mirror of
https://github.com/ggerganov/llama.cpp.git
synced 2025-01-26 03:12:23 +01:00
Fixed OpenLLaMA 3b CUDA mul_mat_vec_q (#2144)
This commit is contained in:
parent
061f5f8d21
commit
64639555ff
42
ggml-cuda.cu
42
ggml-cuda.cu
@ -208,6 +208,7 @@ typedef struct {
|
||||
static_assert(sizeof(block_q6_K) == sizeof(ggml_fp16_t) + 13*QK_K/16, "wrong q6_K block size/padding");
|
||||
|
||||
#define WARP_SIZE 32
|
||||
#define MATRIX_ROW_PADDING 256 // last row of quant. matrices is a multiple of this to avoid out-of-bounds memory accesses
|
||||
|
||||
#define CUDA_ADD_BLOCK_SIZE 256
|
||||
#define CUDA_MUL_BLOCK_SIZE 256
|
||||
@ -1171,7 +1172,7 @@ static __device__ void convert_f16(const void * vx, const int ib, const int iqs,
|
||||
v.y = x[ib + iqs + 1];
|
||||
}
|
||||
|
||||
static __global__ void quantize_q8_1(const float * __restrict__ x, void * __restrict__ vy, const int k) {
|
||||
static __global__ void quantize_q8_1(const float * __restrict__ x, void * __restrict__ vy, const int ndata, const int k) {
|
||||
const int i = blockDim.x*blockIdx.x + threadIdx.x;
|
||||
|
||||
if (i >= k) {
|
||||
@ -1180,10 +1181,10 @@ static __global__ void quantize_q8_1(const float * __restrict__ x, void * __rest
|
||||
|
||||
block_q8_1 * y = (block_q8_1 *) vy;
|
||||
|
||||
const int ib = i / QK8_0; // block index
|
||||
const int iqs = i % QK8_0; // quant index
|
||||
const int ib = i / QK8_1; // block index
|
||||
const int iqs = i % QK8_1; // quant index
|
||||
|
||||
const float xi = x[i];
|
||||
const float xi = i < ndata ? x[i] : 0.0f;
|
||||
float amax = fabsf(xi);
|
||||
float sum = xi;
|
||||
|
||||
@ -1714,9 +1715,9 @@ static void rms_norm_f32_cuda(const float * x, float * dst, const int ncols, con
|
||||
rms_norm_f32<<<nrows, block_dims, 0, stream>>>(x, dst, ncols);
|
||||
}
|
||||
|
||||
static void quantize_row_q8_1_cuda(const float * x, void * vy, const int k, cudaStream_t stream) {
|
||||
static void quantize_row_q8_1_cuda(const float * x, void * vy, const int ndata, const int k, cudaStream_t stream) {
|
||||
const int num_blocks = (k + CUDA_QUANTIZE_BLOCK_SIZE - 1) / CUDA_QUANTIZE_BLOCK_SIZE;
|
||||
quantize_q8_1<<<num_blocks, CUDA_QUANTIZE_BLOCK_SIZE, 0, stream>>>(x, vy, k);
|
||||
quantize_q8_1<<<num_blocks, CUDA_QUANTIZE_BLOCK_SIZE, 0, stream>>>(x, vy, ndata, k);
|
||||
}
|
||||
|
||||
static void dequantize_row_q4_0_cuda(const void * vx, float * y, const int k, cudaStream_t stream) {
|
||||
@ -2359,9 +2360,11 @@ inline void ggml_cuda_op_mul_mat_vec(
|
||||
#endif
|
||||
|
||||
if (use_mul_mat_vec_q) {
|
||||
int64_t padded_row_size = ne00 + MATRIX_ROW_PADDING - 1;
|
||||
padded_row_size -= padded_row_size % MATRIX_ROW_PADDING;
|
||||
size_t as;
|
||||
void * src1_q8_1 = ggml_cuda_pool_malloc(ne00*sizeof(block_q8_1)/QK8_1, &as);
|
||||
quantize_row_q8_1_cuda(src1_ddf_i, src1_q8_1, ne00, cudaStream_main);
|
||||
void * src1_q8_1 = ggml_cuda_pool_malloc(padded_row_size*sizeof(block_q8_1)/QK8_1, &as);
|
||||
quantize_row_q8_1_cuda(src1_ddf_i, src1_q8_1, ne00, padded_row_size, cudaStream_main);
|
||||
|
||||
switch (src0->type) {
|
||||
case GGML_TYPE_Q4_0:
|
||||
@ -3105,7 +3108,11 @@ void ggml_cuda_nop(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tens
|
||||
|
||||
void ggml_cuda_transform_tensor(void * data, struct ggml_tensor * tensor) {
|
||||
int nrows = ggml_nrows(tensor);
|
||||
|
||||
const int64_t ne0 = tensor->ne[0];
|
||||
|
||||
const size_t nb1 = tensor->nb[1];
|
||||
|
||||
ggml_backend backend = tensor->backend;
|
||||
struct ggml_tensor_extra_gpu * extra = new struct ggml_tensor_extra_gpu;
|
||||
memset(extra, 0, sizeof(*extra));
|
||||
@ -3134,11 +3141,24 @@ void ggml_cuda_transform_tensor(void * data, struct ggml_tensor * tensor) {
|
||||
int64_t nrows_split = row_high - row_low;
|
||||
|
||||
const size_t offset_split = row_low*nb1;
|
||||
const size_t size = ggml_nbytes_split(tensor, nrows_split);
|
||||
size_t size = ggml_nbytes_split(tensor, nrows_split);
|
||||
const size_t original_size = size;
|
||||
|
||||
void * buf;
|
||||
// pad last row to a multiple of 256 elements to avoid out-of-bounds memory accesses
|
||||
if (ne0 % MATRIX_ROW_PADDING != 0) {
|
||||
size += (MATRIX_ROW_PADDING - ne0 % MATRIX_ROW_PADDING)
|
||||
* ggml_type_size(tensor->type)/ggml_blck_size(tensor->type);
|
||||
}
|
||||
|
||||
char * buf;
|
||||
CUDA_CHECK(cudaMalloc(&buf, size));
|
||||
void * buf_host = (char*)data + offset_split;
|
||||
char * buf_host = (char*)data + offset_split;
|
||||
|
||||
// set padding to 0 to avoid possible NaN values
|
||||
if (size > original_size) {
|
||||
CUDA_CHECK(cudaMemset(buf + original_size, 0, size - original_size));
|
||||
}
|
||||
|
||||
|
||||
cudaMemcpy(buf, buf_host, size, cudaMemcpyHostToDevice);
|
||||
|
||||
|
Loading…
Reference in New Issue
Block a user