (defined (__APPLE__) && defined (__MACH__)) int main(int argc, char ** argv) {
#include <signal.h>
#include <unistd.h>
#elif defined (_WIN32)
#define WIN32_LEAN_AND_MEAN
#define NOMINMAX
#include <windows.h>
#include <signal.h>
#endif
int main(int argc, char ** argv)
{
gpt_params params; gpt_params params;
//--------------------------------- if (argc == 1 || argv[1][0] == '-') {
// Print help : printf("usage: %s MODEL_PATH [PROMPT]\n" , argv[0]);
//---------------------------------
if ( argc == 1 || argv[1][0] == '-' )
{
printf( "usage: %s MODEL_PATH [PROMPT]\n" , argv[0] );
return 1 ; return 1 ;
} }
//--------------------------------- if (argc >= 2) {
// Load parameters :
//---------------------------------
if ( argc >= 2 )
{
params.model = argv[1]; params.model = argv[1];
} }
if ( argc >= 3 ) if (argc >= 3) {
{
params.prompt = argv[2]; params.prompt = argv[2];
} }
if ( params.prompt.empty() ) if (params.prompt.empty()) {
{
params.prompt = "Hello my name is"; params.prompt = "Hello my name is";
} }
//--------------------------------- // init LLM
// Init LLM :
//---------------------------------
llama_backend_init(params.numa); llama_backend_init(params.numa);
llama_model * model; llama_context_params ctx_params = llama_context_default_params();
llama_context * ctx;
std::tie(model, ctx) = llama_init_from_gpt_params( params ); llama_model * model = llama_load_model_from_file(params.model.c_str(), ctx_params);
if ( model == NULL ) if (model == NULL) {
{ fprintf(stderr , "%s: error: unable to load model\n" , __func__);
fprintf( stderr , "%s: error: unable to load model\n" , __func__ );
return 1; return 1;
} }
//--------------------------------- llama_context * ctx = llama_new_context_with_model(model, ctx_params);
// Tokenize the prompt :
//--------------------------------- // tokenize the prompt
std::vector<llama_token> tokens_list; std::vector<llama_token> tokens_list;
tokens_list = ::llama_tokenize( ctx , params.prompt , true ); tokens_list = ::llama_tokenize(ctx, params.prompt, true);
const int max_context_size = llama_n_ctx( ctx ); const int max_context_size = llama_n_ctx(ctx);
const int max_tokens_list_size = max_context_size - 4 ; const int max_tokens_list_size = max_context_size - 4;
if ( (int)tokens_list.size() > max_tokens_list_size ) if ((int) tokens_list.size() > max_tokens_list_size) {
{ fprintf(stderr, "%s: error: prompt too long (%d tokens, max %d)\n", __func__, (int) tokens_list.size(), max_tokens_list_size);
fprintf( stderr , "%s: error: prompt too long (%d tokens, max %d)\n" ,
__func__ , (int)tokens_list.size() , max_tokens_list_size );
return 1; return 1;
} }
fprintf( stderr, "\n\n" ); fprintf(stderr, "\n\n");
// Print the tokens from the prompt : for (auto id : tokens_list) {
fprintf(stderr, "%s", llama_token_to_str(ctx, id).c_str());
for( auto id : tokens_list )
{
printf( "%s" , llama_token_to_str( ctx , id ) );
} }
fflush(stdout); fflush(stderr);
// main loop
//---------------------------------
// Main prediction loop :
//---------------------------------
// The LLM keeps a contextual cache memory of previous token evaluation. // The LLM keeps a contextual cache memory of previous token evaluation.
// Usually, once this cache is full, it is required to recompute a compressed context based on previous // Usually, once this cache is full, it is required to recompute a compressed context based on previous
// tokens (see "infinite text generation via context swapping" in the main example), but in this minimalist // tokens (see "infinite text generation via context swapping" in the main example), but in this minimalist
// example, we will just stop the loop once this cache is full or once an end of stream is detected. // example, we will just stop the loop once this cache is full or once an end of stream is detected.
while ( llama_get_kv_cache_token_count( ctx ) < max_context_size ) const int n_gen = std::min(32, max_context_size);
{
//---------------------------------
// Evaluate the tokens :
//---------------------------------
if ( llama_eval( ctx , tokens_list.data() , int(tokens_list.size()) , llama_get_kv_cache_token_count( ctx ) , params.n_threads ) ) while (llama_get_kv_cache_token_count(ctx) < n_gen) {
{ // evaluate the transformer
fprintf( stderr, "%s : failed to eval\n" , __func__ );
if (llama_eval(ctx, tokens_list.data(), int(tokens_list.size()), llama_get_kv_cache_token_count(ctx), params.n_threads)) {
fprintf(stderr, "%s : failed to eval\n", __func__);
return 1; return 1;
} }
tokens_list.clear(); tokens_list.clear();
//--------------------------------- // sample the next token
// Select the best prediction :
//---------------------------------
llama_token new_token_id = 0; llama_token new_token_id = 0;
auto logits = llama_get_logits( ctx ); auto logits = llama_get_logits(ctx);
auto n_vocab = llama_n_vocab( ctx ); // the size of the LLM vocabulary (in tokens) auto n_vocab = llama_n_vocab(ctx);
std::vector<llama_token_data> candidates; std::vector<llama_token_data> candidates;
candidates.reserve( n_vocab ); candidates.reserve(n_vocab);
for( llama_token token_id = 0 ; token_id < n_vocab ; token_id++ ) for (llama_token token_id = 0; token_id < n_vocab; token_id++) {
{ candidates.emplace_back(llama_token_data{ token_id, logits[token_id], 0.0f });
candidates.emplace_back( llama_token_data{ token_id , logits[ token_id ] , 0.0f } );
} }
llama_token_data_array candidates_p = { candidates.data(), candidates.size(), false }; llama_token_data_array candidates_p = { candidates.data(), candidates.size(), false };
// Select it using the "Greedy sampling" method : new_token_id = llama_sample_token_greedy(ctx , &candidates_p);
new_token_id = llama_sample_token_greedy( ctx , &candidates_p );
// is it an end of stream ? // is it an end of stream ?
if ( new_token_id == llama_token_eos() ) if (new_token_id == llama_token_eos(ctx)) {
{
fprintf(stderr, " [end of text]\n"); fprintf(stderr, " [end of text]\n");
break; break;
} }
// Print the new token : // print the new token :
printf( "%s" , llama_token_to_str( ctx , new_token_id ) ); printf("%s", llama_token_to_str(ctx, new_token_id).c_str());
fflush( stdout ); fflush(stdout);
// Push this new token for next evaluation : // push this new token for next evaluation
tokens_list.push_back( new_token_id ); tokens_list.push_back(new_token_id);
}
} // wend of main loop llama_free(ctx);
llama_free_model(model);
llama_free( ctx );
llama_free_model( model );
llama_backend_free(); llama_backend_free();
fprintf(stderr, "\n\n");
return 0; return 0;
} }
// EOF

View File

@ -1,4 +1,5 @@
#include "ggml.h" #include "ggml.h"
#include "common.h"
#include "llama.h" #include "llama.h"
#include <unordered_map> #include <unordered_map>
#include <vector> #include <vector>
@ -16,7 +17,7 @@
#pragma warning(disable: 4244 4267) // possible loss of data #pragma warning(disable: 4244 4267) // possible loss of data
#endif #endif
static const float rms_norm_eps = LLAMA_DEFAULT_RMS_EPS; static const float rms_norm_eps = 1e-5f;
struct random_normal_distribution { struct random_normal_distribution {
std::mt19937 gen; std::mt19937 gen;
@ -169,14 +170,16 @@ struct ggml_tensor * randomize_tensor_uniform(struct ggml_tensor * tensor, struc
struct llama_vocab { struct llama_vocab {
using id = int32_t; using id = int32_t;
using token = std::string; using token = std::string;
using ttype = llama_token_type;
struct token_score { struct token_data {
token tok; token text;
float score; float score;
ttype type;
}; };
std::unordered_map<token, id> token_to_id; std::unordered_map<token, id> token_to_id;
std::vector<token_score> id_to_token; std::vector<token_data> id_to_token;
}; };
struct my_llama_hparams { struct my_llama_hparams {
@ -1961,7 +1964,7 @@ void print_matrix(struct ggml_tensor * probs) {
void print_token(struct llama_context * ctx, llama_token token) { void print_token(struct llama_context * ctx, llama_token token) {
printf("%s", llama_token_to_str(ctx, token)); printf("%s", llama_token_to_str(ctx, token).c_str());
} }
void print_tokens(struct llama_context* ctx, struct ggml_tensor * tokens) { void print_tokens(struct llama_context* ctx, struct ggml_tensor * tokens) {
@ -1995,7 +1998,7 @@ void print_tokens_batch(struct llama_context* ctx, struct ggml_tensor * tokens)
} }
} }
void get_example_targets(const int * train_samples, size_t n_train_samples, const llama_token * train_data, size_t n_train_data, int example_id, struct ggml_tensor * tokens_input, struct ggml_tensor * target_logits, struct ggml_tensor * target_probs) { void get_example_targets(struct llama_context * lctx, const int * train_samples, size_t n_train_samples, const llama_token * train_data, size_t n_train_data, int example_id, struct ggml_tensor * tokens_input, struct ggml_tensor * target_logits, struct ggml_tensor * target_probs) {
int n_tokens = tokens_input->ne[0]; int n_tokens = tokens_input->ne[0];
int n_vocab = target_logits->ne[0]; int n_vocab = target_logits->ne[0];
@ -2004,7 +2007,7 @@ void get_example_targets(const int * train_samples, size_t n_train_samples, cons
ggml_set_f32(target_logits, -1.0f/n_vocab); ggml_set_f32(target_logits, -1.0f/n_vocab);
ggml_set_f32(target_probs, 0.0f); ggml_set_f32(target_probs, 0.0f);
ggml_set_i32_1d(tokens_input, 0, llama_token_bos()); ggml_set_i32_1d(tokens_input, 0, llama_token_bos(lctx));
for (int i=1; i<n_tokens+1; ++i) { for (int i=1; i<n_tokens+1; ++i) {
int token = clamp(train_data[sample+i-1], 0, n_vocab-1); int token = clamp(train_data[sample+i-1], 0, n_vocab-1);
set_f32_2d(target_logits, token, i-1, +1.0f); set_f32_2d(target_logits, token, i-1, +1.0f);
@ -2015,7 +2018,7 @@ void get_example_targets(const int * train_samples, size_t n_train_samples, cons
} }
} }
void get_example_targets_batch(struct llama_context * /*lctx*/, const int * train_samples, size_t n_train_samples, const llama_token * train_data, size_t n_train_data, int example_id, struct ggml_tensor * tokens_input, struct ggml_tensor * target_logits, struct ggml_tensor * target_probs) { void get_example_targets_batch(struct llama_context * lctx, const int * train_samples, size_t n_train_samples, const llama_token * train_data, size_t n_train_data, int example_id, struct ggml_tensor * tokens_input, struct ggml_tensor * target_logits, struct ggml_tensor * target_probs) {
GGML_ASSERT(tokens_input->n_dims == 2); GGML_ASSERT(tokens_input->n_dims == 2);
GGML_ASSERT(target_logits->n_dims == 3); GGML_ASSERT(target_logits->n_dims == 3);
GGML_ASSERT(target_probs->n_dims == 3); GGML_ASSERT(target_probs->n_dims == 3);
@ -2035,7 +2038,7 @@ void get_example_targets_batch(struct llama_context * /*lctx*/, const int * trai
size_t sample = train_samples[(example_id*n_batch + k) % n_train_samples]; size_t sample = train_samples[(example_id*n_batch + k) % n_train_samples];
GGML_ASSERT(sample+n_tokens-1 < n_train_data); GGML_ASSERT(sample+n_tokens-1 < n_train_data);
set_i32_2d(tokens_input, 0, k, llama_token_bos()); set_i32_2d(tokens_input, 0, k, llama_token_bos(lctx));
for (int i=1; i<n_tokens+1; ++i) { for (int i=1; i<n_tokens+1; ++i) {
int token = clamp(train_data[sample+i-1], 0, n_vocab-1); int token = clamp(train_data[sample+i-1], 0, n_vocab-1);
// print_token(lctx, token); // print_token(lctx, token);
@ -2188,11 +2191,10 @@ int tokenize_file(struct llama_context * lctx, const char * filename, std::vecto
f.read_raw(buf.data(), f.size); f.read_raw(buf.data(), f.size);
buf[f.size] = '\0'; buf[f.size] = '\0';
out.resize(buf.size()); int n_tokens = llama_tokenize(lctx, buf.data(), out.data(), out.size(), false);
if (n_tokens < 0) {
int n_tokens = llama_tokenize(lctx, buf.data(), out.data(), buf.size(), false); out.resize(-n_tokens);
if (n_tokens >= 0) { llama_tokenize(lctx, buf.data(), out.data(), out.size(), false);
out.resize(n_tokens);
} }
bool verify = false; bool verify = false;
@ -2200,17 +2202,17 @@ int tokenize_file(struct llama_context * lctx, const char * filename, std::vecto
const char * in = buf.data(); const char * in = buf.data();
const char * end = buf.data() + buf.size(); const char * end = buf.data() + buf.size();
for (int i = 0; i < (int) out.size(); ++i) { for (int i = 0; i < (int) out.size(); ++i) {
const char * s = llama_token_to_str(lctx, out[i]); std::string s = llama_token_to_str(lctx, out[i]);
int len = strlen(s); int len = s.length();
if (in >= end) { if (in >= end) {
printf("%s: unexpected end of original text.\n", __func__); printf("%s: unexpected end of original text.\n", __func__);
break; break;
} }
const bool matches = (strncmp(in, s, len) == 0); const bool matches = (strncmp(in, s.c_str(), len) == 0);
if (matches) { if (matches) {
in += len; in += len;
} else { } else {
printf("%s: mismatch: expected '%s', but got '%s'\n", __func__, std::string(in, len).c_str(), s); printf("%s: mismatch: expected '%s', but got '%s'\n", __func__, std::string(in, len).c_str(), s.c_str());
} }
} }
} }
@ -2294,7 +2296,7 @@ llama_token sample(struct my_llama_sampler * sampler, float * logits, const llam
const auto params = sampler->params; const auto params = sampler->params;
// Apply penalties // Apply penalties
const float nl_logit = logits[llama_token_nl()]; const float nl_logit = logits[llama_token_nl(ctx)];
const int n_last = std::min(std::min(n_last_tokens, params.repeat_last_n), sampler->n_ctx); const int n_last = std::min(std::min(n_last_tokens, params.repeat_last_n), sampler->n_ctx);
@ -2313,7 +2315,7 @@ llama_token sample(struct my_llama_sampler * sampler, float * logits, const llam
params.alpha_presence); params.alpha_presence);
if (!params.penalize_nl) { if (!params.penalize_nl) {
logits[llama_token_nl()] = nl_logit; logits[llama_token_nl(ctx)] = nl_logit;
} }
llama_token token = 0; llama_token token = 0;
@ -2612,42 +2614,45 @@ void save_as_llama_model(struct llama_vocab * vocab, struct my_llama_model * mod
return; return;
} }
// write_magic #pragma message("TODO: implement file saving using gguf")
file.write_u32(LLAMA_FILE_MAGIC); // magic (void) vocab;
file.write_u32(LLAMA_FILE_VERSION); // version (void) model;
// write_hparams // // write_magic
file.write_u32(model->hparams.n_vocab); // file.write_u32(LLAMA_FILE_MAGIC); // magic
file.write_u32(model->hparams.n_embd); // file.write_u32(LLAMA_FILE_VERSION); // version
file.write_u32(model->hparams.n_mult); // // write_hparams
file.write_u32(model->hparams.n_head); // file.write_u32(model->hparams.n_vocab);
file.write_u32(model->hparams.n_layer); // file.write_u32(model->hparams.n_embd);
file.write_u32(model->hparams.n_rot); // file.write_u32(model->hparams.n_mult);
file.write_u32(LLAMA_FTYPE_ALL_F32); // file.write_u32(model->hparams.n_head);
// write_vocab // file.write_u32(model->hparams.n_layer);
uint32_t n_vocab = model->hparams.n_vocab; // file.write_u32(model->hparams.n_rot);
for (uint32_t i = 0; i < n_vocab; i++) { // file.write_u32(LLAMA_FTYPE_ALL_F32);
const auto & token_score = vocab->id_to_token.at(i); // // write_vocab
file.write_u32((uint32_t) token_score.tok.size()); // uint32_t n_vocab = model->hparams.n_vocab;
file.write_raw(token_score.tok.data(), token_score.tok.size()); // for (uint32_t i = 0; i < n_vocab; i++) {
file.write_raw(&token_score.score, sizeof(token_score.score)); // const auto & token_data = vocab->id_to_token.at(i);
} // file.write_u32((uint32_t) token_data.tok.size());
// write tensors // file.write_raw(token_data.tok.data(), token_data.tok.size());
write_tensor(&file, model->tok_embeddings); // file.write_raw(&token_data.score, sizeof(token_data.score));
write_tensor(&file, model->norm); // }
write_tensor(&file, model->output); // // write tensors
for (uint32_t i = 0; i < model->hparams.n_layer; ++i) { // write_tensor(&file, model->tok_embeddings);
auto & layer = model->layers[i]; // write_tensor(&file, model->norm);
// write_tensor(&file, model->output);
write_tensor(&file, layer.attention_norm); // for (uint32_t i = 0; i < model->hparams.n_layer; ++i) {
write_tensor(&file, layer.wq); // auto & layer = model->layers[i];
write_tensor(&file, layer.wk); //
write_tensor(&file, layer.wv); // write_tensor(&file, layer.attention_norm);
write_tensor(&file, layer.wo); // write_tensor(&file, layer.wq);
write_tensor(&file, layer.ffn_norm); // write_tensor(&file, layer.wk);
write_tensor(&file, layer.w1); // write_tensor(&file, layer.wv);
write_tensor(&file, layer.w2); // write_tensor(&file, layer.wo);
write_tensor(&file, layer.w3); // write_tensor(&file, layer.ffn_norm);
} // write_tensor(&file, layer.w1);
// write_tensor(&file, layer.w2);
// write_tensor(&file, layer.w3);
// }
} }
float cosine_decay(const int decay_steps, const float alpha, int step) { float cosine_decay(const int decay_steps, const float alpha, int step) {
@ -3052,20 +3057,13 @@ int main(int argc, char ** argv) {
struct llama_vocab vocab; struct llama_vocab vocab;
{ {
std::vector<const char *> strings; const int n_vocab = llama_n_vocab(lctx);
std::vector<float> scores;
int n_vocab = llama_n_vocab(lctx);
strings.resize(n_vocab, NULL);
scores.resize(n_vocab, 0);
n_vocab = llama_get_vocab(lctx, strings.data(), scores.data(), n_vocab);
GGML_ASSERT(n_vocab == llama_n_vocab(lctx));
vocab.id_to_token.resize(n_vocab); vocab.id_to_token.resize(n_vocab);
for (int i=0; i<n_vocab; ++i) { for (int i=0; i<n_vocab; ++i) {
std::string tok = std::string(strings[i]); vocab.id_to_token[i].text = llama_token_get_text(lctx, i);
float score = scores[i]; vocab.id_to_token[i].score = llama_token_get_score(lctx, i);
vocab.id_to_token[i].tok = tok; vocab.id_to_token[i].type = llama_token_get_type(lctx, i);
vocab.id_to_token[i].score = score; vocab.token_to_id.emplace(vocab.id_to_token[i].text, i);
vocab.token_to_id.emplace(tok, i);
} }
} }
@ -3178,7 +3176,7 @@ int main(int argc, char ** argv) {
std::vector<int> train_samples; std::vector<int> train_samples;
train_samples.push_back(0); train_samples.push_back(0);
for (int i = 1; i < (int) train_tokens.size() - n_tokens; ++i) { for (int i = 1; i < (int) train_tokens.size() - n_tokens; ++i) {
if (!params.samples_start_after_nl || (train_tokens[i-1] == llama_token_nl())) { if (!params.samples_start_after_nl || (train_tokens[i-1] == llama_token_nl(lctx))) {
train_samples.push_back(i); train_samples.push_back(i);
} }
} }
@ -3338,7 +3336,7 @@ int main(int argc, char ** argv) {
struct ggml_tensor * target_logits = ggml_new_tensor_2d(model.ctx, GGML_TYPE_F32, n_vocab, n_tokens); struct ggml_tensor * target_logits = ggml_new_tensor_2d(model.ctx, GGML_TYPE_F32, n_vocab, n_tokens);
struct ggml_tensor * target_probs = ggml_new_tensor_2d(model.ctx, GGML_TYPE_F32, n_vocab, n_tokens); struct ggml_tensor * target_probs = ggml_new_tensor_2d(model.ctx, GGML_TYPE_F32, n_vocab, n_tokens);
get_example_targets(train_samples.data(), train_samples.size(), train_tokens.data(), train_tokens.size(), rand()%train_samples.size(), tokens_input, target_logits, target_probs); get_example_targets(lctx, train_samples.data(), train_samples.size(), train_tokens.data(), train_tokens.size(), rand()%train_samples.size(), tokens_input, target_logits, target_probs);
for (int i=sample_ctx; i<n_tokens; ++i) { for (int i=sample_ctx; i<n_tokens; ++i) {
ggml_set_i32_1d(tokens_input, i, n_vocab/2); ggml_set_i32_1d(tokens_input, i, n_vocab/2);
} }

View File

@ -38,6 +38,9 @@ struct ggml_metal_context;
struct ggml_metal_context * ggml_metal_init(int n_cb); struct ggml_metal_context * ggml_metal_init(int n_cb);
void ggml_metal_free(struct ggml_metal_context * ctx); void ggml_metal_free(struct ggml_metal_context * ctx);
void * ggml_metal_host_malloc(size_t n);
void ggml_metal_host_free (void * data);
// set the number of command buffers to use // set the number of command buffers to use
void ggml_metal_set_n_cb(struct ggml_metal_context * ctx, int n_cb); void ggml_metal_set_n_cb(struct ggml_metal_context * ctx, int n_cb);

View File

@ -237,6 +237,21 @@ void ggml_metal_free(struct ggml_metal_context * ctx) {
free(ctx); free(ctx);
} }
void * ggml_metal_host_malloc(size_t n) {
void * data = NULL;
const int result = posix_memalign((void **) &data, getpagesize(), n);
if (result != 0) {
fprintf(stderr, "%s: error: posix_memalign failed\n", __func__);
return NULL;
}
return data;
}
void ggml_metal_host_free(void * data) {
free(data);
}
void ggml_metal_set_n_cb(struct ggml_metal_context * ctx, int n_cb) { void ggml_metal_set_n_cb(struct ggml_metal_context * ctx, int n_cb) {
ctx->n_cb = n_cb; ctx->n_cb = n_cb;
} }

1013
ggml.c

File diff suppressed because it is too large Load Diff

122
ggml.h
View File

@ -207,14 +207,18 @@
#define GGML_MAX_PARAMS 256 #define GGML_MAX_PARAMS 256
#define GGML_MAX_CONTEXTS 64 #define GGML_MAX_CONTEXTS 64
#define GGML_MAX_SRC 6 #define GGML_MAX_SRC 6
#define GGML_MAX_NAME 48 #define GGML_MAX_NAME 64
#define GGML_MAX_OP_PARAMS 32 #define GGML_MAX_OP_PARAMS 32
#define GGML_DEFAULT_N_THREADS 4 #define GGML_DEFAULT_N_THREADS 4
#define GGML_EXIT_SUCCESS 0 #define GGML_EXIT_SUCCESS 0
#define GGML_EXIT_ABORTED 1 #define GGML_EXIT_ABORTED 1
#define GGUF_MAGIC 0x46554747 // "GGUF"
#define GGUF_VERSION 1
#define GGUF_DEFAULT_ALIGNMENT 32
#define GGML_UNUSED(x) (void)(x) #define GGML_UNUSED(x) (void)(x)
#define GGML_PAD(x, n) (((x) + (n) - 1) & ~((n) - 1)) #define GGML_PAD(x, n) (((x) + (n) - 1) & ~((n) - 1))
@ -562,6 +566,7 @@ extern "C" {
GGML_API int64_t ggml_nelements (const struct ggml_tensor * tensor); GGML_API int64_t ggml_nelements (const struct ggml_tensor * tensor);
GGML_API int64_t ggml_nrows (const struct ggml_tensor * tensor); GGML_API int64_t ggml_nrows (const struct ggml_tensor * tensor);
GGML_API size_t ggml_nbytes (const struct ggml_tensor * tensor); GGML_API size_t ggml_nbytes (const struct ggml_tensor * tensor);
GGML_API size_t ggml_nbytes_pad (const struct ggml_tensor * tensor); // same as ggml_nbytes() but padded to GGML_MEM_ALIGN
GGML_API size_t ggml_nbytes_split(const struct ggml_tensor * tensor, int nrows_split); GGML_API size_t ggml_nbytes_split(const struct ggml_tensor * tensor, int nrows_split);
GGML_API int ggml_blck_size (enum ggml_type type); GGML_API int ggml_blck_size (enum ggml_type type);
@ -1494,7 +1499,6 @@ extern "C" {
struct ggml_context * ctx, struct ggml_context * ctx,
struct ggml_tensor * tensor); struct ggml_tensor * tensor);
GGML_API void ggml_build_forward_expand(struct ggml_cgraph * cgraph, struct ggml_tensor * tensor); GGML_API void ggml_build_forward_expand(struct ggml_cgraph * cgraph, struct ggml_tensor * tensor);
GGML_API struct ggml_cgraph ggml_build_forward (struct ggml_tensor * tensor); GGML_API struct ggml_cgraph ggml_build_forward (struct ggml_tensor * tensor);
@ -1703,6 +1707,118 @@ extern "C" {
GGML_API size_t ggml_quantize_chunk(enum ggml_type type, const float * src, void * dst, int start, int n, int64_t * hist); GGML_API size_t ggml_quantize_chunk(enum ggml_type type, const float * src, void * dst, int start, int n, int64_t * hist);
//
// gguf
//
enum gguf_type {
GGUF_TYPE_UINT8 = 0,
GGUF_TYPE_INT8 = 1,
GGUF_TYPE_UINT16 = 2,
GGUF_TYPE_INT16 = 3,
GGUF_TYPE_UINT32 = 4,
GGUF_TYPE_INT32 = 5,
GGUF_TYPE_FLOAT32 = 6,
GGUF_TYPE_BOOL = 7,
GGUF_TYPE_STRING = 8,
GGUF_TYPE_ARRAY = 9,
GGUF_TYPE_COUNT, // marks the end of the enum
};
struct gguf_context;
struct gguf_init_params {
bool no_alloc;
// if not NULL, create a ggml_context and allocate the tensor data in it
struct ggml_context ** ctx;
};
GGML_API struct gguf_context * gguf_init_empty(void);
GGML_API struct gguf_context * gguf_init_from_file(const char * fname, struct gguf_init_params params);
//GGML_API struct gguf_context * gguf_init_from_buffer(..);
GGML_API void gguf_free(struct gguf_context * ctx);
GGML_API const char * gguf_type_name(enum gguf_type type);
GGML_API int gguf_get_version (struct gguf_context * ctx);
GGML_API size_t gguf_get_alignment (struct gguf_context * ctx);
GGML_API size_t gguf_get_data_offset(struct gguf_context * ctx);
GGML_API void * gguf_get_data (struct gguf_context * ctx);
GGML_API int gguf_get_n_kv(struct gguf_context * ctx);
GGML_API int gguf_find_key(struct gguf_context * ctx, const char * key);
GGML_API const char * gguf_get_key (struct gguf_context * ctx, int i);
GGML_API enum gguf_type gguf_get_kv_type (struct gguf_context * ctx, int i);
GGML_API enum gguf_type gguf_get_arr_type(struct gguf_context * ctx, int i);
// results are undefined if the wrong type is used for the key
GGML_API uint8_t gguf_get_val_u8 (struct gguf_context * ctx, int i);
GGML_API int8_t gguf_get_val_i8 (struct gguf_context * ctx, int i);
GGML_API uint16_t gguf_get_val_u16 (struct gguf_context * ctx, int i);
GGML_API int16_t gguf_get_val_i16 (struct gguf_context * ctx, int i);
GGML_API uint32_t gguf_get_val_u32 (struct gguf_context * ctx, int i);
GGML_API int32_t gguf_get_val_i32 (struct gguf_context * ctx, int i);
GGML_API float gguf_get_val_f32 (struct gguf_context * ctx, int i);
GGML_API bool gguf_get_val_bool(struct gguf_context * ctx, int i);
GGML_API const char * gguf_get_val_str (struct gguf_context * ctx, int i);
GGML_API int gguf_get_arr_n (struct gguf_context * ctx, int i);
GGML_API const void * gguf_get_arr_data(struct gguf_context * ctx, int i);
GGML_API const char * gguf_get_arr_str (struct gguf_context * ctx, int key_id, int i);
GGML_API int gguf_get_n_tensors (struct gguf_context * ctx);
GGML_API int gguf_find_tensor (struct gguf_context * ctx, const char * name);
GGML_API size_t gguf_get_tensor_offset(struct gguf_context * ctx, int i);
GGML_API char * gguf_get_tensor_name (struct gguf_context * ctx, int i);
// overrides existing values or adds a new one
GGML_API void gguf_set_val_u8 (struct gguf_context * ctx, const char * key, uint8_t val);
GGML_API void gguf_set_val_i8 (struct gguf_context * ctx, const char * key, int8_t val);
GGML_API void gguf_set_val_u16 (struct gguf_context * ctx, const char * key, uint16_t val);
GGML_API void gguf_set_val_i16 (struct gguf_context * ctx, const char * key, int16_t val);
GGML_API void gguf_set_val_u32 (struct gguf_context * ctx, const char * key, uint32_t val);
GGML_API void gguf_set_val_i32 (struct gguf_context * ctx, const char * key, int32_t val);
GGML_API void gguf_set_val_f32 (struct gguf_context * ctx, const char * key, float val);
GGML_API void gguf_set_val_bool(struct gguf_context * ctx, const char * key, bool val);
GGML_API void gguf_set_val_str (struct gguf_context * ctx, const char * key, const char * val);
GGML_API void gguf_set_arr_data(struct gguf_context * ctx, const char * key, enum gguf_type type, const void * data, int n);
GGML_API void gguf_set_arr_str (struct gguf_context * ctx, const char * key, const char ** data, int n);
// set or add KV pairs from another context
GGML_API void gguf_set_kv(struct gguf_context * ctx, struct gguf_context * src);
// manage tensor info
GGML_API void gguf_add_tensor(struct gguf_context * ctx, const struct ggml_tensor * tensor);
GGML_API void gguf_set_tensor_type(struct gguf_context * ctx, const char * name, enum ggml_type type);
GGML_API void gguf_set_tensor_data(struct gguf_context * ctx, const char * name, const void * data, size_t size);
// writing gguf files can be done in 2 ways:
//
// - write the entire gguf_context to a binary file in a single pass:
//
// gguf_write_to_file(ctx, fname);
//
// - first prepare a file with a placeholder for the meta data, write the tensor data, then write the meta data:
//
// FILE * f = fopen(fname, "wb");
// fseek(f, gguf_get_meta_size(ctx), SEEK_SET);
// fwrite(f, ...);
// void * data = gguf_meta_get_meta_data(ctx);
// fseek(f, 0, SEEK_SET);
// fwrite(f, data, gguf_get_meta_size(ctx));
// free(data);
// fclose(f);
//
// write the entire context to a binary file
GGML_API void gguf_write_to_file(struct gguf_context * ctx, const char * fname, bool only_meta);
// get the size in bytes of the meta data (header, kv pairs, tensor info) including padding
GGML_API size_t gguf_get_meta_size(struct gguf_context * ctx);
GGML_API void gguf_get_meta_data(struct gguf_context * ctx, void * data);
// //
// system info // system info
// //

718
gguf.py Normal file
View File

@ -0,0 +1,718 @@
import shutil
import sys
import struct
import tempfile
import numpy as np
from enum import IntEnum, auto
from typing import Any, IO, List, Optional
#
# constants
#
GGUF_MAGIC = 0x46554747
GGUF_VERSION = 1
GGUF_DEFAULT_ALIGNMENT = 32
# general
KEY_GENERAL_ARCHITECTURE = "general.architecture"
KEY_GENERAL_QUANTIZATION_VERSION = "general.quantization_version"
KEY_GENERAL_ALIGNMENT = "general.alignment"
KEY_GENERAL_NAME = "general.name"
KEY_GENERAL_AUTHOR = "general.author"
KEY_GENERAL_URL = "general.url"
KEY_GENERAL_DESCRIPTION = "general.description"
KEY_GENERAL_LICENSE = "general.license"
KEY_GENERAL_SOURCE_URL = "general.source.url"
KEY_GENERAL_SOURCE_HF_REPO = "general.source.hugginface.repository"
# LLM
KEY_LLM_CONTEXT_LENGTH = "{arch}.context_length"
KEY_LLM_EMBEDDING_LENGTH = "{arch}.embedding_length"
KEY_LLM_BLOCK_COUNT = "{arch}.block_count"
KEY_LLM_FEED_FORWARD_LENGTH = "{arch}.feed_forward_length"
KEY_LLM_USE_PARALLEL_RESIDUAL = "{arch}.use_parallel_residual"
KEY_LLM_TENSOR_DATA_LAYOUT = "{arch}.tensor_data_layout"
# attention
KEY_ATTENTION_HEAD_COUNT = "{arch}.attention.head_count"
KEY_ATTENTION_HEAD_COUNT_KV = "{arch}.attention.head_count_kv"
KEY_ATTENTION_MAX_ALIBI_BIAS = "{arch}.attention.max_alibi_bias"
KEY_ATTENTION_CLAMP_KQV = "{arch}.attention.clamp_kqv"
KEY_ATTENTION_LAYERNORM_EPS = "{arch}.attention.layer_norm_epsilon"
KEY_ATTENTION_LAYERNORM_RMS_EPS = "{arch}.attention.layer_norm_rms_epsilon"
# RoPE
KEY_ROPE_DIMENSION_COUNT = "{arch}.rope.dimension_count"
KEY_ROPE_SCALE_LINEAR = "{arch}.rope.scale_linear"
# tokenization
KEY_TOKENIZER_MODEL = "tokenizer.ggml.model"
KEY_TOKENIZER_LIST = "tokenizer.ggml.tokens"
KEY_TOKENIZER_TOKEN_TYPE = "tokenizer.ggml.token_type"
KEY_TOKENIZER_SCORES = "tokenizer.ggml.scores"
KEY_TOKENIZER_MERGES = "tokenizer.ggml.merges"
KEY_TOKENIZER_BOS_ID = "tokenizer.ggml.bos_token_id"
KEY_TOKENIZER_EOS_ID = "tokenizer.ggml.eos_token_id"
KEY_TOKENIZER_UNK_ID = "tokenizer.ggml.unknown_token_id"
KEY_TOKENIZER_SEP_ID = "tokenizer.ggml.seperator_token_id"
KEY_TOKENIZER_PAD_ID = "tokenizer.ggml.padding_token_id"
KEY_TOKENIZER_HF_JSON = "tokenizer.huggingface.json"
KEY_TOKENIZER_RWKV = "tokenizer.rwkv.world"
#
# recommended mapping of model tensor names for storage in gguf
#
class MODEL_ARCH(IntEnum):
LLAMA = auto()
FALCON = auto()
GPT2 = auto()
GPTJ = auto()
GPTNEOX = auto()
MPT = auto()
class MODEL_TENSOR(IntEnum):
TOKEN_EMBD = auto()
POS_EMBD = auto()
OUTPUT = auto()
OUTPUT_NORM = auto()
ROPE_FREQS = auto()
ATTN_Q = auto()
ATTN_K = auto()
ATTN_V = auto()
ATTN_QKV = auto()
ATTN_OUT = auto()
ATTN_NORM = auto()
ATTN_NORM_2 = auto()
ATTN_ROT_EMBD = auto()
FFN_GATE = auto()
FFN_DOWN = auto()
FFN_UP = auto()
FFN_NORM = auto()
MODEL_ARCH_NAMES = {
MODEL_ARCH.LLAMA: "llama",
MODEL_ARCH.FALCON: "falcon",
MODEL_ARCH.GPT2: "gpt2",
MODEL_ARCH.GPTJ: "gptj",
MODEL_ARCH.GPTNEOX: "gptneox",
MODEL_ARCH.MPT: "mpt",
}
MODEL_TENSOR_NAMES = {
MODEL_ARCH.LLAMA: {
MODEL_TENSOR.TOKEN_EMBD: "token_embd",
MODEL_TENSOR.OUTPUT_NORM: "output_norm",
MODEL_TENSOR.OUTPUT: "output",
MODEL_TENSOR.ROPE_FREQS: "rope_freqs",
MODEL_TENSOR.ATTN_NORM: "blk.{bid}.attn_norm",
MODEL_TENSOR.ATTN_Q: "blk.{bid}.attn_q",
MODEL_TENSOR.ATTN_K: "blk.{bid}.attn_k",
MODEL_TENSOR.ATTN_V: "blk.{bid}.attn_v",
MODEL_TENSOR.ATTN_OUT: "blk.{bid}.attn_output",
MODEL_TENSOR.ATTN_ROT_EMBD: "blk.{bid}.attn_rot_embd",
MODEL_TENSOR.FFN_NORM: "blk.{bid}.ffn_norm",
MODEL_TENSOR.FFN_GATE: "blk.{bid}.ffn_gate",
MODEL_TENSOR.FFN_DOWN: "blk.{bid}.ffn_down",
MODEL_TENSOR.FFN_UP: "blk.{bid}.ffn_up",
},
MODEL_ARCH.GPTNEOX: {
MODEL_TENSOR.TOKEN_EMBD: "token_embd",
MODEL_TENSOR.OUTPUT_NORM: "output_norm",
MODEL_TENSOR.OUTPUT: "output",
MODEL_TENSOR.ATTN_NORM: "blk.{bid}.attn_norm",
MODEL_TENSOR.ATTN_QKV: "blk.{bid}.attn_qkv",
MODEL_TENSOR.ATTN_OUT: "blk.{bid}.attn_output",
MODEL_TENSOR.FFN_NORM: "blk.{bid}.ffn_norm",
MODEL_TENSOR.FFN_DOWN: "blk.{bid}.ffn_down",
MODEL_TENSOR.FFN_UP: "blk.{bid}.ffn_up",
},
MODEL_ARCH.FALCON: {
MODEL_TENSOR.TOKEN_EMBD: "token_embd",
MODEL_TENSOR.OUTPUT_NORM: "output_norm",
MODEL_TENSOR.OUTPUT: "output",
MODEL_TENSOR.ATTN_NORM: "blk.{bid}.attn_norm",
MODEL_TENSOR.ATTN_NORM_2: "blk.{bid}.attn_norm_2",
MODEL_TENSOR.ATTN_QKV: "blk.{bid}.attn_qkv",
MODEL_TENSOR.ATTN_OUT: "blk.{bid}.attn_output",
MODEL_TENSOR.FFN_DOWN: "blk.{bid}.ffn_down",
MODEL_TENSOR.FFN_UP: "blk.{bid}.ffn_up",
},
MODEL_ARCH.GPT2: {
# TODO
},
# TODO
}
# tensors that will not be serialized
MODEL_TENSOR_SKIP = {
MODEL_ARCH.LLAMA: [
MODEL_TENSOR.ROPE_FREQS,
MODEL_TENSOR.ATTN_ROT_EMBD,
],
}
# TODO: the following helper functions should be removed
# instead, get_tensor_name_map should return tuples of (name, MODEL_TENSOR)
# however, my Python is very bad, and I couldn't figure out how to do this, hence these functions
# REMOVE
def should_skip_tensor_TMP(arch: MODEL_ARCH, n_blocks: int, name: str) -> bool:
for skip in MODEL_TENSOR_SKIP.get(arch, []):
for i in range(n_blocks):
if name == MODEL_TENSOR_NAMES[arch][skip].format(bid=i):
return True
return False
def get_tensor_name_map(arch: MODEL_ARCH, n_blocks: int) -> dict:
tensor_map = {}
# Token embeddings
mapped_to = MODEL_TENSOR_NAMES[arch].get(MODEL_TENSOR.TOKEN_EMBD, None)
tensor_map["gpt_neox.embed_in"] = mapped_to # gptneox
tensor_map["transformer.wte"] = mapped_to # gpt2 mpt
tensor_map["transformer.word_embeddings"] = mapped_to # falcon
tensor_map["model.embed_tokens"] = mapped_to # llama-hf
tensor_map["tok_embeddings"] = mapped_to # llama-pth
# Position embeddings
mapped_to = MODEL_TENSOR_NAMES[arch].get(MODEL_TENSOR.POS_EMBD, None)
tensor_map["transformer.wpe"] = mapped_to # gpt2
# Output
mapped_to = MODEL_TENSOR_NAMES[arch].get(MODEL_TENSOR.OUTPUT, None)
tensor_map["embed_out"] = mapped_to # gptneox
tensor_map["lm_head"] = mapped_to # gpt2 mpt falcon llama-hf
tensor_map["output"] = mapped_to # llama-pth
# Output norm
mapped_to = MODEL_TENSOR_NAMES[arch].get(MODEL_TENSOR.OUTPUT_NORM, None)
tensor_map["gpt_neox.final_layer_norm"] = mapped_to # gptneox
tensor_map["transformer.ln_f"] = mapped_to # gpt2 falcon
tensor_map["transformer.norm_f"] = mapped_to # mpt
tensor_map["model.norm"] = mapped_to # llama-hf
tensor_map["norm"] = mapped_to # llama-pth
# Rope frequencies
mapped_to = MODEL_TENSOR_NAMES[arch].get(MODEL_TENSOR.ROPE_FREQS, None)
tensor_map["rope.freqs"] = mapped_to # llama-pth
# Attention and feed-forward blocks
for i in range(0, n_blocks):
# Attention norm
# TODO: is there are simpler way to write these 2 lines in Python?
mapped_to = MODEL_TENSOR_NAMES[arch].get(MODEL_TENSOR.ATTN_NORM, None)
mapped_to = mapped_to.format(bid=i) if mapped_to else None
tensor_map["gpt_neox.layers."+str(i)+".input_layernorm"] = mapped_to # gptneox
tensor_map["transformer.h."+str(i)+".ln_1"] = mapped_to # gpt2
tensor_map["transformer.blocks."+str(i)+".norm_1"] = mapped_to # mpt
tensor_map["transformer.h."+str(i)+".input_layernorm"] = mapped_to # falcon7b
tensor_map["transformer.h."+str(i)+".ln_mlp"] = mapped_to # falcon40b
tensor_map["model.layers."+str(i)+".input_layernorm"] = mapped_to # llama-hf
tensor_map["layers."+str(i)+".attention_norm"] = mapped_to # llama-pth
# Attention norm 2
mapped_to = MODEL_TENSOR_NAMES[arch].get(MODEL_TENSOR.ATTN_NORM_2, None)
mapped_to = mapped_to.format(bid=i) if mapped_to is not None else None
tensor_map["transformer.h."+str(i)+".ln_attn"] = mapped_to # falcon40b
# Attention query-key-value
mapped_to = MODEL_TENSOR_NAMES[arch].get(MODEL_TENSOR.ATTN_QKV, None)
mapped_to = mapped_to.format(bid=i) if mapped_to is not None else None
tensor_map["gpt_neox.layers."+str(i)+".attention.query_key_value"] = mapped_to # gptneox
tensor_map["transformer.h."+str(i)+".attn.c_attn"] = mapped_to # gpt2
tensor_map["transformer.blocks."+str(i)+".attn.Wqkv"] = mapped_to # mpt
tensor_map["transformer.h."+str(i)+".self_attention.query_key_value"] = mapped_to # falcon
# Attention query
mapped_to = MODEL_TENSOR_NAMES[arch].get(MODEL_TENSOR.ATTN_Q, None)
mapped_to = mapped_to.format(bid=i) if mapped_to is not None else None
tensor_map["model.layers."+str(i)+".self_attn.q_proj"] = mapped_to # llama-hf
tensor_map["layers."+str(i)+".attention.wq"] = mapped_to # llama-pth
# Attention key
mapped_to = MODEL_TENSOR_NAMES[arch].get(MODEL_TENSOR.ATTN_K, None)
mapped_to = mapped_to.format(bid=i) if mapped_to is not None else None
tensor_map["model.layers."+str(i)+".self_attn.k_proj"] = mapped_to # llama-hf
tensor_map["layers."+str(i)+".attention.wk"] = mapped_to # llama-pth
# Attention value
mapped_to = MODEL_TENSOR_NAMES[arch].get(MODEL_TENSOR.ATTN_V, None)
mapped_to = mapped_to.format(bid=i) if mapped_to is not None else None
tensor_map["model.layers."+str(i)+".self_attn.v_proj"] = mapped_to # llama-hf
tensor_map["layers."+str(i)+".attention.wv"] = mapped_to # llama-pth
# Attention output
mapped_to = MODEL_TENSOR_NAMES[arch].get(MODEL_TENSOR.ATTN_OUT, None)
mapped_to = mapped_to.format(bid=i) if mapped_to is not None else None
tensor_map["gpt_neox.layers."+str(i)+".attention.dense"] = mapped_to # gptneox
tensor_map["transformer.h."+str(i)+".attn.c_proj"] = mapped_to # gpt2
tensor_map["transformer.blocks."+str(i)+".attn.out_proj"] = mapped_to # mpt
tensor_map["transformer.h."+str(i)+".self_attention.dense"] = mapped_to # falcon
tensor_map["model.layers."+str(i)+".self_attn.o_proj"] = mapped_to # llama-hf
tensor_map["layers."+str(i)+".attention.wo"] = mapped_to # llama-pth
# Rotary embeddings
mapped_to = MODEL_TENSOR_NAMES[arch].get(MODEL_TENSOR.ATTN_ROT_EMBD, None)
mapped_to = mapped_to.format(bid=i) if mapped_to is not None else None
tensor_map["model.layers."+str(i)+".self_attn.rotary_emb.inv_freq"] = mapped_to # llama-hf
tensor_map["layers."+str(i)+".attention.inner_attention.rope.freqs"] = mapped_to # llama-pth
# Feed-forward norm
mapped_to = MODEL_TENSOR_NAMES[arch].get(MODEL_TENSOR.FFN_NORM, None)
mapped_to = mapped_to.format(bid=i) if mapped_to is not None else None
tensor_map["gpt_neox.layers."+str(i)+".post_attention_layernorm"] = mapped_to # gptneox
tensor_map["transformer.h."+str(i)+".ln_2"] = mapped_to # gpt2
tensor_map["transformer.blocks."+str(i)+".norm_2"] = mapped_to # mpt
tensor_map["model.layers."+str(i)+".post_attention_layernorm"] = mapped_to # llama-hf
tensor_map["layers."+str(i)+".ffn_norm"] = mapped_to # llama-pth
# Feed-forward up
mapped_to = MODEL_TENSOR_NAMES[arch].get(MODEL_TENSOR.FFN_UP, None)
mapped_to = mapped_to.format(bid=i) if mapped_to is not None else None
tensor_map["gpt_neox.layers."+str(i)+".mlp.dense_h_to_4h"] = mapped_to # gptneox
tensor_map["transformer.h."+str(i)+".mlp.c_fc"] = mapped_to # gpt2
tensor_map["transformer.blocks."+str(i)+".ffn.up_proj"] = mapped_to # mpt
tensor_map["transformer.h."+str(i)+".mlp.dense_h_to_4h"] = mapped_to # falcon
tensor_map["model.layers."+str(i)+".mlp.up_proj"] = mapped_to # llama-hf
tensor_map["layers."+str(i)+".feed_forward.w3"] = mapped_to # llama-pth
# Feed-forward gate
mapped_to = MODEL_TENSOR_NAMES[arch].get(MODEL_TENSOR.FFN_GATE, None)
mapped_to = mapped_to.format(bid=i) if mapped_to is not None else None
tensor_map["model.layers."+str(i)+".mlp.gate_proj"] = mapped_to # llama-hf
tensor_map["layers."+str(i)+".feed_forward.w1"] = mapped_to # llama-pth
# Feed-forward down
mapped_to = MODEL_TENSOR_NAMES[arch].get(MODEL_TENSOR.FFN_DOWN, None)
mapped_to = mapped_to.format(bid=i) if mapped_to is not None else None
tensor_map["gpt_neox.layers."+str(i)+".mlp.dense_4h_to_h"] = mapped_to # gptneox
tensor_map["transformer.h."+str(i)+".mlp.c_proj"] = mapped_to # gpt2
tensor_map["transformer.blocks."+str(i)+".ffn.down_proj"] = mapped_to # mpt
tensor_map["transformer.h."+str(i)+".mlp.dense_4h_to_h"] = mapped_to # falcon
tensor_map["model.layers."+str(i)+".mlp.down_proj"] = mapped_to # llama-hf
tensor_map["layers."+str(i)+".feed_forward.w2"] = mapped_to # llama-pth
return tensor_map
class TokenType(IntEnum):
NORMAL = 1
UNKNOWN = 2
CONTROL = 3
USER_DEFINED = 4
UNUSED = 5
BYTE = 6
#
# implementation
#
class GGMLQuantizationType(IntEnum):
F32 = 0
F16 = 1
Q4_0 = 2
Q4_1 = 3
Q5_0 = 6
Q5_1 = 7
Q8_0 = 8
Q8_1 = 9
Q2_K = 10
Q3_K = 11
Q4_K = 12
Q5_K = 13
Q6_K = 14
Q8_K = 15
class GGUFValueType(IntEnum):
UINT8 = 0
INT8 = 1
UINT16 = 2
INT16 = 3
UINT32 = 4
INT32 = 5
FLOAT32 = 6
BOOL = 7
STRING = 8
ARRAY = 9
@staticmethod
def get_type(val):
if isinstance(val, str) or isinstance(val, bytes) or isinstance(val, bytearray):
return GGUFValueType.STRING
elif isinstance(val, list):
return GGUFValueType.ARRAY
elif isinstance(val, float):
return GGUFValueType.FLOAT32
elif isinstance(val, bool):
return GGUFValueType.BOOL
elif isinstance(val, int):
return GGUFValueType.INT32
else:
print("Unknown type: "+str(type(val)))
sys.exit()
class GGUFWriter:
def __init__(self, path: str, arch: str, use_temp_file = True):
self.fout = open(path, "wb")
self.arch = arch
self.offset_tensor = 0
self.data_alignment = GGUF_DEFAULT_ALIGNMENT
self.kv_data = b""
self.kv_data_count = 0
self.ti_data = b""
self.ti_data_count = 0
self.add_architecture()
self.use_temp_file = use_temp_file
self.tensors = []
def write_header_to_file(self):
self.fout.write(struct.pack("<I", GGUF_MAGIC))
self.fout.write(struct.pack("<I", GGUF_VERSION))
self.fout.write(struct.pack("<I", self.ti_data_count))
self.fout.write(struct.pack("<I", self.kv_data_count))
self.flush()
# print("tensors " + str(self.ti_data_count) + " kv " + str(self.kv_data_count))
def write_kv_data_to_file(self):
self.fout.write(self.kv_data)
self.flush()
def write_ti_data_to_file(self):
self.fout.write(self.ti_data)
self.flush()
def add_key(self, key: str):
self.add_val(key, GGUFValueType.STRING, add_vtype=False)
def add_uint8(self, key: str, val: int):
self.add_key(key)
self.add_val(val, GGUFValueType.UINT8)
def add_int8(self, key: str, val: int):
self.add_key(key)
self.add_val(val, GGUFValueType.INT8)
def add_uint16(self, key: str, val: int):
self.add_key(key)
self.add_val(val, GGUFValueType.UINT16)
def add_int16(self, key: str, val: int):
self.add_key(key)
self.add_val(val, GGUFValueType.INT16)
def add_uint32(self, key: str, val: int):
self.add_key(key)
self.add_val(val, GGUFValueType.UINT32)
def add_int32(self, key: str, val: int):
self.add_key(key)
self.add_val(val, GGUFValueType.INT32)
def add_float32(self, key: str, val: float):
self.add_key(key)
self.add_val(val, GGUFValueType.FLOAT32)
def add_bool(self, key: str, val: bool):
self.add_key(key)
self.add_val(val, GGUFValueType.BOOL)
def add_string(self, key: str, val: str):
if len(val) == 0:
return
self.add_key(key)
self.add_val(val, GGUFValueType.STRING)
def add_array(self, key: str, val: list):
if not isinstance(val, list):
raise ValueError("Value must be a list for array type")
self.add_key(key)
self.add_val(val, GGUFValueType.ARRAY)
def add_val(self: str, val: Any, vtype: GGUFValueType = None, add_vtype: bool = True):
if vtype is None:
vtype = GGUFValueType.get_type(val)
if add_vtype:
self.kv_data += struct.pack("<I", vtype)
self.kv_data_count += 1
if vtype == GGUFValueType.UINT8:
self.kv_data += struct.pack("<B", val)
elif vtype == GGUFValueType.INT8:
self.kv_data += struct.pack("<b", val)
elif vtype == GGUFValueType.UINT16:
self.kv_data += struct.pack("<H", val)
elif vtype == GGUFValueType.INT16:
self.kv_data += struct.pack("<h", val)
elif vtype == GGUFValueType.UINT32:
self.kv_data += struct.pack("<I", val)
elif vtype == GGUFValueType.INT32:
self.kv_data += struct.pack("<i", val)
elif vtype == GGUFValueType.FLOAT32:
self.kv_data += struct.pack("<f", val)
elif vtype == GGUFValueType.BOOL:
self.kv_data += struct.pack("?", val)
elif vtype == GGUFValueType.STRING:
encoded_val = val.encode("utf8") if isinstance(val, str) else val
self.kv_data += struct.pack("<I", len(encoded_val))
self.kv_data += encoded_val
elif vtype == GGUFValueType.ARRAY:
ltype = set([GGUFValueType.get_type(item) for item in val])
assert len(ltype) == 1, "All items in a GGUF array should be of the same type"
self.kv_data += struct.pack("<I", list(ltype)[0])
self.kv_data += struct.pack("<I", len(val))
for item in val:
self.add_val(item, add_vtype=False)
else:
raise ValueError("Invalid GGUF metadata value type")
@staticmethod
def ggml_pad(x: int, n: int) -> int:
return ((x + n - 1) // n) * n
def add_tensor_info(self, name: str, tensor_shape: np.ndarray, tensor_dtype: np.dtype, tensor_nbytes: int, raw_dtype: Optional[GGMLQuantizationType] = None):
assert raw_dtype is not None or tensor_dtype in (np.float32, np.float16), "Only F32 and F16 tensors are supported for now"
encoded_name = name.encode("utf8")
self.ti_data += struct.pack("<I", len(encoded_name))
self.ti_data += encoded_name
n_dims = len(tensor_shape)
self.ti_data += struct.pack("<I", n_dims)
for i in range(n_dims):
self.ti_data += struct.pack("<I", tensor_shape[n_dims - 1 - i])
if raw_dtype is None:
dtype = GGMLQuantizationType.F32 if tensor_dtype == np.float32 else GGMLQuantizationType.F16
else:
dtype = raw_dtype
self.ti_data += struct.pack("<I", dtype)
self.ti_data += struct.pack("<Q", self.offset_tensor)
self.offset_tensor += GGUFWriter.ggml_pad(tensor_nbytes, self.data_alignment)
self.ti_data_count += 1
def add_tensor(self, name: str, tensor: np.ndarray, raw_shape: Optional[np.ndarray] = None, raw_dtype: Optional[GGMLQuantizationType] = None):
if self.use_temp_file and not hasattr(self, "temp_file"):
self.temp_file = tempfile.SpooledTemporaryFile(mode="w+b", max_size=256*1024*1024)
self.temp_file.seek(0)
self.add_tensor_info(name, raw_shape if raw_shape is not None else tensor.shape, tensor.dtype, tensor.nbytes, raw_dtype = raw_dtype)
pad = GGUFWriter.ggml_pad(tensor.nbytes, self.data_alignment) - tensor.nbytes
if not self.use_temp_file:
self.tensors.append((tensor, pad))
return
tensor.tofile(self.temp_file)
if pad != 0:
self.temp_file.write(bytes([0] * pad))
def write_tensor_data(self, tensor: np.ndarray):
pad = GGUFWriter.ggml_pad(self.fout.tell(), self.data_alignment) - self.fout.tell()
if pad != 0:
self.fout.write(bytes([0] * pad))
tensor.tofile(self.fout)
pad = GGUFWriter.ggml_pad(tensor.nbytes, self.data_alignment) - tensor.nbytes
if pad != 0:
self.fout.write(bytes([0] * pad))
def write_tensors_to_file(self):
self.write_ti_data_to_file()
pad = GGUFWriter.ggml_pad(self.fout.tell(), self.data_alignment) - self.fout.tell()
if pad != 0:
self.fout.write(bytes([0] * pad))
if not self.use_temp_file:
for (currtensor, currpad) in self.tensors:
currtensor.tofile(self.fout)
if currpad != 0:
self.fout.write(bytes([0] * currpad))
return
self.temp_file.seek(0)
shutil.copyfileobj(self.temp_file, self.fout)
self.flush()
self.temp_file.close()
def flush(self):
self.fout.flush()
def close(self):
self.fout.close()
def add_architecture(self):
self.add_string(KEY_GENERAL_ARCHITECTURE, self.arch)
def add_author(self, author: str):
self.add_string(KEY_GENERAL_AUTHOR, author)
def add_tensor_data_layout(self, layout: str):
self.add_string(KEY_LLM_TENSOR_DATA_LAYOUT.format(arch=self.arch), layout)
def add_url(self, url: str):
self.add_string(KEY_GENERAL_URL, url)
def add_description(self, description: str):
self.add_string(KEY_GENERAL_DESCRIPTION, description)
def add_source_url(self, url: str):
self.add_string(KEY_GENERAL_SOURCE_URL, url)
def add_source_hf_repo(self, repo: str):
self.add_string(KEY_GENERAL_SOURCE_HF_REPO, repo)
def add_name(self, name: str):
self.add_string(KEY_GENERAL_NAME, name)
def add_quantization_version(self, quantization_version: GGMLQuantizationType):
self.add_uint32(
KEY_GENERAL_QUANTIZATION_VERSION, quantization_version)
def add_custom_alignment(self, alignment: int):
self.data_alignment = alignment
self.add_uint32(KEY_GENERAL_ALIGNMENT, alignment)
def add_context_length(self, length: int):
self.add_uint32(
KEY_LLM_CONTEXT_LENGTH.format(arch=self.arch), length)
def add_embedding_length(self, length: int):
self.add_uint32(
KEY_LLM_EMBEDDING_LENGTH.format(arch=self.arch), length)
def add_block_count(self, length: int):
self.add_uint32(
KEY_LLM_BLOCK_COUNT.format(arch=self.arch), length)
def add_feed_forward_length(self, length: int):
self.add_uint32(
KEY_LLM_FEED_FORWARD_LENGTH.format(arch=self.arch), length)
def add_parallel_residual(self, use: bool):
self.add_bool(
KEY_LLM_USE_PARALLEL_RESIDUAL.format(arch=self.arch), use)
def add_tensor_data_layout(self, layout: str):
self.add_string(
KEY_LLM_TENSOR_DATA_LAYOUT.format(arch=self.arch), layout)
def add_head_count(self, count: int):
self.add_uint32(
KEY_ATTENTION_HEAD_COUNT.format(arch=self.arch), count)
def add_head_count_kv(self, count: int):
self.add_uint32(
KEY_ATTENTION_HEAD_COUNT_KV.format(arch=self.arch), count)
def add_max_alibi_bias(self, bias: float):
self.add_float32(
KEY_ATTENTION_MAX_ALIBI_BIAS.format(arch=self.arch), bias)
def add_clamp_kqv(self, value: float):
self.add_float32(
KEY_ATTENTION_CLAMP_KQV.format(arch=self.arch), value)
def add_layer_norm_eps(self, value: float):
self.add_float32(
KEY_ATTENTION_LAYERNORM_EPS.format(arch=self.arch), value)
def add_layer_norm_rms_eps(self, value: float):
self.add_float32(
KEY_ATTENTION_LAYERNORM_RMS_EPS.format(arch=self.arch), value)
def add_rope_dimension_count(self, count: int):
self.add_uint32(
KEY_ROPE_DIMENSION_COUNT.format(arch=self.arch), count)
def add_rope_scale_linear(self, value: float):
self.add_float32(KEY_ROPE_SCALE_LINEAR.format(arch=self.arch), value)
def add_tokenizer_model(self, model: str):
self.add_string(KEY_TOKENIZER_MODEL, model)
def add_token_list(self, tokens: List):
self.add_array(KEY_TOKENIZER_LIST, tokens)
def add_token_merges(self, merges: List):
self.add_array(KEY_TOKENIZER_MERGES, merges)
def add_token_types(self, types: List[int]):
self.add_array(KEY_TOKENIZER_TOKEN_TYPE, types)
def add_token_scores(self, scores: List[float]):
self.add_array(KEY_TOKENIZER_SCORES, scores)
def add_bos_token_id(self, id: int):
self.add_uint32(KEY_TOKENIZER_BOS_ID, id)
def add_eos_token_id(self, id: int):
self.add_uint32(KEY_TOKENIZER_EOS_ID, id)
def add_unk_token_id(self, id: int):
self.add_uint32(KEY_TOKENIZER_UNK_ID, id)
def add_sep_token_id(self, id: int):
self.add_uint32(KEY_TOKENIZER_SEP_ID, id)
def add_pad_token_id(self, id: int):
self.add_uint32(KEY_TOKENIZER_PAD_ID, id)
# Example usage:
if __name__ == "__main__":
# Example usage with a file
gguf_writer = GGUFWriter("example.gguf", "llama")
gguf_writer.add_architecture()
gguf_writer.add_block_count(12)
gguf_writer.add_uint32("answer", 42) # Write a 32-bit integer
gguf_writer.add_float32("answer_in_float", 42.0) # Write a 32-bit float
gguf_writer.add_custom_alignment(64)
tensor1 = np.ones((32,), dtype=np.float32) * 100.0
tensor2 = np.ones((64,), dtype=np.float32) * 101.0
tensor3 = np.ones((96,), dtype=np.float32) * 102.0
gguf_writer.add_tensor("tensor1", tensor1)
gguf_writer.add_tensor("tensor2", tensor2)
gguf_writer.add_tensor("tensor3", tensor3)
gguf_writer.write_header_to_file()
gguf_writer.write_kv_data_to_file()
gguf_writer.write_tensors_to_file()
gguf_writer.close()

View File

@ -1,553 +0,0 @@
// Internal header to be included only by llama.cpp.
// Contains wrappers around OS interfaces.
#ifndef LLAMA_UTIL_H
#define LLAMA_UTIL_H
#include <cstdio>
#include <cstdint>
#include <cerrno>
#include <cstring>
#include <cstdarg>
#include <cstdlib>
#include <climits>
#include <string>
#include <vector>
#include <stdexcept>
#ifdef __has_include
#if __has_include(<unistd.h>)
#include <unistd.h>
#if defined(_POSIX_MAPPED_FILES)
#include <sys/mman.h>
#endif
#if defined(_POSIX_MEMLOCK_RANGE)
#include <sys/resource.h>
#endif
#endif
#endif
#if defined(_WIN32)
#define WIN32_LEAN_AND_MEAN
#ifndef NOMINMAX
#define NOMINMAX
#endif
#include <windows.h>
#include <io.h>
#include <stdio.h> // for _fseeki64
#endif
#define LLAMA_ASSERT(x) \
do { \
if (!(x)) { \
fprintf(stderr, "LLAMA_ASSERT: %s:%d: %s\n", __FILE__, __LINE__, #x); \
abort(); \
} \
} while (0)
#ifdef __GNUC__
#ifdef __MINGW32__
__attribute__((format(gnu_printf, 1, 2)))
#else
__attribute__((format(printf, 1, 2)))
#endif
#endif
static std::string format(const char * fmt, ...) {
va_list ap, ap2;
va_start(ap, fmt);
va_copy(ap2, ap);
int size = vsnprintf(NULL, 0, fmt, ap);
LLAMA_ASSERT(size >= 0 && size < INT_MAX);
std::vector<char> buf(size + 1);
int size2 = vsnprintf(buf.data(), size + 1, fmt, ap2);
LLAMA_ASSERT(size2 == size);
va_end(ap2);
va_end(ap);
return std::string(buf.data(), size);
}
struct llama_file {
// use FILE * so we don't have to re-open the file to mmap
FILE * fp;
size_t size;
llama_file(const char * fname, const char * mode) {
fp = std::fopen(fname, mode);
if (fp == NULL) {
throw std::runtime_error(format("failed to open %s: %s", fname, strerror(errno)));
}
seek(0, SEEK_END);
size = tell();
seek(0, SEEK_SET);
}
size_t tell() const {
#ifdef _WIN32
__int64 ret = _ftelli64(fp);
#else
long ret = std::ftell(fp);
#endif
LLAMA_ASSERT(ret != -1); // this really shouldn't fail
return (size_t) ret;
}
void seek(size_t offset, int whence) {
#ifdef _WIN32
int ret = _fseeki64(fp, (__int64) offset, whence);
#else
int ret = std::fseek(fp, (long) offset, whence);
#endif
LLAMA_ASSERT(ret == 0); // same
}
void read_raw(void * ptr, size_t len) const {
if (len == 0) {
return;
}
errno = 0;
std::size_t ret = std::fread(ptr, len, 1, fp);
if (ferror(fp)) {
throw std::runtime_error(format("read error: %s", strerror(errno)));
}
if (ret != 1) {
throw std::runtime_error(std::string("unexpectedly reached end of file"));
}
}
std::uint32_t read_u32() {
std::uint32_t ret;
read_raw(&ret, sizeof(ret));
return ret;
}
std::string read_string(std::uint32_t len) {
std::vector<char> chars(len);
read_raw(chars.data(), len);
return std::string(chars.data(), len);
}
void write_raw(const void * ptr, size_t len) const {
if (len == 0) {
return;
}
errno = 0;
size_t ret = std::fwrite(ptr, len, 1, fp);
if (ret != 1) {
throw std::runtime_error(format("write error: %s", strerror(errno)));
}
}
void write_u32(std::uint32_t val) {
write_raw(&val, sizeof(val));
}
~llama_file() {
if (fp) {
std::fclose(fp);
}
}
};
// llama_context_data
struct llama_data_context {
virtual void write(const void * src, size_t size) = 0;
virtual size_t get_size_written() = 0;
virtual ~llama_data_context() = default;
};
struct llama_data_buffer_context : llama_data_context {
uint8_t* ptr;
size_t size_written = 0;
llama_data_buffer_context(uint8_t * p) : ptr(p) {}
void write(const void * src, size_t size) override {
memcpy(ptr, src, size);
ptr += size;
size_written += size;
}
size_t get_size_written() override {
return size_written;
}
};
struct llama_data_file_context : llama_data_context {
llama_file* file;
size_t size_written = 0;
llama_data_file_context(llama_file * f) : file(f) {}
void write(const void * src, size_t size) override {
file->write_raw(src, size);
size_written += size;
}
size_t get_size_written() override {
return size_written;
}
};
#if defined(_WIN32)
static std::string llama_format_win_err(DWORD err) {
LPSTR buf;
size_t size = FormatMessageA(FORMAT_MESSAGE_ALLOCATE_BUFFER | FORMAT_MESSAGE_FROM_SYSTEM | FORMAT_MESSAGE_IGNORE_INSERTS,
NULL, err, MAKELANGID(LANG_NEUTRAL, SUBLANG_DEFAULT), (LPSTR)&buf, 0, NULL);
if (!size) {
return "FormatMessageA failed";
}
std::string ret(buf, size);
LocalFree(buf);
return ret;
}
#endif
struct llama_mmap {
void * addr;
size_t size;
llama_mmap(const llama_mmap &) = delete;
#ifdef _POSIX_MAPPED_FILES
static constexpr bool SUPPORTED = true;
llama_mmap(struct llama_file * file, size_t prefetch = (size_t) -1 /* -1 = max value */, bool numa = false) {
size = file->size;
int fd = fileno(file->fp);
int flags = MAP_SHARED;
// prefetch/readahead impairs performance on NUMA systems
if (numa) { prefetch = 0; }
#ifdef __linux__
if (prefetch >= file->size) { flags |= MAP_POPULATE; }
#endif
addr = mmap(NULL, file->size, PROT_READ, flags, fd, 0);
if (addr == MAP_FAILED) {
throw std::runtime_error(format("mmap failed: %s", strerror(errno)));
}
if (prefetch > 0) {
// Advise the kernel to preload the mapped memory
if (madvise(addr, std::min(file->size, prefetch), MADV_WILLNEED)) {
fprintf(stderr, "warning: madvise(.., MADV_WILLNEED) failed: %s\n",
strerror(errno));
}
}
if (numa) {
// advise the kernel not to use readahead
// (because the next page might not belong on the same node)
if (madvise(addr, file->size, MADV_RANDOM)) {
fprintf(stderr, "warning: madvise(.., MADV_RANDOM) failed: %s\n",
strerror(errno));
}
}
}
~llama_mmap() {
munmap(addr, size);
}
#elif defined(_WIN32)
static constexpr bool SUPPORTED = true;
llama_mmap(struct llama_file * file, bool prefetch = true, bool numa = false) {
(void) numa;
size = file->size;
HANDLE hFile = (HANDLE) _get_osfhandle(_fileno(file->fp));
HANDLE hMapping = CreateFileMappingA(hFile, NULL, PAGE_READONLY, 0, 0, NULL);
DWORD error = GetLastError();
if (hMapping == NULL) {
throw std::runtime_error(format("CreateFileMappingA failed: %s", llama_format_win_err(error).c_str()));
}
addr = MapViewOfFile(hMapping, FILE_MAP_READ, 0, 0, 0);
error = GetLastError();
CloseHandle(hMapping);
if (addr == NULL) {
throw std::runtime_error(format("MapViewOfFile failed: %s", llama_format_win_err(error).c_str()));
}
if (prefetch) {
// The PrefetchVirtualMemory API is only present on Windows 8 and above, so we
// will dynamically load it using GetProcAddress.
BOOL (WINAPI *pPrefetchVirtualMemory) (HANDLE, ULONG_PTR, PWIN32_MEMORY_RANGE_ENTRY, ULONG);
HMODULE hKernel32;
// This call is guaranteed to succeed.
hKernel32 = GetModuleHandleW(L"kernel32.dll");
// This call may fail if on a pre-Win8 system.
pPrefetchVirtualMemory = reinterpret_cast<decltype(pPrefetchVirtualMemory)> (GetProcAddress(hKernel32, "PrefetchVirtualMemory"));
if (pPrefetchVirtualMemory) {
// Advise the kernel to preload the mapped memory.
WIN32_MEMORY_RANGE_ENTRY range;
range.VirtualAddress = addr;
range.NumberOfBytes = (SIZE_T)size;
if (!pPrefetchVirtualMemory(GetCurrentProcess(), 1, &range, 0)) {
fprintf(stderr, "warning: PrefetchVirtualMemory failed: %s\n",
llama_format_win_err(GetLastError()).c_str());
}
}
}
}
~llama_mmap() {
if (!UnmapViewOfFile(addr)) {
fprintf(stderr, "warning: UnmapViewOfFile failed: %s\n",
llama_format_win_err(GetLastError()).c_str());
}
}
#else
static constexpr bool SUPPORTED = false;
llama_mmap(struct llama_file *, bool prefetch = true, bool numa = false) {
(void) prefetch;
(void) numa;
throw std::runtime_error(std::string("mmap not supported"));
}
#endif
};
// Represents some region of memory being locked using mlock or VirtualLock;
// will automatically unlock on destruction.
struct llama_mlock {
void * addr = NULL;
size_t size = 0;
bool failed_already = false;
llama_mlock() {}
llama_mlock(const llama_mlock &) = delete;
~llama_mlock() {
if (size) {
raw_unlock(addr, size);
}
}
void init(void * ptr) {
LLAMA_ASSERT(addr == NULL && size == 0);
addr = ptr;
}
void grow_to(size_t target_size) {
LLAMA_ASSERT(addr);
if (failed_already) {
return;
}
size_t granularity = lock_granularity();
target_size = (target_size + granularity - 1) & ~(granularity - 1);
if (target_size > size) {
if (raw_lock((uint8_t *) addr + size, target_size - size)) {
size = target_size;
} else {
failed_already = true;
}
}
}
#ifdef _POSIX_MEMLOCK_RANGE
static constexpr bool SUPPORTED = true;
size_t lock_granularity() {
return (size_t) sysconf(_SC_PAGESIZE);
}
#ifdef __APPLE__
#define MLOCK_SUGGESTION \
"Try increasing the sysctl values 'vm.user_wire_limit' and 'vm.global_user_wire_limit' and/or " \
"decreasing 'vm.global_no_user_wire_amount'. Also try increasing RLIMIT_MLOCK (ulimit -l).\n"
#else
#define MLOCK_SUGGESTION \
"Try increasing RLIMIT_MLOCK ('ulimit -l' as root).\n"
#endif
bool raw_lock(const void * addr, size_t size) {
if (!mlock(addr, size)) {
return true;
} else {
char* errmsg = std::strerror(errno);
bool suggest = (errno == ENOMEM);
// Check if the resource limit is fine after all
struct rlimit lock_limit;
if (suggest && getrlimit(RLIMIT_MEMLOCK, &lock_limit))
suggest = false;
if (suggest && (lock_limit.rlim_max > lock_limit.rlim_cur + size))
suggest = false;
fprintf(stderr, "warning: failed to mlock %zu-byte buffer (after previously locking %zu bytes): %s\n%s",
size, this->size, errmsg, suggest ? MLOCK_SUGGESTION : "");
return false;
}
}
#undef MLOCK_SUGGESTION
void raw_unlock(void * addr, size_t size) {
if (munlock(addr, size)) {
fprintf(stderr, "warning: failed to munlock buffer: %s\n", std::strerror(errno));
}
}
#elif defined(_WIN32)
static constexpr bool SUPPORTED = true;
size_t lock_granularity() {
SYSTEM_INFO si;
GetSystemInfo(&si);
return (size_t) si.dwPageSize;
}
bool raw_lock(void * ptr, size_t len) {
for (int tries = 1; ; tries++) {
if (VirtualLock(ptr, len)) {
return true;
}
if (tries == 2) {
fprintf(stderr, "warning: failed to VirtualLock %zu-byte buffer (after previously locking %zu bytes): %s\n",
len, size, llama_format_win_err(GetLastError()).c_str());
return false;
}
// It failed but this was only the first try; increase the working
// set size and try again.
SIZE_T min_ws_size, max_ws_size;
if (!GetProcessWorkingSetSize(GetCurrentProcess(), &min_ws_size, &max_ws_size)) {
fprintf(stderr, "warning: GetProcessWorkingSetSize failed: %s\n",
llama_format_win_err(GetLastError()).c_str());
return false;
}
// Per MSDN: "The maximum number of pages that a process can lock
// is equal to the number of pages in its minimum working set minus
// a small overhead."
// Hopefully a megabyte is enough overhead:
size_t increment = len + 1048576;
// The minimum must be <= the maximum, so we need to increase both:
min_ws_size += increment;
max_ws_size += increment;
if (!SetProcessWorkingSetSize(GetCurrentProcess(), min_ws_size, max_ws_size)) {
fprintf(stderr, "warning: SetProcessWorkingSetSize failed: %s\n",
llama_format_win_err(GetLastError()).c_str());
return false;
}
}
}
void raw_unlock(void * ptr, size_t len) {
if (!VirtualUnlock(ptr, len)) {
fprintf(stderr, "warning: failed to VirtualUnlock buffer: %s\n",
llama_format_win_err(GetLastError()).c_str());
}
}
#else
static constexpr bool SUPPORTED = false;
size_t lock_granularity() {
return (size_t) 65536;
}
bool raw_lock(const void * addr, size_t len) {
fprintf(stderr, "warning: mlock not supported on this system\n");
return false;
}
void raw_unlock(const void * addr, size_t len) {}
#endif
};
// Replacement for std::vector<uint8_t> that doesn't require zero-initialization.
struct llama_buffer {
uint8_t * addr = NULL;
size_t size = 0;
llama_buffer() = default;
void resize(size_t len) {
#ifdef GGML_USE_METAL
free(addr);
int result = posix_memalign((void **) &addr, getpagesize(), len);
if (result == 0) {
memset(addr, 0, len);
}
else {
addr = NULL;
}
#else
delete[] addr;
addr = new uint8_t[len];
#endif
size = len;
}
~llama_buffer() {
#ifdef GGML_USE_METAL
free(addr);
#else
delete[] addr;
#endif
addr = NULL;
}
// disable copy and move
llama_buffer(const llama_buffer&) = delete;
llama_buffer(llama_buffer&&) = delete;
llama_buffer& operator=(const llama_buffer&) = delete;
llama_buffer& operator=(llama_buffer&&) = delete;
};
#ifdef GGML_USE_CUBLAS
#include "ggml-cuda.h"
struct llama_ctx_buffer {
uint8_t * addr = NULL;
bool is_cuda;
size_t size = 0;
llama_ctx_buffer() = default;
void resize(size_t size) {
free();
addr = (uint8_t *) ggml_cuda_host_malloc(size);
if (addr) {
is_cuda = true;
}
else {
// fall back to pageable memory
addr = new uint8_t[size];
is_cuda = false;
}
this->size = size;
}
void free() {
if (addr) {
if (is_cuda) {
ggml_cuda_host_free(addr);
}
else {
delete[] addr;
}
}
addr = NULL;
}
~llama_ctx_buffer() {
free();
}
// disable copy and move
llama_ctx_buffer(const llama_ctx_buffer&) = delete;
llama_ctx_buffer(llama_ctx_buffer&&) = delete;
llama_ctx_buffer& operator=(const llama_ctx_buffer&) = delete;
llama_ctx_buffer& operator=(llama_ctx_buffer&&) = delete;
};
#else
typedef llama_buffer llama_ctx_buffer;
#endif
#endif

2980
llama.cpp

File diff suppressed because it is too large Load Diff

255
llama.h
View File

@ -34,29 +34,18 @@
# define DEPRECATED(func, hint) func # define DEPRECATED(func, hint) func
#endif #endif
#define LLAMA_FILE_MAGIC_GGJT 0x67676a74u // 'ggjt' #define LLAMA_DEFAULT_SEED 0xFFFFFFFF
#define LLAMA_FILE_MAGIC_GGLA 0x67676c61u // 'ggla'
#define LLAMA_FILE_MAGIC_GGMF 0x67676d66u // 'ggmf'
#define LLAMA_FILE_MAGIC_GGML 0x67676d6cu // 'ggml'
#define LLAMA_FILE_MAGIC_GGSN 0x6767736eu // 'ggsn' #define LLAMA_FILE_MAGIC_GGSN 0x6767736eu // 'ggsn'
#define LLAMA_FILE_VERSION 3
#define LLAMA_FILE_MAGIC LLAMA_FILE_MAGIC_GGJT
#define LLAMA_FILE_MAGIC_UNVERSIONED LLAMA_FILE_MAGIC_GGML
#define LLAMA_SESSION_MAGIC LLAMA_FILE_MAGIC_GGSN #define LLAMA_SESSION_MAGIC LLAMA_FILE_MAGIC_GGSN
#define LLAMA_SESSION_VERSION 1 #define LLAMA_SESSION_VERSION 1
#define LLAMA_DEFAULT_SEED 0xFFFFFFFF
#if defined(GGML_USE_CUBLAS) || defined(GGML_USE_CLBLAST) || defined(GGML_USE_METAL) #if defined(GGML_USE_CUBLAS) || defined(GGML_USE_CLBLAST) || defined(GGML_USE_METAL)
// Defined when llama.cpp is compiled with support for offloading model layers to GPU. // Defined when llama.cpp is compiled with support for offloading model layers to GPU.
#define LLAMA_SUPPORTS_GPU_OFFLOAD #define LLAMA_SUPPORTS_GPU_OFFLOAD
#endif #endif
#ifndef LLAMA_DEFAULT_RMS_EPS
#define LLAMA_DEFAULT_RMS_EPS 5e-6f
#endif
#ifdef __cplusplus #ifdef __cplusplus
extern "C" { extern "C" {
#endif #endif
@ -72,6 +61,50 @@ extern "C" {
typedef int llama_token; typedef int llama_token;
enum llama_log_level {
LLAMA_LOG_LEVEL_ERROR = 2,
LLAMA_LOG_LEVEL_WARN = 3,
LLAMA_LOG_LEVEL_INFO = 4
};
enum llama_vocab_type {
LLAMA_VOCAB_TYPE_SPM = 0, // SentencePiece
LLAMA_VOCAB_TYPE_BPE = 1, // Byte Pair Encoding
};
enum llama_token_type {
LLAMA_TOKEN_TYPE_UNDEFINED = 0,
LLAMA_TOKEN_TYPE_NORMAL = 1,
LLAMA_TOKEN_TYPE_UNKNOWN = 2,
LLAMA_TOKEN_TYPE_CONTROL = 3,
LLAMA_TOKEN_TYPE_USER_DEFINED = 4,
LLAMA_TOKEN_TYPE_UNUSED = 5,
LLAMA_TOKEN_TYPE_BYTE = 6,
};
// model file types
enum llama_ftype {
LLAMA_FTYPE_ALL_F32 = 0,
LLAMA_FTYPE_MOSTLY_F16 = 1, // except 1d tensors
LLAMA_FTYPE_MOSTLY_Q4_0 = 2, // except 1d tensors
LLAMA_FTYPE_MOSTLY_Q4_1 = 3, // except 1d tensors
LLAMA_FTYPE_MOSTLY_Q4_1_SOME_F16 = 4, // tok_embeddings.weight and output.weight are F16
// LLAMA_FTYPE_MOSTLY_Q4_2 = 5, // support has been removed
// LLAMA_FTYPE_MOSTLY_Q4_3 = 6, // support has been removed
LLAMA_FTYPE_MOSTLY_Q8_0 = 7, // except 1d tensors
LLAMA_FTYPE_MOSTLY_Q5_0 = 8, // except 1d tensors
LLAMA_FTYPE_MOSTLY_Q5_1 = 9, // except 1d tensors
LLAMA_FTYPE_MOSTLY_Q2_K = 10,// except 1d tensors
LLAMA_FTYPE_MOSTLY_Q3_K_S = 11,// except 1d tensors
LLAMA_FTYPE_MOSTLY_Q3_K_M = 12,// except 1d tensors
LLAMA_FTYPE_MOSTLY_Q3_K_L = 13,// except 1d tensors
LLAMA_FTYPE_MOSTLY_Q4_K_S = 14,// except 1d tensors
LLAMA_FTYPE_MOSTLY_Q4_K_M = 15,// except 1d tensors
LLAMA_FTYPE_MOSTLY_Q5_K_S = 16,// except 1d tensors
LLAMA_FTYPE_MOSTLY_Q5_K_M = 17,// except 1d tensors
LLAMA_FTYPE_MOSTLY_Q6_K = 18,// except 1d tensors
};
typedef struct llama_token_data { typedef struct llama_token_data {
llama_token id; // token id llama_token id; // token id
float logit; // log-odds of the token float logit; // log-odds of the token
@ -86,25 +119,10 @@ extern "C" {
typedef void (*llama_progress_callback)(float progress, void *ctx); typedef void (*llama_progress_callback)(float progress, void *ctx);
enum llama_log_level {
LLAMA_LOG_LEVEL_ERROR = 2,
LLAMA_LOG_LEVEL_WARN = 3,
LLAMA_LOG_LEVEL_INFO = 4
};
// Signature for logging events
// Note that text includes the new line character at the end for most events.
// If your logging mechanism cannot handle that, check if the last character is '\n' and strip it
// if it exists.
// It might not exist for progress report where '.' is output repeatedly.
typedef void (*llama_log_callback)(enum llama_log_level level, const char * text, void * user_data);
struct llama_context_params { struct llama_context_params {
uint32_t seed; // RNG seed, -1 for random uint32_t seed; // RNG seed, -1 for random
int32_t n_ctx; // text context int32_t n_ctx; // text context
int32_t n_batch; // prompt processing batch size int32_t n_batch; // prompt processing batch size
int32_t n_gqa; // grouped-query attention (TEMP - will be moved to model hparams)
float rms_norm_eps; // rms norm epsilon (TEMP - will be moved to model hparams)
int32_t n_gpu_layers; // number of layers to store in VRAM int32_t n_gpu_layers; // number of layers to store in VRAM
int32_t main_gpu; // the GPU that is used for scratch and small tensors int32_t main_gpu; // the GPU that is used for scratch and small tensors
@ -129,28 +147,13 @@ extern "C" {
bool use_mlock; // force system to keep model in RAM bool use_mlock; // force system to keep model in RAM
bool embedding; // embedding mode only bool embedding; // embedding mode only
}; };
// model file types
enum llama_ftype { // Signature for logging events
LLAMA_FTYPE_ALL_F32 = 0, // Note that text includes the new line character at the end for most events.
LLAMA_FTYPE_MOSTLY_F16 = 1, // except 1d tensors // If your logging mechanism cannot handle that, check if the last character is '\n' and strip it
LLAMA_FTYPE_MOSTLY_Q4_0 = 2, // except 1d tensors // if it exists.
LLAMA_FTYPE_MOSTLY_Q4_1 = 3, // except 1d tensors // It might not exist for progress report where '.' is output repeatedly.
LLAMA_FTYPE_MOSTLY_Q4_1_SOME_F16 = 4, // tok_embeddings.weight and output.weight are F16 typedef void (*llama_log_callback)(enum llama_log_level level, const char * text, void * user_data);
// LLAMA_FTYPE_MOSTLY_Q4_2 = 5, // support has been removed
// LLAMA_FTYPE_MOSTLY_Q4_3 = 6, // support has been removed
LLAMA_FTYPE_MOSTLY_Q8_0 = 7, // except 1d tensors
LLAMA_FTYPE_MOSTLY_Q5_0 = 8, // except 1d tensors
LLAMA_FTYPE_MOSTLY_Q5_1 = 9, // except 1d tensors
LLAMA_FTYPE_MOSTLY_Q2_K = 10,// except 1d tensors
LLAMA_FTYPE_MOSTLY_Q3_K_S = 11,// except 1d tensors
LLAMA_FTYPE_MOSTLY_Q3_K_M = 12,// except 1d tensors
LLAMA_FTYPE_MOSTLY_Q3_K_L = 13,// except 1d tensors
LLAMA_FTYPE_MOSTLY_Q4_K_S = 14,// except 1d tensors
LLAMA_FTYPE_MOSTLY_Q4_K_M = 15,// except 1d tensors
LLAMA_FTYPE_MOSTLY_Q5_K_S = 16,// except 1d tensors
LLAMA_FTYPE_MOSTLY_Q5_K_M = 17,// except 1d tensors
LLAMA_FTYPE_MOSTLY_Q6_K = 18,// except 1d tensors
};
// model quantization parameters // model quantization parameters
typedef struct llama_model_quantize_params { typedef struct llama_model_quantize_params {
@ -208,27 +211,16 @@ extern "C" {
int32_t n_eval; int32_t n_eval;
}; };
// Set callback for all future logging events. LLAMA_API struct llama_context_params llama_context_default_params(void);
// If this is not called, or NULL is supplied, everything is output on stderr. LLAMA_API struct llama_model_quantize_params llama_model_quantize_default_params(void);
LLAMA_API void llama_log_set(llama_log_callback log_callback, void * user_data);
LLAMA_API int llama_max_devices();
LLAMA_API struct llama_context_params llama_context_default_params();
LLAMA_API struct llama_model_quantize_params llama_model_quantize_default_params();
LLAMA_API bool llama_mmap_supported();
LLAMA_API bool llama_mlock_supported();
// TODO: not great API - very likely to change
// Initialize the llama + ggml backend // Initialize the llama + ggml backend
// If numa is true, use NUMA optimizations // If numa is true, use NUMA optimizations
// Call once at the start of the program // Call once at the start of the program
LLAMA_API void llama_backend_init(bool numa); LLAMA_API void llama_backend_init(bool numa);
// Call once at the end of the program - currently only used for MPI
LLAMA_API void llama_backend_free();
LLAMA_API int64_t llama_time_us(); // Call once at the end of the program - currently only used for MPI
LLAMA_API void llama_backend_free(void);
LLAMA_API struct llama_model * llama_load_model_from_file( LLAMA_API struct llama_model * llama_load_model_from_file(
const char * path_model, const char * path_model,
@ -240,17 +232,26 @@ extern "C" {
struct llama_model * model, struct llama_model * model,
struct llama_context_params params); struct llama_context_params params);
// Various functions for loading a ggml llama model.
// Allocate (almost) all memory needed for the model.
// Return NULL on failure
LLAMA_API DEPRECATED(struct llama_context * llama_init_from_file(
const char * path_model,
struct llama_context_params params),
"please use llama_load_model_from_file combined with llama_new_context_with_model instead");
// Frees all allocated memory // Frees all allocated memory
LLAMA_API void llama_free(struct llama_context * ctx); LLAMA_API void llama_free(struct llama_context * ctx);
LLAMA_API int64_t llama_time_us(void);
LLAMA_API int llama_max_devices (void);
LLAMA_API bool llama_mmap_supported (void);
LLAMA_API bool llama_mlock_supported(void);
LLAMA_API int llama_n_vocab(const struct llama_context * ctx);
LLAMA_API int llama_n_ctx (const struct llama_context * ctx);
LLAMA_API int llama_n_embd (const struct llama_context * ctx);
LLAMA_API int llama_model_n_vocab(const struct llama_model * model);
LLAMA_API int llama_model_n_ctx (const struct llama_model * model);
LLAMA_API int llama_model_n_embd (const struct llama_model * model);
// Get a string describing the model type
LLAMA_API int llama_model_type(const struct llama_model * model, char * buf, size_t buf_size);
// Returns 0 on success // Returns 0 on success
LLAMA_API int llama_model_quantize( LLAMA_API int llama_model_quantize(
const char * fname_inp, const char * fname_inp,
@ -324,11 +325,40 @@ extern "C" {
// IMPORTANT: do not use for anything else other than debugging and testing! // IMPORTANT: do not use for anything else other than debugging and testing!
LLAMA_API int llama_eval_export(struct llama_context * ctx, const char * fname); LLAMA_API int llama_eval_export(struct llama_context * ctx, const char * fname);
// Token logits obtained from the last call to llama_eval()
// The logits for the last token are stored in the last row
// Can be mutated in order to change the probabilities of the next token
// Rows: n_tokens
// Cols: n_vocab
LLAMA_API float * llama_get_logits(struct llama_context * ctx);
// Get the embeddings for the input
// shape: [n_embd] (1-dimensional)
LLAMA_API float * llama_get_embeddings(struct llama_context * ctx);
//
// Vocab
//
LLAMA_API const char * llama_token_get_text(const struct llama_context * ctx, llama_token token);
LLAMA_API float llama_token_get_score(const struct llama_context * ctx, llama_token token);
LLAMA_API llama_token_type llama_token_get_type(const struct llama_context * ctx, llama_token token);
// Special tokens
LLAMA_API llama_token llama_token_bos(const struct llama_context * ctx); // beginning-of-sentence
LLAMA_API llama_token llama_token_eos(const struct llama_context * ctx); // end-of-sentence
LLAMA_API llama_token llama_token_nl (const struct llama_context * ctx); // next-line
//
// Tokenization
//
// Convert the provided text into tokens. // Convert the provided text into tokens.
// The tokens pointer must be large enough to hold the resulting tokens. // The tokens pointer must be large enough to hold the resulting tokens.
// Returns the number of tokens on success, no more than n_max_tokens // Returns the number of tokens on success, no more than n_max_tokens
// Returns a negative number on failure - the number of tokens that would have been returned // Returns a negative number on failure - the number of tokens that would have been returned
// TODO: not sure if correct
LLAMA_API int llama_tokenize( LLAMA_API int llama_tokenize(
struct llama_context * ctx, struct llama_context * ctx,
const char * text, const char * text,
@ -336,6 +366,13 @@ extern "C" {
int n_max_tokens, int n_max_tokens,
bool add_bos); bool add_bos);
LLAMA_API int llama_tokenize_bpe(
struct llama_context * ctx,
const char * text,
llama_token * tokens,
int n_max_tokens,
bool add_bos);
LLAMA_API int llama_tokenize_with_model( LLAMA_API int llama_tokenize_with_model(
const struct llama_model * model, const struct llama_model * model,
const char * text, const char * text,
@ -343,57 +380,30 @@ extern "C" {
int n_max_tokens, int n_max_tokens,
bool add_bos); bool add_bos);
LLAMA_API int llama_n_vocab(const struct llama_context * ctx);
LLAMA_API int llama_n_ctx (const struct llama_context * ctx);
LLAMA_API int llama_n_embd (const struct llama_context * ctx);
LLAMA_API int llama_n_vocab_from_model(const struct llama_model * model);
LLAMA_API int llama_n_ctx_from_model (const struct llama_model * model);
LLAMA_API int llama_n_embd_from_model (const struct llama_model * model);
LLAMA_API int llama_model_type(const struct llama_model * model, char * buf, size_t buf_size);
// Get the vocabulary as output parameters.
// Returns number of results.
LLAMA_API int llama_get_vocab(
const struct llama_context * ctx,
const char * * strings,
float * scores,
int capacity);
LLAMA_API int llama_get_vocab_from_model(
const struct llama_model * model,
const char * * strings,
float * scores,
int capacity);
// Token logits obtained from the last call to llama_eval()
// The logits for the last token are stored in the last row
// Can be mutated in order to change the probabilities of the next token
// Rows: n_tokens
// Cols: n_vocab
LLAMA_API float * llama_get_logits(struct llama_context * ctx);
// Get the embeddings for the input
// shape: [n_embd] (1-dimensional)
LLAMA_API float * llama_get_embeddings(struct llama_context * ctx);
// Token Id -> String. Uses the vocabulary in the provided context // Token Id -> String. Uses the vocabulary in the provided context
LLAMA_API const char * llama_token_to_str( // Does not write null terminator to the buffer
LLAMA_API int llama_token_to_str(
const struct llama_context * ctx, const struct llama_context * ctx,
llama_token token); llama_token token,
char * buf,
int length);
LLAMA_API const char * llama_token_to_str_with_model( LLAMA_API int llama_token_to_str_bpe(
const struct llama_context * ctx,
llama_token token,
char * buf,
int length);
LLAMA_API int llama_token_to_str_with_model(
const struct llama_model * model, const struct llama_model * model,
llama_token token); llama_token token,
char * buf,
// Special tokens int length);
LLAMA_API llama_token llama_token_bos(); // beginning-of-sentence
LLAMA_API llama_token llama_token_eos(); // end-of-sentence
LLAMA_API llama_token llama_token_nl(); // next-line
//
// Grammar // Grammar
// //
LLAMA_API struct llama_grammar * llama_grammar_init( LLAMA_API struct llama_grammar * llama_grammar_init(
const llama_grammar_element ** rules, const llama_grammar_element ** rules,
size_t n_rules, size_t n_rules,
@ -401,7 +411,9 @@ extern "C" {
LLAMA_API void llama_grammar_free(struct llama_grammar * grammar); LLAMA_API void llama_grammar_free(struct llama_grammar * grammar);
//
// Sampling functions // Sampling functions
//
/// @details Repetition penalty described in CTRL academic paper https://arxiv.org/abs/1909.05858, with negative logit fix. /// @details Repetition penalty described in CTRL academic paper https://arxiv.org/abs/1909.05858, with negative logit fix.
LLAMA_API void llama_sample_repetition_penalty(struct llama_context * ctx, llama_token_data_array * candidates, const llama_token * last_tokens, size_t last_tokens_size, float penalty); LLAMA_API void llama_sample_repetition_penalty(struct llama_context * ctx, llama_token_data_array * candidates, const llama_token * last_tokens, size_t last_tokens_size, float penalty);
@ -470,6 +482,10 @@ extern "C" {
// Print system information // Print system information
LLAMA_API const char * llama_print_system_info(void); LLAMA_API const char * llama_print_system_info(void);
// Set callback for all future logging events.
// If this is not called, or NULL is supplied, everything is output on stderr.
LLAMA_API void llama_log_set(llama_log_callback log_callback, void * user_data);
#ifdef __cplusplus #ifdef __cplusplus
} }
#endif #endif
@ -479,10 +495,11 @@ extern "C" {
#include <vector> #include <vector>
#include <string> #include <string>
struct ggml_tensor; struct ggml_tensor;
const std::vector<std::pair<std::string, struct ggml_tensor *>>& llama_internal_get_tensor_map(struct llama_context * ctx); const std::vector<std::pair<std::string, struct ggml_tensor *>>& llama_internal_get_tensor_map(struct llama_context * ctx);
#endif #endif // LLAMA_API_INTERNAL
#endif // LLAMA_H #endif // LLAMA_H

1
models/.editorconfig Normal file
View File

@ -0,0 +1 @@
root = true

Binary file not shown.

Binary file not shown.

View File

@ -1,17 +1,36 @@
function(llama_add_test source) function(llama_build_executable source)
get_filename_component(TEST_TARGET ${source} NAME_WE) get_filename_component(TEST_TARGET ${source} NAME_WE)
add_executable(${TEST_TARGET} ${source}) add_executable(${TEST_TARGET} ${source})
install(TARGETS ${TEST_TARGET} RUNTIME) install(TARGETS ${TEST_TARGET} RUNTIME)
target_link_libraries(${TEST_TARGET} PRIVATE llama) target_link_libraries(${TEST_TARGET} PRIVATE llama common)
endfunction()
function(llama_test_executable name source)
get_filename_component(TEST_TARGET ${source} NAME_WE)
# add_executable(${TEST_TARGET} ${source})
# install(TARGETS ${TEST_TARGET} RUNTIME)
# target_link_libraries(${TEST_TARGET} PRIVATE llama)
add_test(NAME ${name} COMMAND $<TARGET_FILE:${TEST_TARGET}> ${ARGN})
endfunction()
function(llama_build_and_test_executable source)
get_filename_component(TEST_TARGET ${source} NAME_WE)
add_executable(${TEST_TARGET} ${source})
install(TARGETS ${TEST_TARGET} RUNTIME)
target_link_libraries(${TEST_TARGET} PRIVATE llama common)
add_test(NAME ${TEST_TARGET} COMMAND $<TARGET_FILE:${TEST_TARGET}> ${ARGN}) add_test(NAME ${TEST_TARGET} COMMAND $<TARGET_FILE:${TEST_TARGET}> ${ARGN})
endfunction() endfunction()
# llama_add_test(test-double-float.cpp) # SLOW # llama_build_and_test_executable(test-double-float.cpp) # SLOW
llama_add_test(test-quantize-fns.cpp) llama_build_and_test_executable(test-quantize-fns.cpp)
llama_add_test(test-quantize-perf.cpp) llama_build_and_test_executable(test-quantize-perf.cpp)
llama_add_test(test-sampling.cpp) llama_build_and_test_executable(test-sampling.cpp)
llama_add_test(test-tokenizer-0.cpp ${CMAKE_CURRENT_SOURCE_DIR}/../models/ggml-vocab.bin) llama_build_executable(test-tokenizer-0.cpp)
llama_add_test(test-grammar-parser.cpp ${CMAKE_CURRENT_SOURCE_DIR}/../examples/grammar-parser.cpp) llama_test_executable (test-tokenizer-0.llama test-tokenizer-0.cpp ${CMAKE_CURRENT_SOURCE_DIR}/../models/ggml-vocab-llama.gguf)
llama_add_test(test-llama-grammar.cpp ${CMAKE_CURRENT_SOURCE_DIR}/../examples/grammar-parser.cpp ${CMAKE_CURRENT_SOURCE_DIR}/../llama.cpp ${CMAKE_CURRENT_SOURCE_DIR}/../examples/common.cpp) llama_build_executable(test-tokenizer-1.cpp)
llama_add_test(test-grad0.cpp) # SLOW llama_test_executable (test-tokenizer-1.llama test-tokenizer-1.cpp ${CMAKE_CURRENT_SOURCE_DIR}/../models/ggml-vocab-llama.gguf)
# llama_add_test(test-opt.cpp) # SLOW #llama_test_executable(test-tokenizer-1.aquila test-tokenizer-1.cpp ${CMAKE_CURRENT_SOURCE_DIR}/../models/ggml-vocab-aquila.gguf)
llama_build_and_test_executable(test-grammar-parser.cpp)
llama_build_and_test_executable(test-llama-grammar.cpp)
llama_build_and_test_executable(test-grad0.cpp) # SLOW
# llama_build_and_test_executable(test-opt.cpp) # SLOW

View File

@ -3,7 +3,8 @@
#endif #endif
#include "llama.h" #include "llama.h"
#include "examples/grammar-parser.cpp" #include "grammar-parser.h"
#include <cassert> #include <cassert>
int main() int main()

View File

@ -2,9 +2,9 @@
#undef NDEBUG #undef NDEBUG
#endif #endif
#include "llama.cpp" #include "llama.cpp" // TODO: not great
#include "examples/common.cpp" #include "grammar-parser.h"
#include "examples/grammar-parser.cpp"
#include <cassert> #include <cassert>
int main() int main()

View File

@ -1,22 +1,47 @@
#include "llama.h" #include "llama.h"
#include "common.h"
#include <cstdio> #include <cstdio>
#include <string> #include <string>
#include <map> #include <map>
#include <vector> #include <vector>
static const std::map<std::string, std::vector<llama_token>> & k_tests() static std::string unescape_whitespace(llama_context* ctx, const std::vector<llama_token>& tokens) {
{ std::string result;
for (size_t i = 0; i < tokens.size(); ++i) {
result += llama_token_to_str(ctx, tokens[i]);
}
return result;
}
static const std::map<std::string, std::vector<llama_token>> & k_tests() {
static std::map<std::string, std::vector<llama_token>> _k_tests = { static std::map<std::string, std::vector<llama_token>> _k_tests = {
{ "Hello World", { 1, 10994, 2787, }, }, { " ", {1, 259, }, },
{ " Hello World", { 1, 15043, 2787, }, }, { "\t", { 1, 29871, 12, }, },
{ " Hello World!", { 1, 15043, 2787, 29991, }, }, { "\n", { 1, 29871, 13, }, },
{ " this is 🦙.cpp", { 1, 445, 338, 29871, 243, 162, 169, 156, 29889, 8223, }, }, { "\t\n", { 1, 29871, 12, 13, }, },
{ "w048 7tuijk dsdfhu", { 1, 29893, 29900, 29946, 29947, 29871, 29955, 9161, 13535, 18031, 2176, 6905, }, }, { "Hello world", { 1, 15043, 3186, }, },
{ "нещо на Български", { 1, 821, 4851, 665, 1386, 29713, 1305, }, }, { " Hello world", { 1, 29871, 15043, 3186, }, },
{ "Hello World", { 1, 15043, 2787, }, },
{ " Hello World", { 1, 29871, 15043, 2787, }, },
{ " Hello World!", { 1, 29871, 15043, 2787, 29991, }, },
{ " this is 🦙.cpp", { 1, 29871, 445, 338, 29871, 243, 162, 169, 156, 29889, 8223, }, },
{ "w048 7tuijk dsdfhu", { 1, 281, 29900, 29946, 29947, 29871, 29955, 9161, 13535, 18031, 2176, 6905, }, },
{ "нещо на Български", { 1, 1538, 4851, 665, 1386, 29713, 1305, }, },
{ "កាន់តែពិសេសអាចខលចេញ", { 1, 29871, 31849, 31324, 31934, 228, 162, 142, 228, 161,
146, 228, 162, 133, 228, 161, 153, 228, 161, 186,
31708, 228, 162, 132, 31708, 228, 161, 165, 31324, 228,
161, 136, 228, 161, 132, 228, 161, 158, 228, 161,
136, 228, 162, 132, 228, 161, 140, }, },
{ "🚀 (normal) 😶‍🌫️ (multiple emojis concatenated) ✅ (only emoji that has its own token)",
{ 1, 29871, 243, 162, 157, 131, 313, 8945, 29897, 29871,
243, 162, 155, 185, 30722, 243, 162, 143, 174, 30598,
313, 20787, 953, 3848, 275, 16125, 630, 29897, 29871, 31681,
313, 6194, 953, 29877, 2397, 393, 756, 967, 1914, 5993, 29897, }, },
}; };
return _k_tests; return _k_tests;
}; }
int main(int argc, char **argv) { int main(int argc, char **argv) {
if (argc < 2) { if (argc < 2) {
@ -64,10 +89,12 @@ int main(int argc, char **argv) {
return 2; return 2;
} }
bool success = true;
for (const auto & test_kv : k_tests()) { for (const auto & test_kv : k_tests()) {
std::vector<llama_token> res(test_kv.first.size()); std::vector<llama_token> res = llama_tokenize(ctx, test_kv.first, true);
const int n = llama_tokenize(ctx, test_kv.first.c_str(), res.data(), int(res.size()), true); fprintf(stderr, "%s : '%s' tokenized to '%s'\n",
res.resize(n); __func__, test_kv.first.c_str(), unescape_whitespace(ctx, res).c_str());
bool correct = res.size() == test_kv.second.size(); bool correct = res.size() == test_kv.second.size();
@ -79,6 +106,7 @@ int main(int argc, char **argv) {
if (!correct) { if (!correct) {
fprintf(stderr, "%s : failed test: '%s'\n", __func__, test_kv.first.c_str()); fprintf(stderr, "%s : failed test: '%s'\n", __func__, test_kv.first.c_str());
fprintf(stderr, "%s : detokenized to: '%s'\n", __func__, unescape_whitespace(ctx, test_kv.second).c_str());
fprintf(stderr, "%s : expected tokens: ", __func__); fprintf(stderr, "%s : expected tokens: ", __func__);
for (const auto & t : test_kv.second) { for (const auto & t : test_kv.second) {
fprintf(stderr, "%6d, ", t); fprintf(stderr, "%6d, ", t);
@ -90,9 +118,7 @@ int main(int argc, char **argv) {
} }
fprintf(stderr, "\n"); fprintf(stderr, "\n");
llama_free_model(model); success = false;
llama_free(ctx);
return 3;
} }
} }
@ -101,5 +127,5 @@ int main(int argc, char **argv) {
llama_backend_free(); llama_backend_free();
return 0; return success ? 0 : 3;
} }

131
tests/test-tokenizer-1.cpp Normal file
View File

@ -0,0 +1,131 @@
#include "llama.h"
#include "common.h"
#include <cassert>
#include <cstdio>
#include <cstring>
#include <string>
#include <codecvt>
#include <map>
#include <vector>
#include <locale>
static std::string escape_whitespace(const std::string& text) {
std::string result;
bool escaping = false;
result += "\xe2\x96\x81";
for (size_t offs = 0; offs < text.length(); ++offs) {
if (text[offs] == ' ') {
if (!escaping) {
result += "\xe2\x96\x81";
escaping = true;
}
}
else {
escaping = false;
result += text[offs];
}
}
return result;
}
static std::string unescape_whitespace(llama_context * ctx, const std::vector<llama_token> & tokens) {
std::string result;
for (size_t i = 0; i < tokens.size(); ++i) {
result += llama_token_to_str(ctx, tokens[i]);
}
return result;
}
int main(int argc, char **argv) {
if (argc < 2) {
fprintf(stderr, "Usage: %s <vocab-file>\n", argv[0]);
return 1;
}
const std::string fname = argv[1];
fprintf(stderr, "%s : reading vocab from: '%s'\n", __func__, fname.c_str());
llama_model * model;
llama_context * ctx;
llama_backend_init(false);
// load the vocab
{
auto lparams = llama_context_default_params();
lparams.vocab_only = true;
model = llama_load_model_from_file(fname.c_str(), lparams);
if (model == NULL) {
fprintf(stderr, "%s: error: failed to load vocab '%s'\n", __func__, fname.c_str());
return 1;
}
ctx = llama_new_context_with_model(model, lparams);
if (ctx == NULL) {
fprintf(stderr, "%s: error: failed to load vocab '%s'\n", __func__, fname.c_str());
llama_free_model(model);
return 1;
}
}
const int n_vocab = llama_n_vocab(ctx);
for (int i = 0; i < n_vocab; ++i) {
std::string forward = llama_token_to_str_bpe(ctx, i);
std::vector<llama_token> tokens = llama_tokenize_bpe(ctx, forward, false);
if (tokens.size() == 1) {
if (i != tokens[0]) {
std::string backward = llama_token_to_str(ctx, tokens[0]);
fprintf(stderr, "%s : error: token %d is string %s but bpe returns token %d %s\n",
__func__, i, llama_token_to_str(ctx, i).c_str(), tokens[0], backward.c_str());
return 2;
}
} else {
llama_token_type type = llama_token_get_type(ctx, i);
if (type == LLAMA_TOKEN_TYPE_UNKNOWN || type == LLAMA_TOKEN_TYPE_CONTROL || type == LLAMA_TOKEN_TYPE_BYTE) {
fprintf(stderr, "%s : info: token %d is string %s and bpe returns tokens %s\n",
__func__, i, llama_token_to_str(ctx, i).c_str(), unescape_whitespace(ctx, tokens).c_str());
} else {
fprintf(stderr, "%s : error: token %d is string %s but bpe returns tokens %s\n",
__func__, i, llama_token_to_str(ctx, i).c_str(), unescape_whitespace(ctx, tokens).c_str());
return 2;
}
}
}
#ifdef _WIN32
std::wstring_convert<typename std::codecvt_utf8<char16_t>, char16_t> u16converter;
for (char16_t ch = 0x0000; ch < 0xffff; ++ch) {
std::u16string u16str(1, ch);
std::string str = u16converter.to_bytes(u16str);
std::vector<llama_token> tokens = llama_tokenize(ctx, escape_whitespace(str).c_str(), false);
if (tokens.size() == 1) {
fprintf(stderr, "%s : info: %s tokenized to %d \n",
__func__, str.c_str(), tokens[0]);
}
}
std::wstring_convert<typename std::codecvt_utf8<char32_t>, char32_t> u32converter;
for (char32_t ch = 0x0000; ch < 0x0010ffff; ++ch) {
std::u32string u32str(1, ch);
std::string str = u32converter.to_bytes(u32str);
std::vector<llama_token> tokens = llama_tokenize(ctx, escape_whitespace(str).c_str(), false);
if (tokens.size() == 1) {
fprintf(stderr, "%s : info: %s tokenized to %d \n", __func__, str.c_str(), tokens[0]);
}
}
#endif
llama_free_model(model);
llama_free(ctx);
llama_backend_free();
return 0;
}