mirror of
https://github.com/ggerganov/llama.cpp.git
synced 2024-12-24 13:28:50 +01:00
benchmark-matmult : do not use integer abs() on a float (#3277)
This commit is contained in:
parent
80834daecf
commit
65c2c1c5ab
@ -21,7 +21,7 @@
|
|||||||
#pragma warning(disable: 4244 4267) // possible loss of data
|
#pragma warning(disable: 4244 4267) // possible loss of data
|
||||||
#endif
|
#endif
|
||||||
|
|
||||||
void ggml_graph_compute_helper(std::vector<uint8_t> & buf, ggml_cgraph * graph, int n_threads) {
|
static void ggml_graph_compute_helper(std::vector<uint8_t> & buf, ggml_cgraph * graph, int n_threads) {
|
||||||
struct ggml_cplan plan = ggml_graph_plan(graph, n_threads);
|
struct ggml_cplan plan = ggml_graph_plan(graph, n_threads);
|
||||||
|
|
||||||
if (plan.work_size > 0) {
|
if (plan.work_size > 0) {
|
||||||
@ -32,7 +32,7 @@ void ggml_graph_compute_helper(std::vector<uint8_t> & buf, ggml_cgraph * graph,
|
|||||||
ggml_graph_compute(graph, &plan);
|
ggml_graph_compute(graph, &plan);
|
||||||
}
|
}
|
||||||
|
|
||||||
float tensor_sum_elements(const ggml_tensor * tensor) {
|
static float tensor_sum_elements(const ggml_tensor * tensor) {
|
||||||
double sum = 0;
|
double sum = 0;
|
||||||
if (tensor->type == GGML_TYPE_F32) {
|
if (tensor->type == GGML_TYPE_F32) {
|
||||||
for (int j = 0; j < tensor->ne[1]; j++) {
|
for (int j = 0; j < tensor->ne[1]; j++) {
|
||||||
@ -44,7 +44,7 @@ float tensor_sum_elements(const ggml_tensor * tensor) {
|
|||||||
return sum;
|
return sum;
|
||||||
}
|
}
|
||||||
|
|
||||||
void tensor_dump(const ggml_tensor * tensor, const char * name) {
|
static void tensor_dump(const ggml_tensor * tensor, const char * name) {
|
||||||
printf("%15s: type = %i (%5s) ne = %5" PRIi64 " x %5" PRIi64 " x %5" PRIi64 ", nb = (%5zi, %5zi, %5zi) - ", name,
|
printf("%15s: type = %i (%5s) ne = %5" PRIi64 " x %5" PRIi64 " x %5" PRIi64 ", nb = (%5zi, %5zi, %5zi) - ", name,
|
||||||
tensor->type, ggml_type_name(tensor->type),
|
tensor->type, ggml_type_name(tensor->type),
|
||||||
tensor->ne[0], tensor->ne[1], tensor->ne[2], tensor->nb[0], tensor->nb[1], tensor->nb[2]);
|
tensor->ne[0], tensor->ne[1], tensor->ne[2], tensor->nb[0], tensor->nb[1], tensor->nb[2]);
|
||||||
@ -59,7 +59,7 @@ struct benchmark_params_struct {
|
|||||||
int32_t n_iterations = 10;
|
int32_t n_iterations = 10;
|
||||||
};
|
};
|
||||||
|
|
||||||
void print_usage(int /*argc*/, char ** argv, struct benchmark_params_struct params) {
|
static void print_usage(int /*argc*/, char ** argv, struct benchmark_params_struct params) {
|
||||||
fprintf(stderr, "usage: %s [options]\n", argv[0]);
|
fprintf(stderr, "usage: %s [options]\n", argv[0]);
|
||||||
fprintf(stderr, "\n");
|
fprintf(stderr, "\n");
|
||||||
fprintf(stderr, "options:\n");
|
fprintf(stderr, "options:\n");
|
||||||
@ -253,7 +253,7 @@ int main(int argc, char ** argv) {
|
|||||||
// Check that the matrix multiplication result is in the right ballpark
|
// Check that the matrix multiplication result is in the right ballpark
|
||||||
// We cannot use the exact value from the F32 multiplication because the quantizuation will be slightly different
|
// We cannot use the exact value from the F32 multiplication because the quantizuation will be slightly different
|
||||||
float sum_of_Q4_result = tensor_sum_elements(gf31.nodes[0]);
|
float sum_of_Q4_result = tensor_sum_elements(gf31.nodes[0]);
|
||||||
float delta = abs(sum_of_Q4_result - sum_of_F32_reference);
|
float delta = std::abs(sum_of_Q4_result - sum_of_F32_reference);
|
||||||
float allowed_delta = (sum_of_F32_reference) / 1000 / 1000; // Let's accept an epsilon of 10^-6
|
float allowed_delta = (sum_of_F32_reference) / 1000 / 1000; // Let's accept an epsilon of 10^-6
|
||||||
|
|
||||||
if (delta > allowed_delta) {
|
if (delta > allowed_delta) {
|
||||||
|
Loading…
Reference in New Issue
Block a user