mirror of
https://github.com/ggerganov/llama.cpp.git
synced 2025-01-12 05:17:21 +01:00
docs : how to add a model (#6565)
* docs: how to add a model * docs: model: typo and docs * docs: model: add prevision on RoPE * docs: model: rephrasing README.md * docs: model: rephrasing README.md * docs: model: README.md fix trailing spaces * docs : some fixes * Update README.md --------- Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
This commit is contained in:
parent
29122d32ac
commit
67fac4b95f
@ -122,6 +122,8 @@ Typically finetunes of the base models below are supported as well.
|
|||||||
- [x] [SEA-LION](https://huggingface.co/models?search=sea-lion)
|
- [x] [SEA-LION](https://huggingface.co/models?search=sea-lion)
|
||||||
- [x] [GritLM-7B](https://huggingface.co/GritLM/GritLM-7B) + [GritLM-8x7B](https://huggingface.co/GritLM/GritLM-8x7B)
|
- [x] [GritLM-7B](https://huggingface.co/GritLM/GritLM-7B) + [GritLM-8x7B](https://huggingface.co/GritLM/GritLM-8x7B)
|
||||||
|
|
||||||
|
(instructions for supporting more models: [HOWTO-add-model.md](./docs/HOWTO-add-model.md))
|
||||||
|
|
||||||
**Multimodal models:**
|
**Multimodal models:**
|
||||||
|
|
||||||
- [x] [LLaVA 1.5 models](https://huggingface.co/collections/liuhaotian/llava-15-653aac15d994e992e2677a7e), [LLaVA 1.6 models](https://huggingface.co/collections/liuhaotian/llava-16-65b9e40155f60fd046a5ccf2)
|
- [x] [LLaVA 1.5 models](https://huggingface.co/collections/liuhaotian/llava-15-653aac15d994e992e2677a7e), [LLaVA 1.6 models](https://huggingface.co/collections/liuhaotian/llava-16-65b9e40155f60fd046a5ccf2)
|
||||||
|
117
docs/HOWTO-add-model.md
Normal file
117
docs/HOWTO-add-model.md
Normal file
@ -0,0 +1,117 @@
|
|||||||
|
## Add a new model architecture to `llama.cpp`
|
||||||
|
|
||||||
|
Adding a model requires few steps:
|
||||||
|
|
||||||
|
1. Convert the model to GGUF
|
||||||
|
2. Define the model architecture in `llama.cpp`
|
||||||
|
3. Build the GGML graph implementation
|
||||||
|
|
||||||
|
After following these steps, you can open PR.
|
||||||
|
|
||||||
|
Also, it is important to check that the examples and main ggml backends (CUDA, METAL, CPU) are working with the new architecture, especially:
|
||||||
|
- [main](../examples/main)
|
||||||
|
- [imatrix](../examples/imatrix)
|
||||||
|
- [quantize](../examples/quantize)
|
||||||
|
- [server](../examples/server)
|
||||||
|
|
||||||
|
### 1. Convert the model to GGUF
|
||||||
|
|
||||||
|
This step is done in python with a `convert` script using the [gguf](https://pypi.org/project/gguf/) library.
|
||||||
|
Depending on the model architecture, you can use either [convert.py](../convert.py) or [convert-hf-to-gguf.py](../convert-hf-to-gguf.py).
|
||||||
|
|
||||||
|
The convert script reads the model configuration, tokenizer, tensor names+data and converts them to GGUF metadata and tensors.
|
||||||
|
|
||||||
|
The required steps to implement for an HF model are:
|
||||||
|
|
||||||
|
1. Define the model `Model.register` annotation in a new `Model` subclass, example:
|
||||||
|
|
||||||
|
```python
|
||||||
|
@Model.register("MyModelForCausalLM")
|
||||||
|
class MyModel(Model):
|
||||||
|
model_arch = gguf.MODEL_ARCH.GROK
|
||||||
|
```
|
||||||
|
|
||||||
|
2. Define the layout of the GGUF tensors in [constants.py](../gguf-py/gguf/constants.py)
|
||||||
|
|
||||||
|
Add an enum entry in `MODEL_ARCH`, the model human friendly name in `MODEL_ARCH_NAMES` and the GGUF tensor names in `MODEL_TENSORS`.
|
||||||
|
|
||||||
|
Example for `falcon` model:
|
||||||
|
```python
|
||||||
|
MODEL_ARCH.FALCON: [
|
||||||
|
MODEL_TENSOR.TOKEN_EMBD,
|
||||||
|
MODEL_TENSOR.OUTPUT_NORM,
|
||||||
|
MODEL_TENSOR.OUTPUT,
|
||||||
|
MODEL_TENSOR.ATTN_NORM,
|
||||||
|
MODEL_TENSOR.ATTN_NORM_2,
|
||||||
|
MODEL_TENSOR.ATTN_QKV,
|
||||||
|
MODEL_TENSOR.ATTN_OUT,
|
||||||
|
MODEL_TENSOR.FFN_DOWN,
|
||||||
|
MODEL_TENSOR.FFN_UP,
|
||||||
|
]
|
||||||
|
```
|
||||||
|
|
||||||
|
3. Map the original tensor names to the standardize equivalent in GGUF
|
||||||
|
|
||||||
|
As a general rule, before adding a new tensor name to GGUF, be sure the equivalent naming does not already exist.
|
||||||
|
|
||||||
|
Once you have found the GGUF tensor name equivalent, add it to the [tensor_mapping.py](../gguf-py/gguf/tensor_mapping.py) file.
|
||||||
|
|
||||||
|
If the tensor name is part of a repetitive layer/block, the key word `bid` substitutes it.
|
||||||
|
|
||||||
|
Example for the normalization tensor in attention layers:
|
||||||
|
|
||||||
|
```python
|
||||||
|
block_mappings_cfg: dict[MODEL_TENSOR, tuple[str, ...]] = {
|
||||||
|
# Attention norm
|
||||||
|
MODEL_TENSOR.ATTN_NORM: (
|
||||||
|
"gpt_neox.layers.{bid}.input_layernorm", # gptneox
|
||||||
|
"transformer.h.{bid}.ln_1", # gpt2 gpt-j refact qwen
|
||||||
|
"transformer.blocks.{bid}.norm_1", # mpt
|
||||||
|
...
|
||||||
|
)
|
||||||
|
}
|
||||||
|
```
|
||||||
|
|
||||||
|
`transformer.blocks.{bid}.norm_1` will be mapped to `blk.{bid}.attn_norm` in GGUF.
|
||||||
|
|
||||||
|
Depending on the model configuration, tokenizer, code and tensors layout, you will have to override:
|
||||||
|
- `Model#set_gguf_parameters`
|
||||||
|
- `Model#set_vocab`
|
||||||
|
- `Model#write_tensors`
|
||||||
|
|
||||||
|
NOTE: Tensor names must end with `.weight` suffix, that is the convention and several tools like `quantize` expect this to proceed the weights.
|
||||||
|
|
||||||
|
### 2. Define the model architecture in `llama.cpp`
|
||||||
|
|
||||||
|
The model params and tensors layout must be defined in `llama.cpp`:
|
||||||
|
1. Define a new `llm_arch`
|
||||||
|
2. Define the tensors layout in `LLM_TENSOR_NAMES`
|
||||||
|
3. Add any non standard metadata in `llm_load_hparams`
|
||||||
|
4. Create the tensors for inference in `llm_load_tensors`
|
||||||
|
5. If the model has a RoPE operation, add the rope type in `llama_rope_type`
|
||||||
|
|
||||||
|
NOTE: The dimensions in `ggml` are typically in the reverse order of the `pytorch` dimensions.
|
||||||
|
|
||||||
|
### 3. Build the GGML graph implementation
|
||||||
|
|
||||||
|
This is the funniest part, you have to provide the inference graph implementation of the new model architecture in `llama_build_graph`.
|
||||||
|
|
||||||
|
Have a look to existing implementation like `build_llama`, `build_dbrx` or `build_bert`.
|
||||||
|
|
||||||
|
When implementing a new graph, please note that the underlying `ggml` backends might not support them all, support of missing backend operations can be added in another PR.
|
||||||
|
|
||||||
|
## GGUF specification
|
||||||
|
|
||||||
|
https://github.com/ggerganov/ggml/blob/master/docs/gguf.md
|
||||||
|
|
||||||
|
## Resources
|
||||||
|
|
||||||
|
- YaRN RoPE scaling https://github.com/ggerganov/llama.cpp/pull/2268
|
||||||
|
- support Baichuan serial models https://github.com/ggerganov/llama.cpp/pull/3009
|
||||||
|
- support attention bias https://github.com/ggerganov/llama.cpp/pull/4283
|
||||||
|
- Mixtral support https://github.com/ggerganov/llama.cpp/pull/4406
|
||||||
|
- BERT embeddings https://github.com/ggerganov/llama.cpp/pull/5423
|
||||||
|
- Grok-1 support https://github.com/ggerganov/llama.cpp/pull/6204
|
||||||
|
- Command R Plus support https://github.com/ggerganov/llama.cpp/pull/6491
|
||||||
|
- support arch DBRX https://github.com/ggerganov/llama.cpp/pull/6515
|
||||||
|
- How to convert HuggingFace model to GGUF format https://github.com/ggerganov/llama.cpp/discussions/2948
|
Loading…
x
Reference in New Issue
Block a user