mirror of
https://github.com/ggerganov/llama.cpp.git
synced 2025-01-23 09:59:18 +01:00
ggml : use ggml_row_size where possible (#4472)
* ggml : use ggml_row_size where possible ggml-ci * ggml : move ggml_nbytes_split to ggml-cuda.cu
This commit is contained in:
parent
cafcd4f895
commit
6744dbe924
12
ggml-cuda.cu
12
ggml-cuda.cu
@ -8898,6 +8898,12 @@ static void ggml_cuda_nop(const ggml_tensor * src0, const ggml_tensor * src1, gg
|
||||
(void) dst;
|
||||
}
|
||||
|
||||
static size_t ggml_nbytes_split(const struct ggml_tensor * tensor, int nrows_split) {
|
||||
static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
|
||||
|
||||
return nrows_split*ggml_row_size(tensor->type, tensor->ne[0]);
|
||||
}
|
||||
|
||||
void ggml_cuda_transform_tensor(void * data, struct ggml_tensor * tensor) {
|
||||
const int64_t nrows = ggml_nrows(tensor);
|
||||
|
||||
@ -8947,8 +8953,7 @@ void ggml_cuda_transform_tensor(void * data, struct ggml_tensor * tensor) {
|
||||
|
||||
// pad last row to a multiple of 512 elements to avoid out-of-bounds memory accesses
|
||||
if (ne0 % MATRIX_ROW_PADDING != 0) {
|
||||
size += (MATRIX_ROW_PADDING - ne0 % MATRIX_ROW_PADDING)
|
||||
* ggml_type_size(tensor->type)/ggml_blck_size(tensor->type);
|
||||
size += ggml_row_size(tensor->type, MATRIX_ROW_PADDING - ne0 % MATRIX_ROW_PADDING);
|
||||
}
|
||||
|
||||
char * buf;
|
||||
@ -9485,8 +9490,7 @@ static size_t ggml_backend_cuda_buffer_type_get_alloc_size(ggml_backend_buffer_t
|
||||
|
||||
if (ggml_is_quantized(tensor->type)) {
|
||||
if (ne0 % MATRIX_ROW_PADDING != 0) {
|
||||
size += (MATRIX_ROW_PADDING - ne0 % MATRIX_ROW_PADDING)
|
||||
* ggml_type_size(tensor->type)/ggml_blck_size(tensor->type);
|
||||
size += ggml_row_size(tensor->type, MATRIX_ROW_PADDING - ne0 % MATRIX_ROW_PADDING);
|
||||
}
|
||||
}
|
||||
|
||||
|
18
ggml.c
18
ggml.c
@ -1997,12 +1997,6 @@ size_t ggml_nbytes_pad(const struct ggml_tensor * tensor) {
|
||||
return GGML_PAD(ggml_nbytes(tensor), GGML_MEM_ALIGN);
|
||||
}
|
||||
|
||||
size_t ggml_nbytes_split(const struct ggml_tensor * tensor, int nrows_split) {
|
||||
static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
|
||||
|
||||
return (nrows_split*tensor->ne[0]*ggml_type_size(tensor->type))/ggml_blck_size(tensor->type);
|
||||
}
|
||||
|
||||
int ggml_blck_size(enum ggml_type type) {
|
||||
return type_traits[type].blck_size;
|
||||
}
|
||||
@ -2491,7 +2485,7 @@ static struct ggml_tensor * ggml_new_tensor_impl(
|
||||
view_src = view_src->view_src;
|
||||
}
|
||||
|
||||
size_t data_size = ggml_type_size(type)*(ne[0]/ggml_blck_size(type));
|
||||
size_t data_size = ggml_row_size(type, ne[0]);
|
||||
for (int i = 1; i < n_dims; i++) {
|
||||
data_size *= ne[i];
|
||||
}
|
||||
@ -9698,7 +9692,7 @@ static void ggml_compute_forward_mul_mat(
|
||||
if (params->type == GGML_TASK_INIT) {
|
||||
if (src1->type != vec_dot_type) {
|
||||
char * wdata = params->wdata;
|
||||
const size_t row_size = ne10*ggml_type_size(vec_dot_type)/ggml_blck_size(vec_dot_type);
|
||||
const size_t row_size = ggml_row_size(vec_dot_type, ne10);
|
||||
|
||||
assert(params->wsize >= ne11*ne12*ne13*row_size);
|
||||
assert(src1->type == GGML_TYPE_F32);
|
||||
@ -9721,7 +9715,7 @@ static void ggml_compute_forward_mul_mat(
|
||||
}
|
||||
|
||||
const void * wdata = (src1->type == vec_dot_type) ? src1->data : params->wdata;
|
||||
const size_t row_size = ne10*ggml_type_size(vec_dot_type)/ggml_blck_size(vec_dot_type);
|
||||
const size_t row_size = ggml_row_size(vec_dot_type, ne10);
|
||||
|
||||
const int64_t nr0 = ne01; // src0 rows
|
||||
const int64_t nr1 = cne1*ne12*ne13; // src1 rows
|
||||
@ -16326,7 +16320,7 @@ struct ggml_cplan ggml_graph_plan(struct ggml_cgraph * cgraph, int n_threads) {
|
||||
} else
|
||||
#endif
|
||||
if (node->src[1]->type != vec_dot_type) {
|
||||
cur = ggml_type_size(vec_dot_type)*ggml_nelements(node->src[1])/ggml_blck_size(vec_dot_type);
|
||||
cur = ggml_row_size(vec_dot_type, ggml_nelements(node->src[1]));
|
||||
}
|
||||
} break;
|
||||
case GGML_OP_MUL_MAT_ID:
|
||||
@ -16343,7 +16337,7 @@ struct ggml_cplan ggml_graph_plan(struct ggml_cgraph * cgraph, int n_threads) {
|
||||
} else
|
||||
#endif
|
||||
if (b->type != vec_dot_type) {
|
||||
cur = ggml_type_size(vec_dot_type)*ggml_nelements(b)/ggml_blck_size(vec_dot_type);
|
||||
cur = ggml_row_size(vec_dot_type, ggml_nelements(b));
|
||||
}
|
||||
} break;
|
||||
case GGML_OP_OUT_PROD:
|
||||
@ -18703,7 +18697,7 @@ struct gguf_context * gguf_init_from_file(const char * fname, struct gguf_init_p
|
||||
return NULL;
|
||||
}
|
||||
|
||||
const size_t size_cur = (ne*ggml_type_size(info->type))/ggml_blck_size(info->type);
|
||||
const size_t size_cur = ggml_row_size(info->type, ne);
|
||||
|
||||
ctx->size += GGML_PAD(size_cur, ctx->alignment);
|
||||
}
|
||||
|
1
ggml.h
1
ggml.h
@ -638,7 +638,6 @@ extern "C" {
|
||||
GGML_API int64_t ggml_nrows (const struct ggml_tensor * tensor);
|
||||
GGML_API size_t ggml_nbytes (const struct ggml_tensor * tensor);
|
||||
GGML_API size_t ggml_nbytes_pad (const struct ggml_tensor * tensor); // same as ggml_nbytes() but padded to GGML_MEM_ALIGN
|
||||
GGML_API size_t ggml_nbytes_split(const struct ggml_tensor * tensor, int nrows_split);
|
||||
|
||||
GGML_API int ggml_blck_size(enum ggml_type type);
|
||||
GGML_API size_t ggml_type_size(enum ggml_type type); // size in bytes for all elements in a block
|
||||
|
@ -54,7 +54,7 @@ static void init_tensor_uniform(ggml_tensor * tensor, float min = -1.0f, float m
|
||||
ggml_backend_tensor_set(tensor, data.data(), 0, size * sizeof(float));
|
||||
} else if (ggml_is_quantized(tensor->type) || tensor->type == GGML_TYPE_F16) {
|
||||
GGML_ASSERT(size % ggml_blck_size(tensor->type) == 0);
|
||||
std::vector<uint8_t> dataq(ggml_type_size(tensor->type)*size/ggml_blck_size(tensor->type));
|
||||
std::vector<uint8_t> dataq(ggml_row_size(tensor->type, size));
|
||||
int64_t hist[16];
|
||||
ggml_quantize_chunk(tensor->type, data.data(), dataq.data(), 0, size, hist);
|
||||
ggml_backend_tensor_set(tensor, dataq.data(), 0, dataq.size());
|
||||
@ -72,6 +72,8 @@ static std::vector<float> tensor_to_float(const ggml_tensor * t) {
|
||||
|
||||
ggml_type_traits_t tt = ggml_internal_get_type_traits(t->type);
|
||||
size_t bs = ggml_blck_size(t->type);
|
||||
std::vector<float> vq(ggml_blck_size(t->type));
|
||||
bool quantized = ggml_is_quantized(t->type);
|
||||
|
||||
// access elements by index to avoid gaps in views
|
||||
for (int64_t i3 = 0; i3 < t->ne[3]; i3++) {
|
||||
@ -85,9 +87,8 @@ static std::vector<float> tensor_to_float(const ggml_tensor * t) {
|
||||
tv.push_back(*(float *) &buf[i]);
|
||||
} else if (t->type == GGML_TYPE_I32) {
|
||||
tv.push_back((float)*(int32_t *) &buf[i]);
|
||||
} else if (ggml_is_quantized(t->type)) {
|
||||
std::vector<float> vq(ggml_blck_size(t->type));
|
||||
tt.to_float(&buf[i], vq.data(), ggml_blck_size(t->type));
|
||||
} else if (quantized) {
|
||||
tt.to_float(&buf[i], vq.data(), bs);
|
||||
tv.insert(tv.end(), vq.begin(), vq.end());
|
||||
} else {
|
||||
GGML_ASSERT(false);
|
||||
|
@ -286,7 +286,7 @@ int main(int argc, char * argv[]) {
|
||||
qfns.from_float_reference(test_data1, test_q1, size);
|
||||
return test_q1[0];
|
||||
};
|
||||
size_t quantized_size = size / ggml_blck_size(type) * ggml_type_size(type);
|
||||
size_t quantized_size = ggml_row_size(type, size);
|
||||
benchmark_function(size, quantized_size, iterations, quantize_fn);
|
||||
}
|
||||
printf("\n");
|
||||
@ -300,7 +300,7 @@ int main(int argc, char * argv[]) {
|
||||
qfns.from_float(test_data1, test_q1, size);
|
||||
return test_q1[0];
|
||||
};
|
||||
size_t quantized_size = size / ggml_blck_size(type) * ggml_type_size(type);
|
||||
size_t quantized_size = ggml_row_size(type, size);
|
||||
benchmark_function(size, quantized_size, iterations, quantize_fn);
|
||||
}
|
||||
printf("\n");
|
||||
@ -315,7 +315,7 @@ int main(int argc, char * argv[]) {
|
||||
qfns.to_float(test_q1, test_out, size);
|
||||
return test_out[0];
|
||||
};
|
||||
size_t quantized_size = size / ggml_blck_size(type) * ggml_type_size(type);
|
||||
size_t quantized_size = ggml_row_size(type, size);
|
||||
benchmark_function(size, quantized_size, iterations, quantize_fn);
|
||||
}
|
||||
printf("\n");
|
||||
@ -330,7 +330,7 @@ int main(int argc, char * argv[]) {
|
||||
vdot.from_float(test_data1, test_q1, size);
|
||||
return test_q1[0];
|
||||
};
|
||||
size_t quantized_size = size / ggml_blck_size(type) * ggml_type_size(type);
|
||||
size_t quantized_size = ggml_row_size(type, size);
|
||||
benchmark_function(size, quantized_size, iterations, quantize_fn);
|
||||
}
|
||||
printf("\n");
|
||||
@ -347,7 +347,7 @@ int main(int argc, char * argv[]) {
|
||||
qfns.vec_dot(size, &result, test_q1, test_q2);
|
||||
return result;
|
||||
};
|
||||
size_t quantized_size = size / ggml_blck_size(type) * ggml_type_size(type);
|
||||
size_t quantized_size = ggml_row_size(type, size);
|
||||
benchmark_function(size, quantized_size, iterations, quantize_fn);
|
||||
}
|
||||
printf("\n");
|
||||
|
Loading…
Reference in New Issue
Block a user