Merge branch 'master' into build-metal-default

This commit is contained in:
Georgi Gerganov 2023-09-04 22:20:51 +03:00
commit 65520729a2
No known key found for this signature in database
GPG Key ID: 449E073F9DC10735
23 changed files with 2938 additions and 2226 deletions

View File

@ -17,3 +17,6 @@ indent_style = tab
[prompts/*.txt]
insert_final_newline = unset
[examples/server/public/*]
indent_size = 2

View File

@ -18,7 +18,6 @@ on:
env:
BRANCH_NAME: ${{ github.head_ref || github.ref_name }}
GGML_NLOOP: 3
GGML_NITER: 1
GGML_N_THREADS: 1
jobs:

36
.github/workflows/code-coverage.yml vendored Normal file
View File

@ -0,0 +1,36 @@
name: Code Coverage
on: [push, pull_request]
env:
GGML_NLOOP: 3
GGML_N_THREADS: 1
jobs:
run:
runs-on: ubuntu-20.04
steps:
- name: Checkout
uses: actions/checkout@v3
- name: Dependencies
run: |
sudo apt-get update
sudo apt-get install build-essential gcc-8 lcov
- name: Build
run: CC=gcc-8 make -j LLAMA_CODE_COVERAGE=1 tests
- name: Run tests
run: CC=gcc-8 make test
- name: Generate coverage report
run: |
make coverage
make lcov-report
- name: Upload coverage to Codecov
uses: codecov/codecov-action@v3
env:
CODECOV_TOKEN: ${{ secrets.CODECOV_TOKEN }}
with:
files: lcov-report/coverage.info

8
.gitignore vendored
View File

@ -6,6 +6,10 @@
*.exe
*.dll
*.log
*.gcov
*.gcno
*.gcda
*.dot
.DS_Store
.build/
.cache/
@ -17,6 +21,9 @@
.vs/
.vscode/
lcov-report/
gcovr-report/
build*/
out/
tmp/
@ -45,6 +52,7 @@ models-mnt
/baby-llama
/beam-search
/save-load-state
/speculative
build-info.h
arm_neon.h
compile_commands.json

View File

@ -1,9 +1,12 @@
# Define the default target now so that it is always the first target
BUILD_TARGETS = main quantize quantize-stats perplexity embedding vdot train-text-from-scratch convert-llama2c-to-ggml simple save-load-state server embd-input-test gguf llama-bench baby-llama beam-search tests/test-c.o
BUILD_TARGETS = main quantize quantize-stats perplexity embedding vdot train-text-from-scratch convert-llama2c-to-ggml simple save-load-state server embd-input-test gguf llama-bench baby-llama beam-search speculative tests/test-c.o
# Binaries only useful for tests
TEST_TARGETS = tests/test-llama-grammar tests/test-grammar-parser tests/test-double-float tests/test-grad0 tests/test-opt tests/test-quantize-fns tests/test-quantize-perf tests/test-sampling tests/test-tokenizer-0-llama tests/test-tokenizer-0-falcon tests/test-tokenizer-1
# Code coverage output files
COV_TARGETS = *.gcno tests/*.gcno *.gcda tests/*.gcda *.gcov tests/*.gcov lcov-report gcovr-report
ifndef UNAME_S
UNAME_S := $(shell uname -s)
endif
@ -56,6 +59,18 @@ test:
all: $(BUILD_TARGETS) $(TEST_TARGETS)
coverage: ## Run code coverage
gcov -pb tests/*.cpp
lcov-report: coverage ## Generate lcov report
mkdir -p lcov-report
lcov --capture --directory . --output-file lcov-report/coverage.info
genhtml lcov-report/coverage.info --output-directory lcov-report
gcovr-report: coverage ## Generate gcovr report
mkdir -p gcovr-report
gcovr --root . --html --html-details --output gcovr-report/coverage.html
ifdef RISCV_CROSS_COMPILE
CC := riscv64-unknown-linux-gnu-gcc
CXX := riscv64-unknown-linux-gnu-g++
@ -92,6 +107,11 @@ ifdef LLAMA_SERVER_VERBOSE
MK_CPPFLAGS += -DSERVER_VERBOSE=$(LLAMA_SERVER_VERBOSE)
endif
ifdef LLAMA_CODE_COVERAGE
CXXFLAGS += -fprofile-arcs -ftest-coverage -dumpbase ''
endif
ifdef LLAMA_DISABLE_LOGS
CFLAGS += -DLOG_DISABLE_LOGS
CXXFLAGS += -DLOG_DISABLE_LOGS
@ -417,7 +437,7 @@ libllama.so: llama.o ggml.o $(OBJS)
$(CXX) $(CXXFLAGS) -shared -fPIC -o $@ $^ $(LDFLAGS)
clean:
rm -vf *.o tests/*.o *.so *.dll benchmark-matmult build-info.h $(BUILD_TARGETS) $(TEST_TARGETS)
rm -vrf *.o tests/*.o *.so *.dll benchmark-matmult build-info.h *.dot $(COV_TARGETS) $(BUILD_TARGETS) $(TEST_TARGETS)
#
# Examples
@ -475,6 +495,16 @@ baby-llama: examples/baby-llama/baby-llama.cpp ggml.o llama.o common.o $(OBJS)
beam-search: examples/beam-search/beam-search.cpp build-info.h ggml.o llama.o common.o $(OBJS)
$(CXX) $(CXXFLAGS) $(filter-out %.h,$^) -o $@ $(LDFLAGS)
<<<<<<< HEAD
=======
speculative: examples/speculative/speculative.cpp build-info.h ggml.o llama.o common.o $(OBJS)
$(CXX) $(CXXFLAGS) $(filter-out %.h,$^) -o $@ $(LDFLAGS)
ifneq '' '$(or $(filter clean,$(MAKECMDGOALS)),$(LLAMA_METAL))'
BUILD_TARGETS += metal
endif
>>>>>>> master
ifdef LLAMA_METAL
metal: examples/metal/metal.cpp ggml.o $(OBJS)
$(CXX) $(CXXFLAGS) $^ -o $@ $(LDFLAGS)

14
codecov.yml Normal file
View File

@ -0,0 +1,14 @@
comment: off
coverage:
status:
project:
default:
target: auto
threshold: 0
base: auto
patch:
default:
target: auto
threshold: 0
base: auto

View File

@ -305,6 +305,12 @@ bool gpt_params_parse(int argc, char ** argv, gpt_params & params) {
break;
}
params.n_keep = std::stoi(argv[i]);
} else if (arg == "--draft") {
if (++i >= argc) {
invalid_param = true;
break;
}
params.n_draft = std::stoi(argv[i]);
} else if (arg == "--chunks") {
if (++i >= argc) {
invalid_param = true;
@ -317,6 +323,12 @@ bool gpt_params_parse(int argc, char ** argv, gpt_params & params) {
break;
}
params.model = argv[i];
} else if (arg == "-md" || arg == "--model-draft") {
if (++i >= argc) {
invalid_param = true;
break;
}
params.model_draft = argv[i];
} else if (arg == "-a" || arg == "--alias") {
if (++i >= argc) {
invalid_param = true;
@ -638,6 +650,7 @@ void gpt_print_usage(int /*argc*/, char ** argv, const gpt_params & params) {
fprintf(stdout, " --hellaswag compute HellaSwag score over random tasks from datafile supplied with -f\n");
fprintf(stdout, " --hellaswag-tasks N number of tasks to use when computing the HellaSwag score (default: %zu)\n", params.hellaswag_tasks);
fprintf(stdout, " --keep N number of tokens to keep from the initial prompt (default: %d, -1 = all)\n", params.n_keep);
fprintf(stdout, " --draft N number of tokens to draft for speculative decoding (default: %d)\n", params.n_draft);
fprintf(stdout, " --chunks N max number of chunks to process (default: %d, -1 = all)\n", params.n_chunks);
if (llama_mlock_supported()) {
fprintf(stdout, " --mlock force system to keep model in RAM rather than swapping or compressing\n");
@ -669,6 +682,8 @@ void gpt_print_usage(int /*argc*/, char ** argv, const gpt_params & params) {
fprintf(stdout, " --lora-base FNAME optional model to use as a base for the layers modified by the LoRA adapter\n");
fprintf(stdout, " -m FNAME, --model FNAME\n");
fprintf(stdout, " model path (default: %s)\n", params.model.c_str());
fprintf(stdout, " -md FNAME, --model-draft FNAME\n");
fprintf(stdout, " draft model for speculative decoding (default: %s)\n", params.model.c_str());
fprintf(stdout, " -ld LOGDIR, --logdir LOGDIR\n");
fprintf(stdout, " path under which to save YAML logs (no logging if unset)\n");
fprintf(stdout, "\n");
@ -754,6 +769,14 @@ std::tuple<struct llama_model *, struct llama_context *> llama_init_from_gpt_par
params.logit_bias[llama_token_eos(lctx)] = -INFINITY;
}
{
LOG("warming up the model with an empty run\n");
const std::vector<llama_token> tmp = { llama_token_bos(lctx), };
llama_eval(lctx, tmp.data(), tmp.size(), 0, params.n_threads);
llama_reset_timings(lctx);
}
return std::make_tuple(model, lctx);
}
@ -826,6 +849,130 @@ std::string llama_detokenize_bpe(llama_context * ctx, const std::vector<llama_to
return result;
}
//
// Sampling utils
//
llama_token llama_sample_token(
struct llama_context * ctx,
struct llama_context * ctx_guidance,
struct llama_grammar * grammar,
const struct gpt_params & params,
const std::vector<llama_token> & last_tokens,
std::vector<llama_token_data> & candidates,
int idx) {
const int n_ctx = llama_n_ctx(ctx);
const int n_vocab = llama_n_vocab(ctx);
const float temp = params.temp;
const int32_t top_k = params.top_k <= 0 ? n_vocab : params.top_k;
const float top_p = params.top_p;
const float tfs_z = params.tfs_z;
const float typical_p = params.typical_p;
const int32_t repeat_last_n = params.repeat_last_n < 0 ? n_ctx : params.repeat_last_n;
const float repeat_penalty = params.repeat_penalty;
const float alpha_presence = params.presence_penalty;
const float alpha_frequency = params.frequency_penalty;
const int mirostat = params.mirostat;
const float mirostat_tau = params.mirostat_tau;
const float mirostat_eta = params.mirostat_eta;
const bool penalize_nl = params.penalize_nl;
llama_token id = 0;
float * logits = llama_get_logits(ctx) + idx * n_vocab;
// Apply params.logit_bias map
for (auto it = params.logit_bias.begin(); it != params.logit_bias.end(); it++) {
logits[it->first] += it->second;
}
candidates.clear();
for (llama_token token_id = 0; token_id < n_vocab; token_id++) {
candidates.emplace_back(llama_token_data{token_id, logits[token_id], 0.0f});
}
llama_token_data_array cur_p = { candidates.data(), candidates.size(), false };
if (ctx_guidance) {
llama_sample_classifier_free_guidance(ctx, &cur_p, ctx_guidance, params.cfg_scale);
}
// apply penalties
if (!last_tokens.empty()) {
const float nl_logit = logits[llama_token_nl(ctx)];
const int last_n_repeat = std::min(std::min((int)last_tokens.size(), repeat_last_n), n_ctx);
llama_sample_repetition_penalty(ctx, &cur_p,
last_tokens.data() + last_tokens.size() - last_n_repeat,
last_n_repeat, repeat_penalty);
llama_sample_frequency_and_presence_penalties(ctx, &cur_p,
last_tokens.data() + last_tokens.size() - last_n_repeat,
last_n_repeat, alpha_frequency, alpha_presence);
if (!penalize_nl) {
for (size_t idx = 0; idx < cur_p.size; idx++) {
if (cur_p.data[idx].id == llama_token_nl(ctx)) {
cur_p.data[idx].logit = nl_logit;
break;
}
}
}
}
if (grammar != NULL) {
llama_sample_grammar(ctx, &cur_p, grammar);
}
if (temp <= 0) {
// Greedy sampling
id = llama_sample_token_greedy(ctx, &cur_p);
} else {
if (mirostat == 1) {
static float mirostat_mu = 2.0f * mirostat_tau;
const int mirostat_m = 100;
llama_sample_temperature(ctx, &cur_p, temp);
id = llama_sample_token_mirostat(ctx, &cur_p, mirostat_tau, mirostat_eta, mirostat_m, &mirostat_mu);
} else if (mirostat == 2) {
static float mirostat_mu = 2.0f * mirostat_tau;
llama_sample_temperature(ctx, &cur_p, temp);
id = llama_sample_token_mirostat_v2(ctx, &cur_p, mirostat_tau, mirostat_eta, &mirostat_mu);
} else {
// Temperature sampling
llama_sample_top_k (ctx, &cur_p, top_k, 1);
llama_sample_tail_free (ctx, &cur_p, tfs_z, 1);
llama_sample_typical (ctx, &cur_p, typical_p, 1);
llama_sample_top_p (ctx, &cur_p, top_p, 1);
llama_sample_temperature(ctx, &cur_p, temp);
{
const int n_top = 10;
LOG("top %d candidates:\n", n_top);
for (int i = 0; i < n_top; i++) {
const llama_token id = cur_p.data[i].id;
LOG(" - %5d: '%12s' (%.3f)\n", id, llama_token_to_piece(ctx, id).c_str(), cur_p.data[i].p);
}
}
id = llama_sample_token(ctx, &cur_p);
LOG("sampled token: %5d: '%s'\n", id, llama_token_to_piece(ctx, id).c_str());
}
}
// printf("`%d`", candidates_p.size);
if (grammar != NULL) {
llama_grammar_accept_token(ctx, grammar, id);
}
return id;
}
//
// YAML utils
//
// returns true if successful, false otherwise
bool create_directory_with_parents(const std::string & path) {
#ifdef _WIN32
@ -1064,6 +1211,7 @@ void dump_non_result_info_yaml(FILE * stream, const gpt_params & params, const l
fprintf(stream, "mirostat_lr: %f # default: 0.1\n", params.mirostat_eta);
fprintf(stream, "mlock: %s # default: false\n", params.use_mlock ? "true" : "false");
fprintf(stream, "model: %s # default: models/7B/ggml-model.bin\n", params.model.c_str());
fprintf(stream, "model_draft: %s # default:\n", params.model_draft.c_str());
fprintf(stream, "mtest: %s # default: false\n", params.mem_test ? "true" : "false");
fprintf(stream, "multiline_input: %s # default: false\n", params.multiline_input ? "true" : "false");
fprintf(stream, "n_gpu_layers: %d # default: -1\n", params.n_gpu_layers);

View File

@ -32,6 +32,7 @@ struct gpt_params {
int32_t n_ctx = 512; // context size
int32_t n_batch = 512; // batch size for prompt processing (must be >=32 to use BLAS)
int32_t n_keep = 0; // number of tokens to keep from initial prompt
int32_t n_draft = 16; // number of tokens to draft during speculative decoding
int32_t n_chunks = -1; // max number of chunks to process (-1 = unlimited)
int32_t n_gpu_layers = -1; // number of layers to store in VRAM (-1 - use default)
int32_t main_gpu = 0; // the GPU that is used for scratch and small tensors
@ -63,6 +64,7 @@ struct gpt_params {
float cfg_scale = 1.f; // How strong is guidance
std::string model = "models/7B/ggml-model-f16.gguf"; // model path
std::string model_draft = ""; // draft model for speculative decoding
std::string model_alias = "unknown"; // model alias
std::string prompt = "";
std::string path_prompt_cache = ""; // path to file for saving/loading prompt eval state
@ -156,6 +158,40 @@ std::string llama_detokenize_bpe(
llama_context * ctx,
const std::vector<llama_token> & tokens);
//
// Sampling utils
//
// this is a common sampling function used across the examples for convenience
// it can serve as a starting point for implementing your own sampling function
//
// required:
// - ctx: context to use for sampling
// - params: sampling parameters
//
// optional:
// - ctx_guidance: context to use for classifier-free guidance, ignore if NULL
// - grammar: grammar to use for sampling, ignore if NULL
// - last_tokens: needed for repetition penalty, ignore if empty
// - idx: sample from llama_get_logits(ctx) + idx * n_vocab
//
// returns:
// - token: sampled token
// - candidates: vector of candidate tokens
//
llama_token llama_sample_token(
struct llama_context * ctx,
struct llama_context * ctx_guidance,
struct llama_grammar * grammar,
const struct gpt_params & params,
const std::vector<llama_token> & last_tokens,
std::vector<llama_token_data> & candidates,
int idx = 0);
//
// YAML utils
//
bool create_directory_with_parents(const std::string & path);
void dump_vector_float_yaml(FILE * stream, const char * prop_name, const std::vector<float> & data);
void dump_vector_int_yaml(FILE * stream, const char * prop_name, const std::vector<int> & data);

View File

@ -23,6 +23,7 @@ else()
add_subdirectory(train-text-from-scratch)
add_subdirectory(convert-llama2c-to-ggml)
add_subdirectory(simple)
add_subdirectory(speculative)
add_subdirectory(embd-input)
add_subdirectory(llama-bench)
add_subdirectory(beam-search)

0
examples/llama-bench/llama-bench.cpp Executable file → Normal file
View File

View File

@ -116,7 +116,7 @@ int main(int argc, char ** argv) {
#ifndef LOG_DISABLE_LOGS
log_set_target(log_filename_generator("main", "log"));
LOG_TEE("Log start\n");
log_dump_cmdline(argc,argv);
log_dump_cmdline(argc, argv);
#endif // LOG_DISABLE_LOGS
// TODO: Dump params ?
@ -424,8 +424,9 @@ int main(int argc, char ** argv) {
LOG_TEE("generate: n_ctx = %d, n_batch = %d, n_predict = %d, n_keep = %d\n", n_ctx, params.n_batch, params.n_predict, params.n_keep);
LOG_TEE("\n\n");
struct llama_grammar * grammar = NULL;
grammar_parser::parse_state parsed_grammar;
llama_grammar * grammar = NULL;
if (!params.grammar.empty()) {
parsed_grammar = grammar_parser::parse(params.grammar.c_str());
// will be empty (default) if there are parse errors
@ -449,8 +450,8 @@ int main(int argc, char ** argv) {
}
// TODO: replace with ring-buffer
std::vector<llama_token> last_n_tokens(n_ctx);
std::fill(last_n_tokens.begin(), last_n_tokens.end(), 0);
std::vector<llama_token> last_tokens(n_ctx);
std::fill(last_tokens.begin(), last_tokens.end(), 0);
if (params.interactive) {
const char *control_message;
@ -491,13 +492,10 @@ int main(int argc, char ** argv) {
std::vector<llama_token> embd;
std::vector<llama_token> embd_guidance;
{
LOG("warming up the model with an empty run\n");
const int n_vocab = llama_n_vocab(ctx);
const std::vector<llama_token> tmp = { llama_token_bos(ctx), };
llama_eval(ctx, tmp.data(), tmp.size(), 0, params.n_threads);
llama_reset_timings(ctx);
}
std::vector<llama_token_data> candidates;
candidates.reserve(n_vocab);
while ((n_remain != 0 && !is_antiprompt) || params.interactive) {
// predict
@ -536,8 +534,8 @@ int main(int argc, char ** argv) {
LOG("after swap: n_past = %d, n_past_guidance = %d\n", n_past, n_past_guidance);
// insert n_left/2 tokens at the start of embd from last_n_tokens
embd.insert(embd.begin(), last_n_tokens.begin() + n_ctx - n_left/2 - embd.size(), last_n_tokens.end() - embd.size());
// insert n_left/2 tokens at the start of embd from last_tokens
embd.insert(embd.begin(), last_tokens.begin() + n_ctx - n_left/2 - embd.size(), last_tokens.end() - embd.size());
LOG("embd: %s\n", LOG_TOKENS_TOSTR_PRETTY(ctx, embd));
@ -636,20 +634,6 @@ int main(int argc, char ** argv) {
embd_guidance.clear();
if ((int) embd_inp.size() <= n_consumed && !is_interacting) {
const float temp = params.temp;
const int32_t top_k = params.top_k <= 0 ? llama_n_vocab(ctx) : params.top_k;
const float top_p = params.top_p;
const float tfs_z = params.tfs_z;
const float typical_p = params.typical_p;
const int32_t repeat_last_n = params.repeat_last_n < 0 ? n_ctx : params.repeat_last_n;
const float repeat_penalty = params.repeat_penalty;
const float alpha_presence = params.presence_penalty;
const float alpha_frequency = params.frequency_penalty;
const int mirostat = params.mirostat;
const float mirostat_tau = params.mirostat_tau;
const float mirostat_eta = params.mirostat_eta;
const bool penalize_nl = params.penalize_nl;
// optionally save the session on first sample (for faster prompt loading next time)
if (!path_session.empty() && need_to_save_session && !params.prompt_cache_ro) {
need_to_save_session = false;
@ -658,98 +642,12 @@ int main(int argc, char ** argv) {
LOG("saved session to %s\n", path_session.c_str());
}
llama_token id = 0;
const llama_token id = llama_sample_token(ctx, ctx_guidance, grammar, params, last_tokens, candidates);
{
auto logits = llama_get_logits(ctx);
auto n_vocab = llama_n_vocab(ctx);
last_tokens.erase(last_tokens.begin());
last_tokens.push_back(id);
// Apply params.logit_bias map
for (auto it = params.logit_bias.begin(); it != params.logit_bias.end(); it++) {
logits[it->first] += it->second;
}
std::vector<llama_token_data> candidates;
candidates.reserve(n_vocab);
for (llama_token token_id = 0; token_id < n_vocab; token_id++) {
candidates.emplace_back(llama_token_data{token_id, logits[token_id], 0.0f});
}
llama_token_data_array cur_p = { candidates.data(), candidates.size(), false };
if (ctx_guidance) {
llama_sample_classifier_free_guidance(ctx, &cur_p, ctx_guidance, params.cfg_scale);
}
// Apply penalties
float nl_logit = logits[llama_token_nl(ctx)];
auto last_n_repeat = std::min(std::min((int)last_n_tokens.size(), repeat_last_n), n_ctx);
llama_sample_repetition_penalty(ctx, &cur_p,
last_n_tokens.data() + last_n_tokens.size() - last_n_repeat,
last_n_repeat, repeat_penalty);
llama_sample_frequency_and_presence_penalties(ctx, &cur_p,
last_n_tokens.data() + last_n_tokens.size() - last_n_repeat,
last_n_repeat, alpha_frequency, alpha_presence);
if (!penalize_nl) {
for (size_t idx = 0; idx < cur_p.size; idx++) {
if (cur_p.data[idx].id == llama_token_nl(ctx)) {
cur_p.data[idx].logit = nl_logit;
break;
}
}
}
if (grammar != NULL) {
llama_sample_grammar(ctx, &cur_p, grammar);
}
if (temp <= 0) {
// Greedy sampling
id = llama_sample_token_greedy(ctx, &cur_p);
} else {
if (mirostat == 1) {
static float mirostat_mu = 2.0f * mirostat_tau;
const int mirostat_m = 100;
llama_sample_temperature(ctx, &cur_p, temp);
id = llama_sample_token_mirostat(ctx, &cur_p, mirostat_tau, mirostat_eta, mirostat_m, &mirostat_mu);
} else if (mirostat == 2) {
static float mirostat_mu = 2.0f * mirostat_tau;
llama_sample_temperature(ctx, &cur_p, temp);
id = llama_sample_token_mirostat_v2(ctx, &cur_p, mirostat_tau, mirostat_eta, &mirostat_mu);
} else {
// Temperature sampling
llama_sample_top_k (ctx, &cur_p, top_k, 1);
llama_sample_tail_free (ctx, &cur_p, tfs_z, 1);
llama_sample_typical (ctx, &cur_p, typical_p, 1);
llama_sample_top_p (ctx, &cur_p, top_p, 1);
llama_sample_temperature(ctx, &cur_p, temp);
{
const int n_top = 10;
LOG("top %d candidates:\n", n_top);
for (int i = 0; i < n_top; i++) {
const llama_token id = cur_p.data[i].id;
LOG(" - %5d: '%12s' (%.3f)\n", id, llama_token_to_piece(ctx, id).c_str(), cur_p.data[i].p);
}
}
id = llama_sample_token(ctx, &cur_p);
LOG("sampled token: %5d: '%s'\n", id, llama_token_to_piece(ctx, id).c_str());
}
}
// printf("`%d`", candidates_p.size);
if (grammar != NULL) {
llama_grammar_accept_token(ctx, grammar, id);
}
last_n_tokens.erase(last_n_tokens.begin());
last_n_tokens.push_back(id);
LOG("last: %s\n", LOG_TOKENS_TOSTR_PRETTY(ctx, last_n_tokens));
}
LOG("last: %s\n", LOG_TOKENS_TOSTR_PRETTY(ctx, last_tokens));
embd.push_back(id);
@ -765,8 +663,8 @@ int main(int argc, char ** argv) {
LOG("embd_inp.size(): %d, n_consumed: %d\n", (int) embd_inp.size(), n_consumed);
while ((int) embd_inp.size() > n_consumed) {
embd.push_back(embd_inp[n_consumed]);
last_n_tokens.erase(last_n_tokens.begin());
last_n_tokens.push_back(embd_inp[n_consumed]);
last_tokens.erase(last_tokens.begin());
last_tokens.push_back(embd_inp[n_consumed]);
++n_consumed;
if ((int) embd.size() >= params.n_batch) {
break;
@ -799,7 +697,7 @@ int main(int argc, char ** argv) {
// check for reverse prompt
if (params.antiprompt.size()) {
std::string last_output;
for (auto id : last_n_tokens) {
for (auto id : last_tokens) {
last_output += llama_token_to_piece(ctx, id);
}
@ -830,7 +728,7 @@ int main(int argc, char ** argv) {
}
// deal with end of text token in interactive mode
if (last_n_tokens.back() == llama_token_eos(ctx)) {
if (last_tokens.back() == llama_token_eos(ctx)) {
LOG("found EOS token\n");
if (params.interactive) {
@ -932,7 +830,7 @@ int main(int argc, char ** argv) {
if (grammar != NULL) {
llama_grammar_free(grammar);
std::vector<const llama_grammar_element *> grammar_rules( parsed_grammar.c_rules());
std::vector<const llama_grammar_element *> grammar_rules(parsed_grammar.c_rules());
grammar = llama_grammar_init(
grammar_rules.data(), grammar_rules.size(),
parsed_grammar.symbol_ids.at("root"));

File diff suppressed because it is too large Load Diff

View File

@ -145,7 +145,29 @@
color: #888;
}
@keyframes loading-bg-wipe {
0% {
background-position: 0%;
}
100% {
background-position: 100%;
}
}
.loading {
--loading-color-1: #eeeeee00;
--loading-color-2: #eeeeeeff;
background-size: 50% 100%;
background-image: linear-gradient(90deg, var(--loading-color-1), var(--loading-color-2), var(--loading-color-1));
animation: loading-bg-wipe 2s linear infinite;
}
@media (prefers-color-scheme: dark) {
.loading {
--loading-color-1: #22222200;
--loading-color-2: #222222ff;
}
.popover-content {
background-color: black;
}
@ -321,7 +343,10 @@
const llamaStats = signal(null)
const controller = signal(null)
const generating = computed(() => controller.value == null )
// currently generating a completion?
const generating = computed(() => controller.value != null)
// has the user started a chat?
const chatStarted = computed(() => session.value.transcript.length > 0)
const transcriptUpdate = (transcript) => {
@ -430,11 +455,19 @@
return html`
<form onsubmit=${submit}>
<div>
<textarea type="text" rows=2 onkeypress=${enterSubmits} value="${message}" oninput=${(e) => message.value = e.target.value} placeholder="Say something..."/>
<textarea
className=${generating.value ? "loading" : null}
oninput=${(e) => message.value = e.target.value}
onkeypress=${enterSubmits}
placeholder="Say something..."
rows=2
type="text"
value="${message}"
/>
</div>
<div class="right">
<button type="submit" disabled=${!generating.value} >Send</button>
<button onclick=${stop} disabled=${generating}>Stop</button>
<button type="submit" disabled=${generating.value}>Send</button>
<button onclick=${stop} disabled=${!generating.value}>Stop</button>
<button onclick=${reset}>Reset</button>
</div>
</form>

View File

@ -0,0 +1,8 @@
set(TARGET speculative)
add_executable(${TARGET} speculative.cpp)
install(TARGETS ${TARGET} RUNTIME)
target_link_libraries(${TARGET} PRIVATE common llama ${CMAKE_THREAD_LIBS_INIT})
target_compile_features(${TARGET} PRIVATE cxx_std_11)
if(TARGET BUILD_INFO)
add_dependencies(${TARGET} BUILD_INFO)
endif()

View File

@ -0,0 +1,234 @@
#ifndef _GNU_SOURCE
#define _GNU_SOURCE
#endif
#include "build-info.h"
#include "common.h"
#include "llama.h"
#include <cmath>
#include <cstdio>
#include <string>
#include <vector>
int main(int argc, char ** argv) {
gpt_params params;
if (gpt_params_parse(argc, argv, params) == false) {
return 1;
}
if (params.model_draft.empty()) {
fprintf(stderr, "%s: error: --model-draft is required\n", __func__);
return 1;
}
#ifndef LOG_DISABLE_LOGS
log_set_target(log_filename_generator("speculative", "log"));
LOG_TEE("Log start\n");
log_dump_cmdline(argc, argv);
#endif // LOG_DISABLE_LOGS
// init llama.cpp
llama_backend_init(params.numa);
llama_model * model_tgt = NULL;
llama_model * model_dft = NULL;
llama_context * ctx_tgt = NULL;
llama_context * ctx_dft = NULL;
// load the target model
params.perplexity = true; // HACK: enable logits_all = true
std::tie(model_tgt, ctx_tgt) = llama_init_from_gpt_params(params);
// load the draft model
params.model = params.model_draft;
std::tie(model_dft, ctx_dft) = llama_init_from_gpt_params(params);
// tokenize the prompt
std::vector<llama_token> inp;
inp = ::llama_tokenize(ctx_tgt, params.prompt, true);
const int max_context_size = llama_n_ctx(ctx_tgt);
const int max_tokens_list_size = max_context_size - 4;
if ((int) inp.size() > max_tokens_list_size) {
fprintf(stderr, "%s: error: prompt too long (%d tokens, max %d)\n", __func__, (int) inp.size(), max_tokens_list_size);
return 1;
}
fprintf(stderr, "\n\n");
for (auto id : inp) {
fprintf(stderr, "%s", llama_token_to_piece(ctx_tgt, id).c_str());
}
fflush(stderr);
const int n_input = inp.size();
const auto t_enc_start = ggml_time_us();
// eval the prompt with both models
llama_eval(ctx_tgt, inp.data(), int(inp.size() - 1), 0, params.n_threads);
llama_eval(ctx_tgt, &inp.back(), 1, inp.size() - 1, params.n_threads);
llama_eval(ctx_dft, inp.data(), int(inp.size()), 0, params.n_threads);
const auto t_enc_end = ggml_time_us();
// the 2 models should have the same vocab
const int n_ctx = llama_n_ctx(ctx_tgt);
const int n_vocab = llama_n_vocab(ctx_tgt);
//GGML_ASSERT(n_vocab == llama_n_vocab(ctx_dft));
// how many tokens to draft each time
const int n_draft = params.n_draft;
int n_predict = 0;
int n_drafted = 0;
int n_accept = 0;
int n_past_tgt = inp.size();
int n_past_dft = inp.size();
std::vector<llama_token> drafted;
std::vector<llama_token> last_tokens(n_ctx);
std::fill(last_tokens.begin(), last_tokens.end(), 0);
for (auto & id : inp) {
last_tokens.erase(last_tokens.begin());
last_tokens.push_back(id);
}
std::vector<llama_token_data> candidates;
candidates.reserve(n_vocab);
// used to determine end of generation
bool has_eos = false;
const auto t_dec_start = ggml_time_us();
while (true) {
LOG("drafted: %s\n", LOG_TOKENS_TOSTR_PRETTY(ctx_dft, drafted));
// sample from the drafted tokens if any
int i_dft = 0;
while (true) {
const llama_token id = llama_sample_token(ctx_tgt, NULL, NULL, params, last_tokens, candidates, i_dft);
last_tokens.erase(last_tokens.begin());
last_tokens.push_back(id);
//LOG("last: %s\n", LOG_TOKENS_TOSTR_PRETTY(ctx_tgt, last_tokens));
const std::string token_str = llama_token_to_piece(ctx_tgt, id);
printf("%s", token_str.c_str());
fflush(stdout);
if (id == llama_token_eos(ctx_tgt)) {
has_eos = true;
}
++n_predict;
if (i_dft < (int) drafted.size() && id == drafted[i_dft]) {
LOG("drafted token %d accepted\n", id);
++n_accept;
++n_past_tgt;
++n_past_dft;
++i_dft;
continue;
}
// the drafted token was rejected or we are out of drafted tokens
llama_eval(ctx_dft, &id, 1, n_past_dft, params.n_threads);
++n_past_dft;
drafted.clear();
drafted.push_back(id);
break;
}
if (n_predict > params.n_predict || has_eos) {
break;
}
// sample n_draft tokens from the draft model picking the best token
int n_past_cur = n_past_dft;
for (int i = 0; i < n_draft; ++i) {
float * logits = llama_get_logits(ctx_dft);
candidates.clear();
for (llama_token token_id = 0; token_id < n_vocab; token_id++) {
candidates.emplace_back(llama_token_data{token_id, logits[token_id], 0.0f});
}
llama_token_data_array cur_p = { candidates.data(), candidates.size(), false };
// computes softmax and sorts the candidates
llama_sample_softmax(ctx_dft, &cur_p);
for (int i = 0; i < 3; ++i) {
LOG(" - draft candidate %d: %d (%.3f)\n", i, cur_p.data[i].id, cur_p.data[i].p);
}
// too low probability, stop drafting
if (cur_p.data[0].p < 2*cur_p.data[1].p) {
break;
}
drafted.push_back(cur_p.data[0].id);
++n_drafted;
if (i < n_draft - 1) {
// evaluate the drafted token on the draft model
llama_eval(ctx_dft, &drafted.back(), 1, n_past_cur, params.n_threads);
++n_past_cur;
}
}
// evaluate the target model on the drafted tokens
llama_eval(ctx_tgt, drafted.data(), drafted.size(), n_past_tgt, params.n_threads);
++n_past_tgt;
drafted.erase(drafted.begin());
}
auto t_dec_end = ggml_time_us();
LOG_TEE("\n\n");
LOG_TEE("encoded %4d tokens in %8.3f seconds, speed: %8.3f t/s\n", n_input, (t_enc_end - t_enc_start) / 1e6f, inp.size() / ((t_enc_end - t_enc_start) / 1e6f));
LOG_TEE("decoded %4d tokens in %8.3f seconds, speed: %8.3f t/s\n", n_predict, (t_dec_end - t_dec_start) / 1e6f, n_predict / ((t_dec_end - t_dec_start) / 1e6f));
// TODO: make sure these numbers are computed correctly
LOG_TEE("\n");
LOG_TEE("n_draft = %d\n", n_draft);
LOG_TEE("n_predict = %d\n", n_predict);
LOG_TEE("n_drafted = %d\n", n_drafted);
LOG_TEE("n_accept = %d\n", n_accept);
LOG_TEE("accept = %.3f%%\n", 100.0f * n_accept / n_drafted);
LOG_TEE("\ndraft:\n");
llama_print_timings(ctx_dft);
LOG_TEE("\ntarget:\n");
llama_print_timings(ctx_tgt);
llama_free(ctx_tgt);
llama_free_model(model_tgt);
llama_free(ctx_dft);
llama_free_model(model_dft);
llama_backend_free();
fprintf(stderr, "\n\n");
return 0;
}

View File

@ -1,3 +1,8 @@
// defines MAP_ANONYMOUS
#ifndef _GNU_SOURCE
#define _GNU_SOURCE
#endif
#include "ggml-alloc.h"
#include "ggml.h"
#include <assert.h>
@ -6,6 +11,26 @@
#include <stdlib.h>
#include <string.h>
#ifdef __has_include
#if __has_include(<unistd.h>)
#include <unistd.h>
#if defined(_POSIX_MAPPED_FILES)
#include <sys/types.h>
#include <sys/mman.h>
#endif
#endif
#endif
#if defined(_WIN32)
#define WIN32_LEAN_AND_MEAN
#ifndef NOMINMAX
#define NOMINMAX
#endif
#include <windows.h>
#include <memoryapi.h>
#endif
#define UNUSED(x) (void)(x)
#define MAX(a, b) ((a) > (b) ? (a) : (b))
#define GGML_MAX_CONCUR (2*GGML_MAX_NODES)
@ -99,19 +124,24 @@ static void remove_allocated_tensor(struct ggml_allocr * alloc, struct ggml_tens
}
#endif
static size_t ggml_allocator_get_alloc_size(struct ggml_allocr * alloc, struct ggml_tensor * tensor) {
static size_t ggml_allocr_get_alloc_size(struct ggml_allocr * alloc, struct ggml_tensor * tensor) {
return ggml_nbytes(tensor);
UNUSED(alloc);
}
// check if a tensor is allocated by this buffer
static bool ggml_allocr_is_own(struct ggml_allocr * alloc, const struct ggml_tensor * tensor) {
void * ptr = tensor->data;
return ptr >= alloc->data && (char *)ptr < (char *)alloc->data + alloc->max_size;
}
void ggml_allocr_alloc(struct ggml_allocr * alloc, struct ggml_tensor * tensor) {
#ifdef GGML_ALLOCATOR_DEBUG
GGML_ASSERT(ggml_is_view(tensor) == false); // views generally get data pointer from one of their sources
GGML_ASSERT(tensor->data == NULL); // avoid allocating tensor which already has memory allocated
#endif
size_t size = ggml_allocator_get_alloc_size(alloc, tensor);
size_t size = ggml_allocr_get_alloc_size(alloc, tensor);
size = aligned_offset(NULL, size, alloc->alignment);
AT_PRINTF("%s: allocating %s (%zu bytes) - ", __func__, tensor->name, size);
@ -177,17 +207,17 @@ void ggml_allocr_alloc(struct ggml_allocr * alloc, struct ggml_tensor * tensor)
}
// this is a very naive implementation, but for our case the number of free blocks should be very small
static void ggml_allocator_free_tensor(struct ggml_allocr * alloc, struct ggml_tensor * tensor) {
static void ggml_allocr_free_tensor(struct ggml_allocr * alloc, struct ggml_tensor * tensor) {
void * ptr = tensor->data;
if (ptr < alloc->data || (char*)ptr >= (char*)alloc->data + alloc->max_size) {
if (ggml_allocr_is_own(alloc, tensor) == false) {
// the tensor was not allocated in this buffer
// this can happen because the graph allocator will try to free weights and other tensors from different buffers
// the easiest way to deal with this is just to ignore it
return;
}
size_t size = ggml_allocator_get_alloc_size(alloc, tensor);
size_t size = ggml_allocr_get_alloc_size(alloc, tensor);
size = aligned_offset(NULL, size, alloc->alignment);
AT_PRINTF("%s: freeing %s (%zu bytes) - n_free_blocks = %d\n", __func__, tensor->name, size, alloc->n_free_blocks);
@ -281,24 +311,64 @@ struct ggml_allocr * ggml_allocr_new(void * data, size_t size, size_t alignment)
return alloc;
}
// address and size of the buffer when measuring
// it needs to be large enough to fit all the tensors, but it cannot overlap with other existing buffers
static void * const MEASURE_BASE_ADDR = (void *) 0x1000;
#if defined(__ARM_NEON) && !defined(__aarch64__)
// 32-bit
// TODO: Use for 32-bit x86 as well
static const size_t MEASURE_MAX_SIZE = (1ULL<<32) - 1; // 4 GB
// OS specific functions to allocate and free uncommitted virtual memory
static void * alloc_vmem(size_t size) {
#if defined(_WIN32)
return VirtualAlloc(NULL, size, MEM_RESERVE, PAGE_NOACCESS);
#elif defined(_POSIX_MAPPED_FILES)
return mmap(NULL, size, PROT_NONE, MAP_PRIVATE | MAP_ANON, -1, 0);
#else
// 64-bit
static const size_t MEASURE_MAX_SIZE = 1ULL<<40; // 1 TB
// use a fixed address for other platforms
uintptr_t base_addr = (uintptr_t)-size - 0x100;
return (void *)base_addr;
#endif
}
static void free_vmem(void * base_addr, size_t size) {
#if defined(_WIN32)
VirtualFree(base_addr, 0, MEM_RELEASE);
UNUSED(size);
#elif defined(_POSIX_MAPPED_FILES)
munmap(base_addr, size);
#else
// nothing to do
UNUSED(base_addr);
UNUSED(size);
#endif
}
// allocate uncommitted virtual memory to measure the size of the graph
static void alloc_measure_vmem(void ** base_addr, size_t * size) {
// 1TB for 64-bit, 1GB for 32-bit
*size = sizeof(void *) == 4 ? 1ULL<<30 : 1ULL<<40;
do {
*base_addr = alloc_vmem(*size);
if (*base_addr != NULL) {
AT_PRINTF("allocated %.2f GB of virtual memory for measure buffer at %p\n", *size / 1024.0 / 1024.0 / 1024.0, *base_addr);
return;
}
// try again with half the size
*size /= 2;
} while (*size > 0);
GGML_ASSERT(!"failed to allocate virtual memory for measure buffer");
}
static void free_measure_vmem(void * base_addr, size_t size) {
free_vmem(base_addr, size);
}
struct ggml_allocr * ggml_allocr_new_measure(size_t alignment) {
struct ggml_allocr * alloc = (struct ggml_allocr *)malloc(sizeof(struct ggml_allocr) /* + n_free_blocks * sizeof(struct free_block) */);
void * base_addr;
size_t size;
alloc_measure_vmem(&base_addr, &size);
*alloc = (struct ggml_allocr){
/*.data = */ MEASURE_BASE_ADDR,
/*.size = */ MEASURE_MAX_SIZE,
/*.data = */ base_addr,
/*.size = */ size,
/*.alignment = */ alignment,
/*.n_free_blocks = */ 0,
/*.free_blocks = */ {{0}},
@ -318,6 +388,9 @@ struct ggml_allocr * ggml_allocr_new_measure(size_t alignment) {
}
void ggml_allocr_free(struct ggml_allocr * alloc) {
if (alloc->measure) {
free_measure_vmem(alloc->data, alloc->size);
}
free(alloc);
}
@ -387,8 +460,7 @@ static void allocate_node(struct ggml_allocr * alloc, struct ggml_tensor * node)
}
// if the node's data is external, then we cannot re-use it
if ((char *) parent->data < (char *) alloc->data ||
(char *) parent->data >= ((char *) alloc->data + alloc->size)) {
if (ggml_allocr_is_own(alloc, parent) == false) {
AT_PRINTF("not reusing parent %s for %s as %p is external\n", parent->name, node->name, parent->data);
continue;
}
@ -422,7 +494,7 @@ static void allocate_node(struct ggml_allocr * alloc, struct ggml_tensor * node)
}
}
static size_t ggml_allocator_alloc_graph_tensors_n(
static size_t ggml_allocr_alloc_graph_tensors_n(
struct ggml_allocr * alloc,
struct ggml_cgraph ** graphs, int n_graphs,
struct ggml_tensor *** inputs, struct ggml_tensor *** outputs) {
@ -500,11 +572,10 @@ static size_t ggml_allocator_alloc_graph_tensors_n(
AT_PRINTF("\n");
}
// update parents
// update immediately if there is no parse_seq
// update only at barriers if there is parse_seq
if ((alloc->parse_seq_len==0) || alloc->parse_seq[ind] == -1) {
if ((alloc->parse_seq_len == 0) || alloc->parse_seq[ind] == -1) {
int update_start = alloc->parse_seq_len ? last_barrier_pos : ind;
int update_end = alloc->parse_seq_len ? ind : ind + 1;
for (int i = update_start; i < update_end; i++) {
@ -528,12 +599,12 @@ static size_t ggml_allocator_alloc_graph_tensors_n(
view_src_hn->n_views -= 1;
AT_PRINTF("view_src %s: %d children, %d views\n", view_src->name, view_src_hn->n_children, view_src_hn->n_views);
if (view_src_hn->n_views == 0 && view_src_hn->n_children == 0 && view_src->data != node->data) {
ggml_allocator_free_tensor(alloc, view_src);
ggml_allocr_free_tensor(alloc, view_src);
}
}
else {
if (parent->data != node->data) {
ggml_allocator_free_tensor(alloc, parent);
ggml_allocr_free_tensor(alloc, parent);
}
}
}
@ -550,7 +621,7 @@ static size_t ggml_allocator_alloc_graph_tensors_n(
for (int i = 0; outputs[g][i] != NULL; i++) {
struct ggml_tensor * output = outputs[g][i];
AT_PRINTF("output: %s\n", output->name);
ggml_allocator_free_tensor(alloc, output);
ggml_allocr_free_tensor(alloc, output);
}
}
}
@ -559,5 +630,5 @@ static size_t ggml_allocator_alloc_graph_tensors_n(
}
size_t ggml_allocr_alloc_graph(struct ggml_allocr * alloc, struct ggml_cgraph * graph) {
return ggml_allocator_alloc_graph_tensors_n(alloc, &graph, 1, NULL, NULL);
return ggml_allocr_alloc_graph_tensors_n(alloc, &graph, 1, NULL, NULL);
}

View File

@ -464,58 +464,91 @@ static __global__ void silu_f32(const float * x, float * dst, const int k) {
dst[i] = x[i] / (1.0f + expf(-x[i]));
}
static __device__ __forceinline__ float2 warp_reduce_sum(float2 a) {
#pragma unroll
for (int mask = 16; mask > 0; mask >>= 1) {
a.x += __shfl_xor_sync(0xffffffff, a.x, mask, 32);
a.y += __shfl_xor_sync(0xffffffff, a.y, mask, 32);
}
return a;
}
template <int block_size>
static __global__ void norm_f32(const float * x, float * dst, const int ncols) {
const int row = blockIdx.x*blockDim.y + threadIdx.y;
const int tid = threadIdx.x;
const float eps = 1e-5f;
float mean = 0.0f;
float var = 0.0f;
float2 mean_var = make_float2(0.f, 0.f);
for (int col = tid; col < ncols; col += WARP_SIZE) {
for (int col = tid; col < ncols; col += block_size) {
const float xi = x[row*ncols + col];
mean += xi;
var += xi * xi;
mean_var.x += xi;
mean_var.y += xi * xi;
}
// sum up partial sums
#pragma unroll
for (int mask = 16; mask > 0; mask >>= 1) {
mean += __shfl_xor_sync(0xffffffff, mean, mask, 32);
var += __shfl_xor_sync(0xffffffff, var, mask, 32);
mean_var = warp_reduce_sum(mean_var);
if (block_size > WARP_SIZE) {
__shared__ float2 s_sum[32];
int warp_id = threadIdx.x / WARP_SIZE;
int lane_id = threadIdx.x % WARP_SIZE;
if (lane_id == 0) {
s_sum[warp_id] = mean_var;
}
__syncthreads();
mean_var = s_sum[lane_id];
mean_var = warp_reduce_sum(mean_var);
}
mean /= ncols;
var = var / ncols - mean * mean;
const float inv_var = rsqrtf(var + eps);
const float mean = mean_var.x / ncols;
const float var = mean_var.y / ncols - mean * mean;
const float inv_std = rsqrtf(var + eps);
for (int col = tid; col < ncols; col += WARP_SIZE) {
dst[row*ncols + col] = (x[row*ncols + col] - mean) * inv_var;
for (int col = tid; col < ncols; col += block_size) {
dst[row*ncols + col] = (x[row*ncols + col] - mean) * inv_std;
}
}
static __device__ __forceinline__ float warp_reduce_sum(float x) {
#pragma unroll
for (int mask = 16; mask > 0; mask >>= 1) {
x += __shfl_xor_sync(0xffffffff, x, mask, 32);
}
return x;
}
template <int block_size>
static __global__ void rms_norm_f32(const float * x, float * dst, const int ncols, const float eps) {
const int row = blockIdx.x*blockDim.y + threadIdx.y;
const int tid = threadIdx.x;
float tmp = 0.0f; // partial sum for thread in warp
for (int col = tid; col < ncols; col += WARP_SIZE) {
for (int col = tid; col < ncols; col += block_size) {
const float xi = x[row*ncols + col];
tmp += xi * xi;
}
// sum up partial sums
#pragma unroll
for (int mask = 16; mask > 0; mask >>= 1) {
tmp += __shfl_xor_sync(0xffffffff, tmp, mask, 32);
tmp = warp_reduce_sum(tmp);
if (block_size > WARP_SIZE) {
__shared__ float s_sum[32];
int warp_id = threadIdx.x / WARP_SIZE;
int lane_id = threadIdx.x % WARP_SIZE;
if (lane_id == 0) {
s_sum[warp_id] = tmp;
}
__syncthreads();
tmp = s_sum[lane_id];
tmp = warp_reduce_sum(tmp);
}
const float mean = tmp / ncols;
const float scale = rsqrtf(mean + eps);
for (int col = tid; col < ncols; col += WARP_SIZE) {
for (int col = tid; col < ncols; col += block_size) {
dst[row*ncols + col] = scale * x[row*ncols + col];
}
}
@ -4203,14 +4236,24 @@ static void silu_f32_cuda(const float * x, float * dst, const int k, cudaStream_
static void norm_f32_cuda(const float * x, float * dst, const int ncols, const int nrows, cudaStream_t stream) {
GGML_ASSERT(ncols % WARP_SIZE == 0);
const dim3 block_dims(WARP_SIZE, 1, 1);
norm_f32<<<nrows, block_dims, 0, stream>>>(x, dst, ncols);
if (ncols < 1024) {
const dim3 block_dims(WARP_SIZE, 1, 1);
norm_f32<WARP_SIZE><<<nrows, block_dims, 0, stream>>>(x, dst, ncols);
} else {
const dim3 block_dims(1024, 1, 1);
norm_f32<1024><<<nrows, block_dims, 0, stream>>>(x, dst, ncols);
}
}
static void rms_norm_f32_cuda(const float * x, float * dst, const int ncols, const int nrows, const float eps, cudaStream_t stream) {
GGML_ASSERT(ncols % WARP_SIZE == 0);
const dim3 block_dims(WARP_SIZE, 1, 1);
rms_norm_f32<<<nrows, block_dims, 0, stream>>>(x, dst, ncols, eps);
if (ncols < 1024) {
const dim3 block_dims(WARP_SIZE, 1, 1);
rms_norm_f32<WARP_SIZE><<<nrows, block_dims, 0, stream>>>(x, dst, ncols, eps);
} else {
const dim3 block_dims(1024, 1, 1);
rms_norm_f32<1024><<<nrows, block_dims, 0, stream>>>(x, dst, ncols, eps);
}
}
static void quantize_row_q8_1_cuda(const float * x, void * vy, const int kx, const int ky, const int kx_padded, cudaStream_t stream) {

View File

@ -76,6 +76,7 @@ struct ggml_metal_context {
GGML_METAL_DECL_KERNEL(rms_norm);
GGML_METAL_DECL_KERNEL(norm);
GGML_METAL_DECL_KERNEL(mul_mat_f16_f32);
GGML_METAL_DECL_KERNEL(mul_mat_f16_f32_1row);
GGML_METAL_DECL_KERNEL(mul_mat_q4_0_f32);
GGML_METAL_DECL_KERNEL(mul_mat_q4_1_f32);
GGML_METAL_DECL_KERNEL(mul_mat_q8_0_f32);
@ -219,6 +220,7 @@ struct ggml_metal_context * ggml_metal_init(int n_cb) {
GGML_METAL_ADD_KERNEL(rms_norm);
GGML_METAL_ADD_KERNEL(norm);
GGML_METAL_ADD_KERNEL(mul_mat_f16_f32);
GGML_METAL_ADD_KERNEL(mul_mat_f16_f32_1row);
GGML_METAL_ADD_KERNEL(mul_mat_q4_0_f32);
GGML_METAL_ADD_KERNEL(mul_mat_q4_1_f32);
GGML_METAL_ADD_KERNEL(mul_mat_q8_0_f32);
@ -284,6 +286,7 @@ void ggml_metal_free(struct ggml_metal_context * ctx) {
GGML_METAL_DEL_KERNEL(rms_norm);
GGML_METAL_DEL_KERNEL(norm);
GGML_METAL_DEL_KERNEL(mul_mat_f16_f32);
GGML_METAL_DEL_KERNEL(mul_mat_f16_f32_1row);
GGML_METAL_DEL_KERNEL(mul_mat_q4_0_f32);
GGML_METAL_DEL_KERNEL(mul_mat_q4_1_f32);
GGML_METAL_DEL_KERNEL(mul_mat_q8_0_f32);
@ -868,7 +871,11 @@ void ggml_metal_graph_compute(
{
nth0 = 32;
nth1 = 1;
[encoder setComputePipelineState:ctx->pipeline_mul_mat_f16_f32];
if (ne11 * ne12 < 4) {
[encoder setComputePipelineState:ctx->pipeline_mul_mat_f16_f32_1row];
} else {
[encoder setComputePipelineState:ctx->pipeline_mul_mat_f16_f32];
}
} break;
case GGML_TYPE_Q4_0:
{
@ -920,8 +927,8 @@ void ggml_metal_graph_compute(
GGML_ASSERT(ne02 == 1);
GGML_ASSERT(ne12 == 1);
nth0 = 2;
nth1 = 32;
nth0 = 4; //1;
nth1 = 8; //32;
[encoder setComputePipelineState:ctx->pipeline_mul_mat_q4_K_f32];
} break;
case GGML_TYPE_Q5_K:
@ -969,9 +976,12 @@ void ggml_metal_graph_compute(
[encoder setBytes:&gqa length:sizeof(gqa) atIndex:17];
if (src0t == GGML_TYPE_Q4_0 || src0t == GGML_TYPE_Q4_1 || src0t == GGML_TYPE_Q8_0 ||
src0t == GGML_TYPE_Q2_K || src0t == GGML_TYPE_Q4_K) {
src0t == GGML_TYPE_Q2_K) {// || src0t == GGML_TYPE_Q4_K) {
[encoder dispatchThreadgroups:MTLSizeMake((ne01 + 7)/8, ne11, ne12) threadsPerThreadgroup:MTLSizeMake(nth0, nth1, 1)];
}
else if (src0t == GGML_TYPE_Q4_K) {
[encoder dispatchThreadgroups:MTLSizeMake((ne01 + 3)/4, ne11, ne12) threadsPerThreadgroup:MTLSizeMake(nth0, nth1, 1)];
}
else if (src0t == GGML_TYPE_Q3_K) {
#ifdef GGML_QKK_64
[encoder dispatchThreadgroups:MTLSizeMake((ne01 + 1)/2, ne11, ne12) threadsPerThreadgroup:MTLSizeMake(nth0, nth1, 1)];
@ -985,8 +995,8 @@ void ggml_metal_graph_compute(
else if (src0t == GGML_TYPE_Q6_K) {
[encoder dispatchThreadgroups:MTLSizeMake((ne01 + 1)/2, ne11, ne12) threadsPerThreadgroup:MTLSizeMake(nth0, nth1, 1)];
} else {
[encoder setThreadgroupMemoryLength:nth0*sizeof(float) atIndex:0];
[encoder dispatchThreadgroups:MTLSizeMake(ne01, ne11, ne12) threadsPerThreadgroup:MTLSizeMake(nth0, nth1, 1)];
int64_t ny = (ne11 + 3)/4;
[encoder dispatchThreadgroups:MTLSizeMake(ne01, ny, ne12) threadsPerThreadgroup:MTLSizeMake(nth0, nth1, 1)];
}
}
} break;

View File

@ -133,19 +133,24 @@ kernel void kernel_soft_max(
threadgroup_barrier(mem_flags::mem_threadgroup);
}
// broadcast
if (tpitg[0] == 0) {
buf[0] = buf[0];
}
//// broadcast - not needed. There is a threadgroup barrier above in the last iteration of
// the loop, and when that is done, buf[0] has the correct (synchronized) value
//if (tpitg[0] == 0) {
// buf[0] = buf[0];
//}
threadgroup_barrier(mem_flags::mem_threadgroup);
//threadgroup_barrier(mem_flags::mem_threadgroup);
const float max = buf[0];
// parallel sum
buf[tpitg[0]] = 0.0f;
for (int i00 = tpitg[0]; i00 < ne00; i00 += ntg[0]) {
buf[tpitg[0]] += exp(psrc0[i00] - max);
const float exp_psrc0 = exp(psrc0[i00] - max);
buf[tpitg[0]] += exp_psrc0;
// Remember the result of exp here. exp is expensive, so we really do not
// whish to compute it twice.
pdst[i00] = exp_psrc0;
}
// reduce
@ -157,17 +162,18 @@ kernel void kernel_soft_max(
threadgroup_barrier(mem_flags::mem_threadgroup);
}
// broadcast
if (tpitg[0] == 0) {
buf[0] = buf[0];
}
// broadcast - not needed, see above
//// broadcast
//if (tpitg[0] == 0) {
// buf[0] = buf[0];
//}
threadgroup_barrier(mem_flags::mem_threadgroup);
//threadgroup_barrier(mem_flags::mem_threadgroup);
const float sum = buf[0];
for (int i00 = tpitg[0]; i00 < ne00; i00 += ntg[0]) {
pdst[i00] = exp(psrc0[i00] - max) / sum;
pdst[i00] /= sum;
}
}
@ -214,25 +220,27 @@ kernel void kernel_norm(
}
threadgroup_barrier(mem_flags::mem_threadgroup);
}
// broadcast
if (tpitg == 0) {
sum[0] /= ne00;
}
threadgroup_barrier(mem_flags::mem_threadgroup);
//// broadcast
//if (tpitg == 0) {
// sum[0] /= ne00;
//}
//threadgroup_barrier(mem_flags::mem_threadgroup);
const float mean = sum[0];
// recenter
// recenter and VARIANCE
device float * y = dst + tgpig*ne00;
for (int i00 = tpitg; i00 < ne00; i00 += ntg) {
y[i00] = x[i00] - mean;
}
// VARIANCE
// parallel sum
sum[tpitg] = 0.0f;
for (int i00 = tpitg; i00 < ne00; i00 += ntg) {
y[i00] = x[i00] - mean;
sum[tpitg] += y[i00] * y[i00];
}
//// VARIANCE
//// parallel sum
//sum[tpitg] = 0.0f;
//for (int i00 = tpitg; i00 < ne00; i00 += ntg) {
// sum[tpitg] += y[i00] * y[i00];
//}
// reduce
threadgroup_barrier(mem_flags::mem_threadgroup);
for (uint i = ntg/2; i > 0; i /= 2) {
@ -241,11 +249,11 @@ kernel void kernel_norm(
}
threadgroup_barrier(mem_flags::mem_threadgroup);
}
// broadcast
if (tpitg == 0) {
sum[0] /= ne00;
}
threadgroup_barrier(mem_flags::mem_threadgroup);
//// broadcast
//if (tpitg == 0) {
// sum[0] /= ne00;
//}
//threadgroup_barrier(mem_flags::mem_threadgroup);
const float variance = sum[0];
const float scale = 1.0f/sqrt(variance + eps);
@ -435,6 +443,8 @@ kernel void kernel_mul_mat_q4_1_f32(
mul_vec_q_n_f32<block_q4_1, N_DST, N_SIMDGROUP, N_SIMDWIDTH>(src0,src1,dst,ne00,ne01,ne02,ne10,ne12,ne0,ne1,gqa,tgpig,tiisg,sgitg);
}
#define NB_Q8_0 8
kernel void kernel_mul_mat_q8_0_f32(
device const void * src0,
device const float * src1,
@ -463,30 +473,30 @@ kernel void kernel_mul_mat_q8_0_f32(
device const block_q8_0 * x = (device const block_q8_0 *) src0 + offset0;
device const float * y = (device const float *) src1 + r1*ne10 + im*ne00*ne1;
float yl[16];
float yl[NB_Q8_0];
float sumf[nr]={0.f};
const int ix = tiisg/2;
const int il = tiisg%2;
const int ix = tiisg/4;
const int il = tiisg%4;
device const float * yb = y + ix * QK8_0 + 16*il;
device const float * yb = y + ix * QK8_0 + NB_Q8_0*il;
// each thread in a SIMD group deals with half a block.
for (int ib = ix; ib < nb; ib += nw/2) {
for (int i = 0; i < 16; ++i) {
// each thread in a SIMD group deals with NB_Q8_0 quants at a time
for (int ib = ix; ib < nb; ib += nw/4) {
for (int i = 0; i < NB_Q8_0; ++i) {
yl[i] = yb[i];
}
for (int row = 0; row < nr; row++) {
device const int8_t * qs = x[ib+row*nb].qs + 16*il;
device const int8_t * qs = x[ib+row*nb].qs + NB_Q8_0*il;
float sumq = 0.f;
for (int iq = 0; iq < 16; ++iq) {
for (int iq = 0; iq < NB_Q8_0; ++iq) {
sumq += qs[iq] * yl[iq];
}
sumf[row] += sumq*x[ib+row*nb].d;
}
yb += QK8_0 * 16;
yb += NB_Q8_0 * nw;
}
for (int row = 0; row < nr; ++row) {
@ -497,6 +507,60 @@ kernel void kernel_mul_mat_q8_0_f32(
}
}
kernel void kernel_mul_mat_f16_f32_1row(
device const char * src0,
device const char * src1,
device float * dst,
constant int64_t & ne00,
constant int64_t & ne01,
constant int64_t & ne02,
constant uint64_t & nb00,
constant uint64_t & nb01,
constant uint64_t & nb02,
constant int64_t & ne10,
constant int64_t & ne11,
constant int64_t & ne12,
constant uint64_t & nb10,
constant uint64_t & nb11,
constant uint64_t & nb12,
constant int64_t & ne0,
constant int64_t & ne1,
uint3 tgpig[[threadgroup_position_in_grid]],
uint tiisg[[thread_index_in_simdgroup]]) {
const int64_t r0 = tgpig.x;
const int64_t r1 = tgpig.y;
const int64_t im = tgpig.z;
device const half * x = (device const half *) (src0 + r0*nb01 + im/(ne12/ne02)*nb02);
device const float * y = (device const float *) (src1 + r1*nb11 + im*nb12);
float sumf = 0;
if (ne00 < 128) {
for (int i = tiisg; i < ne00; i += 32) {
sumf += (float) x[i] * (float) y[i];
}
float all_sum = simd_sum(sumf);
if (tiisg == 0) {
dst[im*ne1*ne0 + r1*ne0 + r0] = all_sum;
}
} else {
device const half4 * x4 = (device const half4 *) x;
device const float4 * y4 = (device const float4 *) y;
for (int i = tiisg; i < ne00/4; i += 32) {
for (int k = 0; k < 4; ++k) sumf += (float)x4[i][k] * y4[i][k];
}
float all_sum = simd_sum(sumf);
if (tiisg == 0) {
for (int i = 4*(ne00/4); i < ne00; ++i) all_sum += (float) x[i] * y[i];
dst[im*ne1*ne0 + r1*ne0 + r0] = all_sum;
}
}
}
#define N_F16_F32 4
kernel void kernel_mul_mat_f16_f32(
device const char * src0,
device const char * src1,
@ -515,55 +579,58 @@ kernel void kernel_mul_mat_f16_f32(
constant uint64_t & nb12,
constant int64_t & ne0,
constant int64_t & ne1,
threadgroup float * sum [[threadgroup(0)]],
uint3 tgpig[[threadgroup_position_in_grid]],
uint3 tpig[[thread_position_in_grid]],
uint3 tpitg[[thread_position_in_threadgroup]],
uint3 tptg[[threads_per_threadgroup]]) {
uint tiisg[[thread_index_in_simdgroup]]) {
const int64_t r0 = tgpig.x;
const int64_t r1 = tgpig.y;
const int64_t rb = tgpig.y*N_F16_F32;
const int64_t im = tgpig.z;
device const half * x = (device const half *) (src0 + r0*nb01 + im/(ne12/ne02)*nb02);
device const float * y = (device const float *) (src1 + r1*nb11 + im*nb12);
device const half * x = (device const half *) (src0 + r0*nb01 + im/(ne12/ne02)*nb02);
uint ith = tpitg.x;
uint nth = tptg.x;
if (ne00 < 128) {
for (int row = 0; row < N_F16_F32; ++row) {
int r1 = rb + row;
if (r1 >= ne11) {
break;
}
sum[ith] = 0.0f;
device const float * y = (device const float *) (src1 + r1*nb11 + im*nb12);
for (int i = ith; i < ne00; i += nth) {
sum[ith] += (float) x[i] * (float) y[i];
float sumf = 0;
for (int i = tiisg; i < ne00; i += 32) {
sumf += (float) x[i] * (float) y[i];
}
float all_sum = simd_sum(sumf);
if (tiisg == 0) {
dst[im*ne1*ne0 + r1*ne0 + r0] = all_sum;
}
}
} else {
device const half4 * x4 = (device const half4 *)x;
for (int row = 0; row < N_F16_F32; ++row) {
int r1 = rb + row;
if (r1 >= ne11) {
break;
}
device const float * y = (device const float *) (src1 + r1*nb11 + im*nb12);
device const float4 * y4 = (device const float4 *) y;
float sumf = 0;
for (int i = tiisg; i < ne00/4; i += 32) {
for (int k = 0; k < 4; ++k) sumf += (float) x4[i][k] * y4[i][k];
}
float all_sum = simd_sum(sumf);
if (tiisg == 0) {
for (int i = 4*(ne00/4); i < ne00; ++i) all_sum += (float) x[i] * y[i];
dst[im*ne1*ne0 + r1*ne0 + r0] = all_sum;
}
}
}
// accumulate the sum from all threads in the threadgroup
threadgroup_barrier(mem_flags::mem_threadgroup);
if (ith%4 == 0) {
for (int i = 1; i < 4; ++i) sum[ith] += sum[ith + i];
}
threadgroup_barrier(mem_flags::mem_threadgroup);
if (ith%16 == 0) {
for (int i = 4; i < 16; i += 4) sum[ith] += sum[ith + i];
}
threadgroup_barrier(mem_flags::mem_threadgroup);
if (ith == 0) {
for (int i = 16; i < nth; i += 16) sum[0] += sum[i];
dst[im*ne1*ne0 + r1*ne0 + r0] = sum[0];
}
// Original implementation. Left behind commented out for now
//threadgroup_barrier(mem_flags::mem_threadgroup);
//for (uint i = tptg.x/2; i > 0; i /= 2) {
// if (tpitg.x < i) {
// sum[tpitg.x] += sum[tpitg.x + i];
// }
// threadgroup_barrier(mem_flags::mem_threadgroup);
//}
//
//if (tpitg.x == 0) {
// dst[im*ne1*ne0 + r1*ne0 + r0] = sum[0];
//}
}
kernel void kernel_alibi_f32(
@ -1262,7 +1329,8 @@ kernel void kernel_mul_mat_q4_K_f32(
const int r0 = tgpig.x;
const int r1 = tgpig.y;
const int r2 = tgpig.z;
const int first_row = (r0 * N_SIMDGROUP + sgitg) * N_DST;
//const int first_row = (r0 * N_SIMDGROUP + sgitg) * N_DST;
const int first_row = r0 * N_DST;
const int ib_row = first_row * nb;
const uint offset0 = r2/gqa*(nb*ne0);
device const block_q4_K * x = (device const block_q4_K *) src0 + ib_row + offset0;

View File

@ -1334,7 +1334,7 @@ void ggml_cl_free_data(const struct ggml_tensor* tensor) {
return;
}
cl_mem mem = (cl_mem)tensor->data;
cl_mem mem = (cl_mem)tensor->extra;
clReleaseMemObject(mem);
}
@ -1393,7 +1393,7 @@ static void ggml_cl_mul_f32(const ggml_tensor * src0, const ggml_tensor * src1,
size_t d_size;
cl_mem d_X = ggml_cl_pool_malloc(ne0 * sizeof(float), &x_size); // src0
cl_mem d_Y = (cl_mem) src1->data; // src1 is already on device, broadcasted.
cl_mem d_Y = (cl_mem) src1->extra; // src1 is already on device, broadcasted.
cl_mem d_D = ggml_cl_pool_malloc(ne0 * sizeof(float), &d_size); // dst
@ -1491,9 +1491,9 @@ static void ggml_cl_mul_mat_f32(const ggml_tensor * src0, const ggml_tensor * sr
size_t d_size;
cl_mem d_X;
if (src0->backend == GGML_BACKEND_GPU) { // NOLINT
d_X = (cl_mem) src0->data;
d_X = (cl_mem) src0->extra;
} else {
d_X = ggml_cl_pool_malloc(sizeof(ggml_fp16_t) * x_ne, &x_size);
d_X = ggml_cl_pool_malloc(sizeof(float) * x_ne, &x_size);
}
cl_mem d_Y = ggml_cl_pool_malloc(sizeof(float) * y_ne, &y_size);
cl_mem d_D = ggml_cl_pool_malloc(sizeof(float) * d_ne, &d_size);
@ -1567,7 +1567,7 @@ static void ggml_cl_mul_mat_f16(const ggml_tensor * src0, const ggml_tensor * sr
size_t d_size;
cl_mem d_X;
if (src0->backend == GGML_BACKEND_GPU) { // NOLINT
d_X = (cl_mem) src0->data;
d_X = (cl_mem) src0->extra;
} else {
d_X = ggml_cl_pool_malloc(sizeof(ggml_fp16_t) * x_ne, &x_size);
}
@ -1697,7 +1697,7 @@ static void ggml_cl_mul_mat_q_f32(const ggml_tensor * src0, const ggml_tensor *
events.emplace_back();
CL_CHECK(ggml_cl_h2d_tensor_2d(queue, d_Q, 0, src0, i03, i02, events.data() + ev_idx++));
} else if (src0->backend == GGML_BACKEND_GPU) {
d_Q = (cl_mem) src0->data;
d_Q = (cl_mem) src0->extra;
} else {
GGML_ASSERT(false);
}
@ -1860,6 +1860,6 @@ void ggml_cl_transform_tensor(void * data, ggml_tensor * tensor) {
CL_CHECK(clFinish(queue));
tensor->data = dst;
tensor->extra = dst;
GGML_ASSERT(tensor->backend == GGML_BACKEND_GPU);
}

View File

@ -801,7 +801,7 @@ class SpecialVocab:
else:
continue
for maybe_token_id in (atok.get('id') for atok in added_tokens if atok.get('content') == tc_content):
if isinstance(maybe_token_id, int):
if isinstance(maybe_token_id, int) and maybe_token_id >= 0:
self.special_token_ids[typ] = maybe_token_id
break
return True
@ -814,7 +814,7 @@ class SpecialVocab:
config = json.load(f)
for typ in self.special_token_types:
maybe_token_id = config.get(f'{typ}_token_id')
if isinstance(maybe_token_id, int):
if isinstance(maybe_token_id, int) and maybe_token_id >= 0:
self.special_token_ids[typ] = maybe_token_id
return True

View File

@ -1,6 +1,6 @@
[tool.poetry]
name = "gguf"
version = "0.3.1"
version = "0.3.2"
description = "Write ML models in GGUF for GGML"
authors = ["GGML <ggml@ggml.ai>"]
packages = [

View File

@ -3366,9 +3366,15 @@ struct llm_tokenizer_bpe {
std::string byte_str(1, *j);
auto token_multibyte = vocab.token_to_id.find(byte_str);
if (token_multibyte == vocab.token_to_id.end()) {
fprintf(stderr,"ERROR: byte not found in vocab: '%s'\n", byte_str.c_str());
try {
llama_token token_byte = llama_byte_to_token(vocab, *j);
output.push_back(token_byte);
} catch (const std::out_of_range & err) {
fprintf(stderr,"ERROR: byte not found in vocab: '%s'\n", byte_str.c_str());
}
} else {
output.push_back((*token_multibyte).second);
}
output.push_back((*token_multibyte).second);
}
} else {
output.push_back((*token).second);