metal : reorder write loop in mul mat kernel + style (#10231)

* metal : reorder write loop

* metal : int -> short, style

ggml-ci
This commit is contained in:
Georgi Gerganov 2024-11-09 11:53:13 +02:00 committed by GitHub
parent 39a334a9aa
commit 6423c65aa8
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194

View File

@ -6318,8 +6318,8 @@ kernel void kernel_mul_mm(device const uchar * src0,
const uint im = tgpig.z;
// if this block is of 64x32 shape or smaller
short n_rows = (ne0 - r0 * BLOCK_SIZE_M < BLOCK_SIZE_M) ? (ne0 - r0 * BLOCK_SIZE_M) : BLOCK_SIZE_M;
short n_cols = (ne1 - r1 * BLOCK_SIZE_N < BLOCK_SIZE_N) ? (ne1 - r1 * BLOCK_SIZE_N) : BLOCK_SIZE_N;
short n_rows = (ne0 - r0*BLOCK_SIZE_M < BLOCK_SIZE_M) ? (ne0 - r0*BLOCK_SIZE_M) : BLOCK_SIZE_M;
short n_cols = (ne1 - r1*BLOCK_SIZE_N < BLOCK_SIZE_N) ? (ne1 - r1*BLOCK_SIZE_N) : BLOCK_SIZE_N;
// a thread shouldn't load data outside of the matrix
short thread_row = ((short)tiitg/THREAD_PER_ROW) < n_rows ? ((short)tiitg/THREAD_PER_ROW) : n_rows - 1;
@ -6327,9 +6327,10 @@ kernel void kernel_mul_mm(device const uchar * src0,
simdgroup_T8x8 ma[4];
simdgroup_float8x8 mb[2];
simdgroup_float8x8 c_res[8];
for (int i = 0; i < 8; i++){
c_res[i] = make_filled_simdgroup_matrix<float, 8>(0.f);
simdgroup_float8x8 mc[8];
for (short i = 0; i < 8; i++){
mc[i] = make_filled_simdgroup_matrix<float, 8>(0.f);
}
short il = (tiitg % THREAD_PER_ROW);
@ -6340,7 +6341,7 @@ kernel void kernel_mul_mm(device const uchar * src0,
uint offset0 = (i12/r2)*nb02 + (i13/r3)*nb03;
ushort offset1 = il/nl;
device const block_q * x = (device const block_q *)(src0 + (r0 * BLOCK_SIZE_M + thread_row) * nb01 + offset0) + offset1;
device const block_q * x = (device const block_q *)(src0 + (r0*BLOCK_SIZE_M + thread_row)*nb01 + offset0) + offset1;
device const float * y = (device const float *)(src1
+ nb13 * i13
+ nb12 * i12
@ -6354,13 +6355,13 @@ kernel void kernel_mul_mm(device const uchar * src0,
threadgroup_barrier(mem_flags::mem_threadgroup);
#pragma unroll(16)
for (int i = 0; i < 16; i++) {
*(sa + SG_MAT_SIZE * ((tiitg / THREAD_PER_ROW / 8) \
+ (tiitg % THREAD_PER_ROW) * 16 + (i / 8) * 8) \
+ (tiitg / THREAD_PER_ROW) % 8 + (i & 7) * 8) = temp_a[i/4][i%4];
for (short i = 0; i < 16; i++) {
*(sa + SG_MAT_SIZE * ((tiitg/THREAD_PER_ROW/8) \
+ (tiitg%THREAD_PER_ROW)*16 + (i/8)*8) \
+ (tiitg/THREAD_PER_ROW)%8 + (i&7)*8) = temp_a[i/4][i%4];
}
*(threadgroup float2x4 *)(sb + (tiitg % THREAD_PER_COL) * 8 * 32 + 8 * (tiitg / THREAD_PER_COL)) = *((device float2x4 *)y);
*(threadgroup float2x4 *)(sb + (tiitg % THREAD_PER_COL)*8*32 + 8*(tiitg/THREAD_PER_COL)) = *((device float2x4 *) y);
il = (il + 2 < nl) ? il + 2 : il % 2;
x = (il < 2) ? x + (2+nl-1)/nl : x;
@ -6369,27 +6370,27 @@ kernel void kernel_mul_mm(device const uchar * src0,
threadgroup_barrier(mem_flags::mem_threadgroup);
// load matrices from threadgroup memory and conduct outer products
threadgroup T * lsma = (sa + THREAD_MAT_M * SG_MAT_SIZE * (sgitg % 2));
threadgroup float * lsmb = (sb + THREAD_MAT_N * SG_MAT_SIZE * (sgitg / 2));
threadgroup T * lsma = (sa + THREAD_MAT_M*SG_MAT_SIZE*(sgitg%2));
threadgroup float * lsmb = (sb + THREAD_MAT_N*SG_MAT_SIZE*(sgitg/2));
#pragma unroll(4)
for (int ik = 0; ik < BLOCK_SIZE_K / 8; ik++) {
for (short ik = 0; ik < BLOCK_SIZE_K / 8; ik++) {
#pragma unroll(4)
for (int i = 0; i < 4; i++) {
simdgroup_load(ma[i],lsma + SG_MAT_SIZE * i);
for (short i = 0; i < 4; i++) {
simdgroup_load(ma[i], lsma + SG_MAT_SIZE * i);
}
simdgroup_barrier(mem_flags::mem_none);
#pragma unroll(2)
for (int i = 0; i < 2; i++) {
simdgroup_load(mb[i],lsmb + SG_MAT_SIZE * i);
for (short i = 0; i < 2; i++) {
simdgroup_load(mb[i], lsmb + SG_MAT_SIZE * i);
}
lsma += BLOCK_SIZE_M / SG_MAT_ROW * SG_MAT_SIZE;
lsmb += BLOCK_SIZE_N / SG_MAT_ROW * SG_MAT_SIZE;
lsma += BLOCK_SIZE_M/SG_MAT_ROW * SG_MAT_SIZE;
lsmb += BLOCK_SIZE_N/SG_MAT_ROW * SG_MAT_SIZE;
#pragma unroll(8)
for (int i = 0; i < 8; i++){
simdgroup_multiply_accumulate(c_res[i], mb[i/4], ma[i%4], c_res[i]);
for (short i = 0; i < 8; i++){
simdgroup_multiply_accumulate(mc[i], mb[i/4], ma[i%4], mc[i]);
}
}
}
@ -6397,25 +6398,36 @@ kernel void kernel_mul_mm(device const uchar * src0,
if ((r0 + 1) * BLOCK_SIZE_M <= ne0 && (r1 + 1) * BLOCK_SIZE_N <= ne1) {
device float * C = dst + (BLOCK_SIZE_M * r0 + 32 * (sgitg & 1)) \
+ (BLOCK_SIZE_N * r1 + 16 * (sgitg >> 1)) * ne0 + im*ne1*ne0;
for (int i = 0; i < 8; i++) {
simdgroup_store(c_res[i], C + 8 * (i%4) + 8 * ne0 * (i/4), ne0);
for (short i = 0; i < 8; i++) {
simdgroup_store(mc[i], C + 8 * (i%4) + 8 * ne0 * (i/4), ne0);
}
} else {
// block is smaller than 64x32, we should avoid writing data outside of the matrix
threadgroup_barrier(mem_flags::mem_threadgroup);
threadgroup float * temp_str = ((threadgroup float *)shared_memory) \
+ 32 * (sgitg&1) + (16 * (sgitg>>1)) * BLOCK_SIZE_M;
for (int i = 0; i < 8; i++) {
simdgroup_store(c_res[i], temp_str + 8 * (i%4) + 8 * BLOCK_SIZE_M * (i/4), BLOCK_SIZE_M);
threadgroup float * temp_str = ((threadgroup float *) shared_memory) \
+ 32 * (sgitg&1) + (16 * (sgitg>>1))*BLOCK_SIZE_M;
for (short i = 0; i < 8; i++) {
simdgroup_store(mc[i], temp_str + 8*(i%4) + 8*BLOCK_SIZE_M*(i/4), BLOCK_SIZE_M);
}
threadgroup_barrier(mem_flags::mem_threadgroup);
device float * C = dst + (BLOCK_SIZE_M * r0) + (BLOCK_SIZE_N * r1) * ne0 + im*ne1*ne0;
if (sgitg == 0) {
for (int i = 0; i < n_rows; i++) {
for (int j = tiitg; j < n_cols; j += BLOCK_SIZE_N) {
*(C + i + j * ne0) = *(temp_str + i + j * BLOCK_SIZE_M);
for (int j = tiitg; j < n_cols; j += BLOCK_SIZE_N) {
device float * D = dst + (r0*BLOCK_SIZE_M) + (r1*BLOCK_SIZE_N + j)*ne0 + im*ne1*ne0;
device float4 * D4 = (device float4 *) D;
threadgroup float * C = temp_str + (j*BLOCK_SIZE_M);
threadgroup float4 * C4 = (threadgroup float4 *) C;
int i = 0;
for (; i < n_rows/4; i++) {
*(D4 + i) = *(C4 + i);
}
i *= 4;
for (; i < n_rows; i++) {
*(D + i) = *(C + i);
}
}
}