ggml : implement soft_max_ext (CPU)

This commit is contained in:
Georgi Gerganov 2023-11-29 17:07:07 +02:00
parent 88519fbf97
commit 6a66f69f9f
No known key found for this signature in database
GPG Key ID: 449E073F9DC10735

44
ggml.c
View File

@ -4829,7 +4829,9 @@ static struct ggml_tensor * ggml_soft_max_impl(
struct ggml_tensor * mask, struct ggml_tensor * mask,
float scale, float scale,
bool inplace) { bool inplace) {
GGML_ASSERT(ggml_is_contiguous(a));
if (mask) { if (mask) {
GGML_ASSERT(ggml_is_contiguous(mask));
GGML_ASSERT(mask->ne[2] == 1); GGML_ASSERT(mask->ne[2] == 1);
GGML_ASSERT(mask->ne[3] == 1); GGML_ASSERT(mask->ne[3] == 1);
GGML_ASSERT(ggml_can_repeat_rows(mask, a)); GGML_ASSERT(ggml_can_repeat_rows(mask, a));
@ -10571,20 +10573,25 @@ static void ggml_compute_forward_diag_mask_zero(
static void ggml_compute_forward_soft_max_f32( static void ggml_compute_forward_soft_max_f32(
const struct ggml_compute_params * params, const struct ggml_compute_params * params,
const struct ggml_tensor * src0, const struct ggml_tensor * src0,
const struct ggml_tensor * src1,
struct ggml_tensor * dst) { struct ggml_tensor * dst) {
GGML_ASSERT(ggml_is_contiguous(src0)); assert(ggml_is_contiguous(dst));
GGML_ASSERT(ggml_is_contiguous(dst)); assert(ggml_are_same_shape(src0, dst));
GGML_ASSERT(ggml_are_same_shape(src0, dst));
if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) { if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
return; return;
} }
float scale = 1.0f;
memcpy(&scale, (float *) dst->op_params + 0, sizeof(float));
// TODO: handle transposed/permuted matrices // TODO: handle transposed/permuted matrices
const int ith = params->ith; const int ith = params->ith;
const int nth = params->nth; const int nth = params->nth;
const int64_t ne11 = src1 ? src1->ne[1] : 1;
const int nc = src0->ne[0]; const int nc = src0->ne[0];
const int nr = ggml_nrows(src0); const int nr = ggml_nrows(src0);
@ -10595,29 +10602,39 @@ static void ggml_compute_forward_soft_max_f32(
const int ir0 = dr*ith; const int ir0 = dr*ith;
const int ir1 = MIN(ir0 + dr, nr); const int ir1 = MIN(ir0 + dr, nr);
float * wdata = (float *) params->wdata + (nc + CACHE_LINE_SIZE_F32) * ith;
for (int i1 = ir0; i1 < ir1; i1++) { for (int i1 = ir0; i1 < ir1; i1++) {
float * sp = (float *)((char *) src0->data + i1*src0->nb[1]); float * sp = (float *)((char *) src0->data + i1*src0->nb[1]);
float * dp = (float *)((char *) dst->data + i1*dst->nb[1]); float * dp = (float *)((char *) dst->data + i1*dst->nb[1]);
// broadcast the mask across rows
float * mp = src1 ? (float *)((char *) src1->data + (i1%ne11)*src1->nb[1]) : NULL;
float * wp = wdata;
for (int i = 0; i < nc; i++) {
wp[i] = sp[i]*scale + (mp ? mp[i] : 0.0f);
}
#ifndef NDEBUG #ifndef NDEBUG
for (int i = 0; i < nc; ++i) { for (int i = 0; i < nc; ++i) {
//printf("p[%d] = %f\n", i, p[i]); //printf("p[%d] = %f\n", i, p[i]);
assert(!isnan(sp[i])); assert(!isnan(wp[i]));
} }
#endif #endif
float max = -INFINITY; float max = -INFINITY;
ggml_vec_max_f32(nc, &max, sp); ggml_vec_max_f32(nc, &max, wp);
ggml_float sum = 0.0; ggml_float sum = 0.0;
uint16_t scvt; uint16_t scvt;
for (int i = 0; i < nc; i++) { for (int i = 0; i < nc; i++) {
if (sp[i] == -INFINITY) { if (wp[i] == -INFINITY) {
dp[i] = 0.0f; dp[i] = 0.0f;
} else { } else {
// const float val = (sp[i] == -INFINITY) ? 0.0 : exp(sp[i] - max); // const float val = (wp[i] == -INFINITY) ? 0.0 : exp(wp[i] - max);
ggml_fp16_t s = GGML_FP32_TO_FP16(sp[i] - max); ggml_fp16_t s = GGML_FP32_TO_FP16(wp[i] - max);
memcpy(&scvt, &s, sizeof(scvt)); memcpy(&scvt, &s, sizeof(scvt));
const float val = GGML_FP16_TO_FP32(ggml_table_exp_f16[scvt]); const float val = GGML_FP16_TO_FP32(ggml_table_exp_f16[scvt]);
sum += (ggml_float)val; sum += (ggml_float)val;
@ -10642,11 +10659,12 @@ static void ggml_compute_forward_soft_max_f32(
static void ggml_compute_forward_soft_max( static void ggml_compute_forward_soft_max(
const struct ggml_compute_params * params, const struct ggml_compute_params * params,
const struct ggml_tensor * src0, const struct ggml_tensor * src0,
const struct ggml_tensor * src1,
struct ggml_tensor * dst) { struct ggml_tensor * dst) {
switch (src0->type) { switch (src0->type) {
case GGML_TYPE_F32: case GGML_TYPE_F32:
{ {
ggml_compute_forward_soft_max_f32(params, src0, dst); ggml_compute_forward_soft_max_f32(params, src0, src1, dst);
} break; } break;
default: default:
{ {
@ -13883,7 +13901,7 @@ static void ggml_compute_forward(struct ggml_compute_params * params, struct ggm
} break; } break;
case GGML_OP_SOFT_MAX: case GGML_OP_SOFT_MAX:
{ {
ggml_compute_forward_soft_max(params, tensor->src[0], tensor); ggml_compute_forward_soft_max(params, tensor->src[0], tensor->src[1], tensor);
} break; } break;
case GGML_OP_SOFT_MAX_BACK: case GGML_OP_SOFT_MAX_BACK:
{ {
@ -15919,6 +15937,12 @@ struct ggml_cplan ggml_graph_plan(struct ggml_cgraph * cgraph, int n_threads) {
cur = ggml_type_size(GGML_TYPE_F32) * node->src[0]->ne[0] * n_tasks; cur = ggml_type_size(GGML_TYPE_F32) * node->src[0]->ne[0] * n_tasks;
} }
} break; } break;
case GGML_OP_SOFT_MAX:
{
n_tasks = MIN(n_threads, ggml_nrows(node->src[0]));
cur = ggml_type_size(GGML_TYPE_F32) * node->ne[0] * n_tasks;
} break;
case GGML_OP_CONV_TRANSPOSE_1D: case GGML_OP_CONV_TRANSPOSE_1D:
{ {
GGML_ASSERT(node->src[0]->ne[3] == 1); GGML_ASSERT(node->src[0]->ne[3] == 1);