mirror of
https://github.com/ggerganov/llama.cpp.git
synced 2025-01-11 21:10:24 +01:00
llava : fix MobileVLM (#6364)
* fix empty bug * Update MobileVLM-README.md added more results on devices * Update MobileVLM-README.md * Update MobileVLM-README.md * Update MobileVLM-README.md * Update MobileVLM-README.md * Update MobileVLM-README.md * Update MobileVLM-README.md * Update examples/llava/MobileVLM-README.md Co-authored-by: Georgi Gerganov <ggerganov@gmail.com> * Update MobileVLM-README.md remove gguf links --------- Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
This commit is contained in:
parent
0308f5e3d7
commit
66ba560256
@ -6,7 +6,7 @@ for more information, please go to [Meituan-AutoML/MobileVLM](https://github.com
|
|||||||
|
|
||||||
The implementation is based on llava, and is compatible with llava and mobileVLM. The usage is basically same as llava.
|
The implementation is based on llava, and is compatible with llava and mobileVLM. The usage is basically same as llava.
|
||||||
|
|
||||||
Notice: The overall process of model inference for both **MobileVLM** and **MobileVLM_V2** models is the same, but the process of model conversion is a little different. Therefore, using MobileVLM as an example, the different conversion step will be shown.
|
Notice: The overall process of model inference for both **MobileVLM** and **MobileVLM_V2** models is the same, but the process of model conversion is a little different. Therefore, using **MobileVLM-1.7B** as an example, the different conversion step will be shown.
|
||||||
|
|
||||||
## Usage
|
## Usage
|
||||||
Build with cmake or run `make llava-cli` to build it.
|
Build with cmake or run `make llava-cli` to build it.
|
||||||
@ -36,7 +36,7 @@ git clone https://huggingface.co/openai/clip-vit-large-patch14-336
|
|||||||
python ./examples/llava/llava-surgery.py -m path/to/MobileVLM-1.7B
|
python ./examples/llava/llava-surgery.py -m path/to/MobileVLM-1.7B
|
||||||
```
|
```
|
||||||
|
|
||||||
3. Use `convert-image-encoder-to-gguf.py` with `--projector-type ldp` (for **V2** the arg is `--projector-type ldpv2`) to convert the LLaVA image encoder to GGUF:
|
3. Use `convert-image-encoder-to-gguf.py` with `--projector-type ldp` (for **V2** please use `--projector-type ldpv2`) to convert the LLaVA image encoder to GGUF:
|
||||||
|
|
||||||
```sh
|
```sh
|
||||||
python ./examples/llava/convert-image-encoder-to-gguf \
|
python ./examples/llava/convert-image-encoder-to-gguf \
|
||||||
@ -78,7 +78,7 @@ cd examples/llava/android/build_64
|
|||||||
### run on Android
|
### run on Android
|
||||||
refer to `android/adb_run.sh`, modify resources' `name` and `path`
|
refer to `android/adb_run.sh`, modify resources' `name` and `path`
|
||||||
|
|
||||||
## some result on Android with `Snapdragon 888` chip
|
## Some result on Android with `Snapdragon 888` chip
|
||||||
### case 1
|
### case 1
|
||||||
**input**
|
**input**
|
||||||
```sh
|
```sh
|
||||||
@ -109,7 +109,6 @@ llama_print_timings: total time = 34731.93 ms
|
|||||||
--image /data/local/tmp/cat.jpeg \
|
--image /data/local/tmp/cat.jpeg \
|
||||||
-p "A chat between a curious user and an artificial intelligence assistant. The assistant gives helpful, detailed, and polite answers to the user's questions. USER: <image>\nWhat is in the image? ASSISTANT:"
|
-p "A chat between a curious user and an artificial intelligence assistant. The assistant gives helpful, detailed, and polite answers to the user's questions. USER: <image>\nWhat is in the image? ASSISTANT:"
|
||||||
```
|
```
|
||||||
|
|
||||||
**output**
|
**output**
|
||||||
```sh
|
```sh
|
||||||
encode_image_with_clip: image encoded in 21149.51 ms by CLIP ( 146.87 ms per image patch)
|
encode_image_with_clip: image encoded in 21149.51 ms by CLIP ( 146.87 ms per image patch)
|
||||||
@ -121,12 +120,82 @@ llama_print_timings: eval time = 1279.03 ms / 18 runs ( 71.06 m
|
|||||||
llama_print_timings: total time = 34570.79 ms
|
llama_print_timings: total time = 34570.79 ms
|
||||||
```
|
```
|
||||||
|
|
||||||
|
|
||||||
|
## Some result on Android with `Snapdragon 778G` chip
|
||||||
|
### MobileVLM-1.7B case
|
||||||
|
#### llava-cli release-b2005
|
||||||
|
**input**
|
||||||
|
```sh
|
||||||
|
/data/local/tmp/llava-cli \
|
||||||
|
-m /data/local/tmp/ggml-model-q4_k.gguf \
|
||||||
|
--mmproj /data/local/tmp/mmproj-model-f16.gguf \
|
||||||
|
-t 4 \
|
||||||
|
--image /data/local/tmp/many_llamas.jpeg \
|
||||||
|
-p "A chat between a curious user and an artificial intelligence assistant. The assistant gives helpful, detailed, and polite answers to the user's questions. USER: <image>\nWhat's that? ASSISTANT:"
|
||||||
|
```
|
||||||
|
**output**
|
||||||
|
```sh
|
||||||
|
encode_image_with_clip: image encoded in 18728.52 ms by CLIP ( 130.06 ms per image patch)
|
||||||
|
system_prompt: A chat between a curious user and an artificial intelligence assistant. The assistant gives helpful, detailed, and polite answers to the user's questions. USER:
|
||||||
|
user_prompt: \nWhat's that? ASSISTANT:
|
||||||
|
|
||||||
|
A group of llamas are standing in a green pasture.
|
||||||
|
|
||||||
|
llama_print_timings: load time = 20357.33 ms
|
||||||
|
llama_print_timings: sample time = 2.96 ms / 14 runs ( 0.21 ms per token, 4734.53 tokens per second)
|
||||||
|
llama_print_timings: prompt eval time = 8119.49 ms / 191 tokens ( 42.51 ms per token, 23.52 tokens per second)
|
||||||
|
llama_print_timings: eval time = 1005.75 ms / 14 runs ( 71.84 ms per token, 13.92 tokens per second)
|
||||||
|
llama_print_timings: total time = 28038.34 ms / 205 tokens
|
||||||
|
```
|
||||||
|
#### llava-cli latest-version
|
||||||
|
**input**
|
||||||
|
|
||||||
|
Just the same as above.
|
||||||
|
|
||||||
|
**output**(seems to be much slower)
|
||||||
|
```sh
|
||||||
|
encode_image_with_clip: image embedding created: 144 tokens
|
||||||
|
|
||||||
|
encode_image_with_clip: image encoded in 288268.88 ms by CLIP ( 2001.87 ms per image patch)
|
||||||
|
system_prompt: A chat between a curious user and an artificial intelligence assistant. The assistant gives helpful, detailed, and polite answers to the user's questions. USER:
|
||||||
|
user_prompt: \nWhat's that? ASSISTANT:
|
||||||
|
|
||||||
|
It is a group of sheep standing together in a grass field.
|
||||||
|
|
||||||
|
llama_print_timings: load time = 818120.91 ms
|
||||||
|
llama_print_timings: sample time = 3.44 ms / 14 runs ( 0.25 ms per token, 4067.40 tokens per second)
|
||||||
|
llama_print_timings: prompt eval time = 529274.69 ms / 191 tokens ( 2771.07 ms per token, 0.36 tokens per second)
|
||||||
|
llama_print_timings: eval time = 43894.02 ms / 13 runs ( 3376.46 ms per token, 0.30 tokens per second)
|
||||||
|
llama_print_timings: total time = 865441.76 ms / 204 tokens
|
||||||
|
```
|
||||||
|
### MobileVLM_V2-1.7B case
|
||||||
|
#### llava-cli release-2005b
|
||||||
|
**input**
|
||||||
|
|
||||||
|
Just the same as above.
|
||||||
|
|
||||||
|
**output**
|
||||||
|
```sh
|
||||||
|
encode_image_with_clip: image encoded in 20609.61 ms by CLIP ( 143.12 ms per image patch)
|
||||||
|
system_prompt: A chat between a curious user and an artificial intelligence assistant. The assistant gives helpful, detailed, and polite answers to the user's questions. USER:
|
||||||
|
user_prompt: \nWhat's that? ASSISTANT:
|
||||||
|
|
||||||
|
This image captures a lively scene of 20 llamas in motion on an expansive, grassy field. The llama is scattered across the landscape with some standing and others sitting down as if taking rest or observing their surroundings from different vantage points within this verdant setting.
|
||||||
|
|
||||||
|
The background offers glimpses into a picturesque town nestled amidst hills under an overcast sky, adding depth to the scene while also emphasizing that distance between these llama and human-made structures like houses or roads in which they roam freely without any barriers around them. The image is framed by text at both right angles on white backgrounds against a contrasting blue backdrop with green foliage, further drawing attention to the llamas amidst their natural habitat while also inviting viewers into this picturesque landscape within town limits of Alta Llama
|
||||||
|
|
||||||
|
llama_print_timings: load time = 22406.77 ms
|
||||||
|
llama_print_timings: sample time = 49.26 ms / 186 runs ( 0.26 ms per token, 3776.27 tokens per second)
|
||||||
|
llama_print_timings: prompt eval time = 9044.54 ms / 191 tokens ( 47.35 ms per token, 21.12 tokens per second)
|
||||||
|
llama_print_timings: eval time = 14497.49 ms / 186 runs ( 77.94 ms per token, 12.83 tokens per second)
|
||||||
|
llama_print_timings: total time = 44411.01 ms / 377 tokens
|
||||||
|
```
|
||||||
|
|
||||||
## Orin compile and run
|
## Orin compile and run
|
||||||
### compile
|
### compile
|
||||||
```sh
|
```sh
|
||||||
make LLAMA_CUDA=1 CUDA_DOCKER_ARCH=sm_87 LLAMA_CUDA_F16=1 -j 32
|
make LLAMA_CUDA=1 CUDA_DOCKER_ARCH=sm_87 LLAMA_CUDA_F16=1 -j 32
|
||||||
```
|
```
|
||||||
|
|
||||||
### run on Orin
|
### run on Orin
|
||||||
### case 1
|
### case 1
|
||||||
**input**
|
**input**
|
||||||
@ -175,8 +244,121 @@ llama_print_timings: eval time = 166.65 ms / 11 runs ( 15.15 m
|
|||||||
llama_print_timings: total time = 1365.47 ms / 243 tokens
|
llama_print_timings: total time = 1365.47 ms / 243 tokens
|
||||||
```
|
```
|
||||||
|
|
||||||
## Minor shortcomings
|
## Running on Intel(R) Core(TM) i7-10750H
|
||||||
The `n_patch` of output in `ldp` is 1/4 of the input. In order to implement quickly, we uniformly modified `clip_n_patches` function to a quarter. when counting the time consumption, the calculated time will be 4 times bigger than the real cost.
|
### Operating system
|
||||||
|
Ubuntu22.04
|
||||||
|
### compile
|
||||||
|
```sh
|
||||||
|
make -j32
|
||||||
|
```
|
||||||
|
### MobileVLM-1.7B case
|
||||||
|
**input**
|
||||||
|
```sh
|
||||||
|
-m /path/to/ggml-model-q4_k.gguf \
|
||||||
|
--mmproj /path/to/mmproj-model-f16.gguf \
|
||||||
|
--image /path/to/many_llamas.jpeg
|
||||||
|
-p "A chat between a curious user and an artificial intelligence assistant. The assistant gives helpful, detailed, and polite answers to the user's questions. USER: <image>\nWhat's that? ASSISTANT:" \
|
||||||
|
```
|
||||||
|
**output**
|
||||||
|
```sh
|
||||||
|
encode_image_with_clip: image embedding created: 144 tokens
|
||||||
|
|
||||||
|
encode_image_with_clip: image encoded in 2730.94 ms by CLIP ( 18.96 ms per image patch)
|
||||||
|
system_prompt: A chat between a curious user and an artificial intelligence assistant. The assistant gives helpful, detailed, and polite answers to the user's questions. USER:
|
||||||
|
user_prompt: \nWhat's that?ASSISTANT:
|
||||||
|
|
||||||
|
A group of llamas are walking together in a field.
|
||||||
|
|
||||||
|
llama_print_timings: load time = 5506.60 ms
|
||||||
|
llama_print_timings: sample time = 0.44 ms / 13 runs ( 0.03 ms per token, 29545.45 tokens per second)
|
||||||
|
llama_print_timings: prompt eval time = 2031.58 ms / 190 tokens ( 10.69 ms per token, 93.52 tokens per second)
|
||||||
|
llama_print_timings: eval time = 438.92 ms / 12 runs ( 36.58 ms per token, 27.34 tokens per second)
|
||||||
|
llama_print_timings: total time = 5990.25 ms / 202 tokens
|
||||||
|
```
|
||||||
|
|
||||||
|
### MobileVLM_V2-1.7B case
|
||||||
|
**input**
|
||||||
|
|
||||||
|
Just the same as above.
|
||||||
|
|
||||||
|
**ouput**
|
||||||
|
```sh
|
||||||
|
encode_image_with_clip: image embedding created: 144 tokens
|
||||||
|
|
||||||
|
encode_image_with_clip: image encoded in 3223.89 ms by CLIP ( 22.39 ms per image patch)
|
||||||
|
system_prompt: A chat between a curious user and an artificial intelligence assistant. The assistant gives helpful, detailed, and polite answers to the user's questions. USER:
|
||||||
|
user_prompt: \nWhat's that?ASSISTANT:
|
||||||
|
|
||||||
|
The image captures a tranquil scene in a park, where a group of approximately 20 llamas are gathered. The llamas, a mix of white and black, are standing in a line, their black and white patterns contrasting with the lush green grass of the park. The lamas are arranged in a line, suggesting a social order.
|
||||||
|
|
||||||
|
The park itself is lush and green, with trees dotting the landscape in the background. A sign reading "Llamas Tico Ana" is also visible in the image, possibly indicating the location or the breed of the llamas. The image seems to be taken from a distance, providing a wide view of the scene and the surrounding environment.
|
||||||
|
|
||||||
|
The llamas' positions relative to each other, the sign, and the trees create a harmonious composition. The image does not contain any discernible text. The overall scene is one of peace and natural beauty, with the llamas in their natural habitat, surrounded by the vibrant colors and lush greenery of the park.
|
||||||
|
|
||||||
|
llama_print_timings: load time = 6642.61 ms
|
||||||
|
llama_print_timings: sample time = 8.15 ms / 223 runs ( 0.04 ms per token, 27358.61 tokens per second)
|
||||||
|
llama_print_timings: prompt eval time = 2475.07 ms / 190 tokens ( 13.03 ms per token, 76.77 tokens per second)
|
||||||
|
llama_print_timings: eval time = 8760.60 ms / 222 runs ( 39.46 ms per token, 25.34 tokens per second)
|
||||||
|
llama_print_timings: total time = 15513.95 ms / 412 tokens
|
||||||
|
```
|
||||||
|
|
||||||
|
## Run on Intel(R) Core(TM) Ultra7 115H
|
||||||
|
### operation system
|
||||||
|
Windows11
|
||||||
|
### comiple
|
||||||
|
```sh
|
||||||
|
make -j32
|
||||||
|
```
|
||||||
|
### MobileVLM-1.7B case
|
||||||
|
**input**
|
||||||
|
```sh
|
||||||
|
-m /path/to/ggml-model-q4_k.gguf \
|
||||||
|
--mmproj /path/to/tmp/mmproj-model-f16.gguf \
|
||||||
|
-p "A chat between a curious user and an artificial intelligence assistant. The assistant gives helpful, detailed, and polite answers to the user's questions. USER: <image>\nWhat's that? ASSISTANT:" \
|
||||||
|
```
|
||||||
|
**output**
|
||||||
|
```sh
|
||||||
|
encode_image_with_clip: image encoded in 4902.81 ms by CLIP ( 34.05 ms per image patch)
|
||||||
|
system_prompt: A chat between a curious user and an artificial intelligence assistant. The assistant gives helpful, detailed, and polite answers to the user's questions. USER:
|
||||||
|
user_prompt: \nWhat's that? ASSISTANT:
|
||||||
|
|
||||||
|
The image features a group of brown and white llamas standing in a grassy field.
|
||||||
|
|
||||||
|
llama_print_timings: load time = 7441.06 ms
|
||||||
|
llama_print_timings: sample time = 0.72 ms / 19 runs ( 0.04 ms per token, 26279.39 tokens per second)
|
||||||
|
llama_print_timings: prompt eval time = 2090.71 ms / 191 tokens ( 10.95 ms per token, 91.36 tokens per second)
|
||||||
|
llama_print_timings: eval time = 512.35 ms / 18 runs ( 28.46 ms per token, 35.13 tokens per second)
|
||||||
|
llama_print_timings: total time = 7987.23 ms / 209 tokens
|
||||||
|
```
|
||||||
|
|
||||||
|
### MobileVLM_V2-1.7B case
|
||||||
|
**input**
|
||||||
|
|
||||||
|
Just the same as above.
|
||||||
|
|
||||||
|
**output**
|
||||||
|
```sh
|
||||||
|
encode_image_with_clip: image encoded in 4682.44 ms by CLIP ( 32.52 ms per image patch)
|
||||||
|
system_prompt: A chat between a curious user and an artificial intelligence assistant. The assistant gives helpful, detailed, and polite answers to the user's questions. USER:
|
||||||
|
user_prompt: \nWhat's that? ASSISTANT:
|
||||||
|
|
||||||
|
This image captures a lively scene of a group of 14 llamas in a grassy field. The llamas, with their distinctive black and white coats, are standing and walking in a line, seemingly engaged in a social activity. One
|
||||||
|
of them, possibly the first in the line, has its back turned, perhaps observing something in the distance.
|
||||||
|
|
||||||
|
The llama in the front of the line stands out due to its black and white coloring, which is quite unusual for llama patterns. The llama in the front also seems to be more aware of its surroundings, as it faces the camera, giving a sense of engagement with the viewer.
|
||||||
|
|
||||||
|
The image is taken from the side of the llama, providing a clear view of the llama in the front and its companions. The lameness in the llama in
|
||||||
|
front is not visible, indicating that it might not be the main focus of the photo.
|
||||||
|
|
||||||
|
The background of the image features a grassy field, with a fence and a tree visible in the distance. The tree appears to be bare, suggesting that it might be during a time of year when most trees are dormant or have shed their leaves.
|
||||||
|
|
||||||
|
|
||||||
|
llama_print_timings: load time = 7015.35 ms
|
||||||
|
llama_print_timings: sample time = 10.61 ms / 256 runs ( 0.04 ms per token, 24119.09 tokens per second)
|
||||||
|
llama_print_timings: prompt eval time = 2052.45 ms / 191 tokens ( 10.75 ms per token, 93.06 tokens per second)
|
||||||
|
llama_print_timings: eval time = 7259.43 ms / 255 runs ( 28.47 ms per token, 35.13 tokens per second)
|
||||||
|
llama_print_timings: total time = 14371.19 ms / 446 tokens
|
||||||
|
```
|
||||||
|
|
||||||
## TODO
|
## TODO
|
||||||
|
|
||||||
@ -191,5 +373,5 @@ The `n_patch` of output in `ldp` is 1/4 of the input. In order to implement quic
|
|||||||
|
|
||||||
## contributor
|
## contributor
|
||||||
```sh
|
```sh
|
||||||
zhangjidong05, yangyang260, huyiming03, chenxiaotao03
|
zhangjidong05, yangyang260, huyiming03, chenxiaotao03, ZiangWu-77
|
||||||
```
|
```
|
||||||
|
@ -835,9 +835,10 @@ static ggml_cgraph * clip_image_build_graph(clip_ctx * ctx, const clip_image_f32
|
|||||||
mlp_2 = ggml_pool_2d(ctx0, mlp_2, GGML_OP_POOL_AVG, 2, 2, 2, 2, 0, 0);
|
mlp_2 = ggml_pool_2d(ctx0, mlp_2, GGML_OP_POOL_AVG, 2, 2, 2, 2, 0, 0);
|
||||||
// weight ne = [3, 3, 2048, 1]
|
// weight ne = [3, 3, 2048, 1]
|
||||||
struct ggml_tensor * peg_0 = ggml_conv_depthwise_2d(ctx0, model.mm_model_peg_0_w, mlp_2, 1, 1, 1, 1, 1, 1);
|
struct ggml_tensor * peg_0 = ggml_conv_depthwise_2d(ctx0, model.mm_model_peg_0_w, mlp_2, 1, 1, 1, 1, 1, 1);
|
||||||
peg_0 = ggml_add(ctx0, peg_0, mlp_2);
|
|
||||||
peg_0 = ggml_cont(ctx0, ggml_permute(ctx0, peg_0, 1, 2, 0, 3));
|
peg_0 = ggml_cont(ctx0, ggml_permute(ctx0, peg_0, 1, 2, 0, 3));
|
||||||
peg_0 = ggml_add(ctx0, peg_0, model.mm_model_peg_0_b);
|
peg_0 = ggml_add(ctx0, peg_0, model.mm_model_peg_0_b);
|
||||||
|
mlp_2 = ggml_cont(ctx0, ggml_permute(ctx0, mlp_2, 1, 2, 0, 3));
|
||||||
|
peg_0 = ggml_add(ctx0, peg_0, mlp_2);
|
||||||
peg_0 = ggml_reshape_3d(ctx0, peg_0, peg_0->ne[0], peg_0->ne[1] * peg_0->ne[2], peg_0->ne[3]);
|
peg_0 = ggml_reshape_3d(ctx0, peg_0, peg_0->ne[0], peg_0->ne[1] * peg_0->ne[2], peg_0->ne[3]);
|
||||||
embeddings = peg_0;
|
embeddings = peg_0;
|
||||||
}
|
}
|
||||||
@ -1755,7 +1756,7 @@ int clip_n_patches(const struct clip_ctx * ctx) {
|
|||||||
|
|
||||||
int n_patches = (params.image_size / params.patch_size) * (params.image_size / params.patch_size);
|
int n_patches = (params.image_size / params.patch_size) * (params.image_size / params.patch_size);
|
||||||
|
|
||||||
if (ctx->proj_type == PROJECTOR_TYPE_LDP) {
|
if (ctx->proj_type == PROJECTOR_TYPE_LDP || ctx->proj_type == PROJECTOR_TYPE_LDPV2) {
|
||||||
n_patches /= 4;
|
n_patches /= 4;
|
||||||
}
|
}
|
||||||
|
|
||||||
|
Loading…
x
Reference in New Issue
Block a user