mirror of
https://github.com/ggerganov/llama.cpp.git
synced 2025-01-11 21:10:24 +01:00
YAML result logging + preset script (#2657)
This commit is contained in:
parent
75fafcbccc
commit
6b73ef1201
@ -1,15 +1,20 @@
|
|||||||
#include "common.h"
|
#include "common.h"
|
||||||
|
#include "build-info.h"
|
||||||
|
#include "llama.h"
|
||||||
|
|
||||||
#include <cassert>
|
|
||||||
#include <iostream>
|
|
||||||
#include <cstring>
|
|
||||||
#include <fstream>
|
|
||||||
#include <string>
|
|
||||||
#include <iterator>
|
|
||||||
#include <algorithm>
|
#include <algorithm>
|
||||||
#include <sstream>
|
#include <cassert>
|
||||||
#include <unordered_set>
|
#include <cmath>
|
||||||
|
#include <cstring>
|
||||||
|
#include <ctime>
|
||||||
|
#include <fstream>
|
||||||
|
#include <iterator>
|
||||||
|
#include <iostream>
|
||||||
#include <regex>
|
#include <regex>
|
||||||
|
#include <sstream>
|
||||||
|
#include <string>
|
||||||
|
#include <unordered_set>
|
||||||
|
#include <vector>
|
||||||
|
|
||||||
#if defined(__APPLE__) && defined(__MACH__)
|
#if defined(__APPLE__) && defined(__MACH__)
|
||||||
#include <sys/types.h>
|
#include <sys/types.h>
|
||||||
@ -19,11 +24,14 @@
|
|||||||
#if defined(_WIN32)
|
#if defined(_WIN32)
|
||||||
#define WIN32_LEAN_AND_MEAN
|
#define WIN32_LEAN_AND_MEAN
|
||||||
#define NOMINMAX
|
#define NOMINMAX
|
||||||
|
#include <codecvt>
|
||||||
|
#include <locale>
|
||||||
#include <windows.h>
|
#include <windows.h>
|
||||||
#include <fcntl.h>
|
#include <fcntl.h>
|
||||||
#include <io.h>
|
#include <io.h>
|
||||||
#else
|
#else
|
||||||
#include <sys/ioctl.h>
|
#include <sys/ioctl.h>
|
||||||
|
#include <sys/stat.h>
|
||||||
#include <unistd.h>
|
#include <unistd.h>
|
||||||
#endif
|
#endif
|
||||||
|
|
||||||
@ -93,7 +101,6 @@ void process_escapes(std::string& input) {
|
|||||||
|
|
||||||
bool gpt_params_parse(int argc, char ** argv, gpt_params & params) {
|
bool gpt_params_parse(int argc, char ** argv, gpt_params & params) {
|
||||||
bool invalid_param = false;
|
bool invalid_param = false;
|
||||||
bool escape_prompt = false;
|
|
||||||
std::string arg;
|
std::string arg;
|
||||||
gpt_params default_params;
|
gpt_params default_params;
|
||||||
const std::string arg_prefix = "--";
|
const std::string arg_prefix = "--";
|
||||||
@ -125,8 +132,8 @@ bool gpt_params_parse(int argc, char ** argv, gpt_params & params) {
|
|||||||
break;
|
break;
|
||||||
}
|
}
|
||||||
params.prompt = argv[i];
|
params.prompt = argv[i];
|
||||||
} else if (arg == "-e") {
|
} else if (arg == "-e" || arg == "--escape") {
|
||||||
escape_prompt = true;
|
params.escape = true;
|
||||||
} else if (arg == "--prompt-cache") {
|
} else if (arg == "--prompt-cache") {
|
||||||
if (++i >= argc) {
|
if (++i >= argc) {
|
||||||
invalid_param = true;
|
invalid_param = true;
|
||||||
@ -415,6 +422,16 @@ bool gpt_params_parse(int argc, char ** argv, gpt_params & params) {
|
|||||||
break;
|
break;
|
||||||
}
|
}
|
||||||
params.antiprompt.push_back(argv[i]);
|
params.antiprompt.push_back(argv[i]);
|
||||||
|
} else if (arg == "-ld" || arg == "--logdir") {
|
||||||
|
if (++i >= argc) {
|
||||||
|
invalid_param = true;
|
||||||
|
break;
|
||||||
|
}
|
||||||
|
params.logdir = argv[i];
|
||||||
|
|
||||||
|
if (params.logdir.back() != DIRECTORY_SEPARATOR) {
|
||||||
|
params.logdir += DIRECTORY_SEPARATOR;
|
||||||
|
}
|
||||||
} else if (arg == "--perplexity") {
|
} else if (arg == "--perplexity") {
|
||||||
params.perplexity = true;
|
params.perplexity = true;
|
||||||
} else if (arg == "--ppl-stride") {
|
} else if (arg == "--ppl-stride") {
|
||||||
@ -520,7 +537,7 @@ bool gpt_params_parse(int argc, char ** argv, gpt_params & params) {
|
|||||||
exit(1);
|
exit(1);
|
||||||
}
|
}
|
||||||
|
|
||||||
if (escape_prompt) {
|
if (params.escape) {
|
||||||
process_escapes(params.prompt);
|
process_escapes(params.prompt);
|
||||||
process_escapes(params.input_prefix);
|
process_escapes(params.input_prefix);
|
||||||
process_escapes(params.input_suffix);
|
process_escapes(params.input_suffix);
|
||||||
@ -546,7 +563,7 @@ void gpt_print_usage(int /*argc*/, char ** argv, const gpt_params & params) {
|
|||||||
fprintf(stdout, " -t N, --threads N number of threads to use during computation (default: %d)\n", params.n_threads);
|
fprintf(stdout, " -t N, --threads N number of threads to use during computation (default: %d)\n", params.n_threads);
|
||||||
fprintf(stdout, " -p PROMPT, --prompt PROMPT\n");
|
fprintf(stdout, " -p PROMPT, --prompt PROMPT\n");
|
||||||
fprintf(stdout, " prompt to start generation with (default: empty)\n");
|
fprintf(stdout, " prompt to start generation with (default: empty)\n");
|
||||||
fprintf(stdout, " -e process prompt escapes sequences (\\n, \\r, \\t, \\', \\\", \\\\)\n");
|
fprintf(stdout, " -e, --escape process prompt escapes sequences (\\n, \\r, \\t, \\', \\\", \\\\)\n");
|
||||||
fprintf(stdout, " --prompt-cache FNAME file to cache prompt state for faster startup (default: none)\n");
|
fprintf(stdout, " --prompt-cache FNAME file to cache prompt state for faster startup (default: none)\n");
|
||||||
fprintf(stdout, " --prompt-cache-all if specified, saves user input and generations to cache as well.\n");
|
fprintf(stdout, " --prompt-cache-all if specified, saves user input and generations to cache as well.\n");
|
||||||
fprintf(stdout, " not supported with --interactive or other interactive options\n");
|
fprintf(stdout, " not supported with --interactive or other interactive options\n");
|
||||||
@ -627,6 +644,8 @@ void gpt_print_usage(int /*argc*/, char ** argv, const gpt_params & params) {
|
|||||||
fprintf(stdout, " --lora-base FNAME optional model to use as a base for the layers modified by the LoRA adapter\n");
|
fprintf(stdout, " --lora-base FNAME optional model to use as a base for the layers modified by the LoRA adapter\n");
|
||||||
fprintf(stdout, " -m FNAME, --model FNAME\n");
|
fprintf(stdout, " -m FNAME, --model FNAME\n");
|
||||||
fprintf(stdout, " model path (default: %s)\n", params.model.c_str());
|
fprintf(stdout, " model path (default: %s)\n", params.model.c_str());
|
||||||
|
fprintf(stdout, " -ld LOGDIR, --logdir LOGDIR\n");
|
||||||
|
fprintf(stdout, " path under which to save YAML logs (no logging if unset)\n");
|
||||||
fprintf(stdout, "\n");
|
fprintf(stdout, "\n");
|
||||||
}
|
}
|
||||||
|
|
||||||
@ -779,3 +798,289 @@ std::string llama_detokenize_bpe(llama_context * ctx, const std::vector<llama_to
|
|||||||
|
|
||||||
return result;
|
return result;
|
||||||
}
|
}
|
||||||
|
|
||||||
|
// returns true if successful, false otherwise
|
||||||
|
bool create_directory_with_parents(const std::string & path) {
|
||||||
|
#ifdef _WIN32
|
||||||
|
std::wstring_convert<std::codecvt_utf8<wchar_t>> converter;
|
||||||
|
std::wstring wpath = converter.from_bytes(path);
|
||||||
|
|
||||||
|
// if the path already exists, check whether it's a directory
|
||||||
|
const DWORD attributes = GetFileAttributesW(wpath.c_str());
|
||||||
|
if ((attributes != INVALID_FILE_ATTRIBUTES) && (attributes & FILE_ATTRIBUTE_DIRECTORY)) {
|
||||||
|
return true;
|
||||||
|
}
|
||||||
|
|
||||||
|
size_t pos_slash = 0;
|
||||||
|
|
||||||
|
// process path from front to back, procedurally creating directories
|
||||||
|
while ((pos_slash = path.find('\\', pos_slash)) != std::string::npos) {
|
||||||
|
const std::wstring subpath = wpath.substr(0, pos_slash);
|
||||||
|
const wchar_t * test = subpath.c_str();
|
||||||
|
|
||||||
|
const bool success = CreateDirectoryW(test, NULL);
|
||||||
|
if (!success) {
|
||||||
|
const DWORD error = GetLastError();
|
||||||
|
|
||||||
|
// if the path already exists, ensure that it's a directory
|
||||||
|
if (error == ERROR_ALREADY_EXISTS) {
|
||||||
|
const DWORD attributes = GetFileAttributesW(subpath.c_str());
|
||||||
|
if (attributes == INVALID_FILE_ATTRIBUTES || !(attributes & FILE_ATTRIBUTE_DIRECTORY)) {
|
||||||
|
return false;
|
||||||
|
}
|
||||||
|
} else {
|
||||||
|
return false;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
pos_slash += 1;
|
||||||
|
}
|
||||||
|
|
||||||
|
return true;
|
||||||
|
#else
|
||||||
|
// if the path already exists, check whether it's a directory
|
||||||
|
struct stat info;
|
||||||
|
if (stat(path.c_str(), &info) == 0) {
|
||||||
|
return S_ISDIR(info.st_mode);
|
||||||
|
}
|
||||||
|
|
||||||
|
size_t pos_slash = 1; // skip leading slashes for directory creation
|
||||||
|
|
||||||
|
// process path from front to back, procedurally creating directories
|
||||||
|
while ((pos_slash = path.find('/', pos_slash)) != std::string::npos) {
|
||||||
|
const std::string subpath = path.substr(0, pos_slash);
|
||||||
|
struct stat info;
|
||||||
|
|
||||||
|
// if the path already exists, ensure that it's a directory
|
||||||
|
if (stat(subpath.c_str(), &info) == 0) {
|
||||||
|
if (!S_ISDIR(info.st_mode)) {
|
||||||
|
return false;
|
||||||
|
}
|
||||||
|
} else {
|
||||||
|
// create parent directories
|
||||||
|
const int ret = mkdir(subpath.c_str(), 0755);
|
||||||
|
if (ret != 0) {
|
||||||
|
return false;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
pos_slash += 1;
|
||||||
|
}
|
||||||
|
|
||||||
|
return true;
|
||||||
|
#endif // _WIN32
|
||||||
|
}
|
||||||
|
|
||||||
|
void dump_vector_float_yaml(FILE * stream, const char * prop_name, const std::vector<float> & data) {
|
||||||
|
if (data.empty()) {
|
||||||
|
fprintf(stream, "%s:\n", prop_name);
|
||||||
|
return;
|
||||||
|
}
|
||||||
|
|
||||||
|
fprintf(stream, "%s: [", prop_name);
|
||||||
|
for (size_t i = 0; i < data.size() - 1; ++i) {
|
||||||
|
fprintf(stream, "%e, ", data[i]);
|
||||||
|
}
|
||||||
|
fprintf(stream, "%e]\n", data.back());
|
||||||
|
}
|
||||||
|
|
||||||
|
void dump_vector_int_yaml(FILE * stream, const char * prop_name, const std::vector<int> & data) {
|
||||||
|
if (data.empty()) {
|
||||||
|
fprintf(stream, "%s:\n", prop_name);
|
||||||
|
return;
|
||||||
|
}
|
||||||
|
|
||||||
|
fprintf(stream, "%s: [", prop_name);
|
||||||
|
for (size_t i = 0; i < data.size() - 1; ++i) {
|
||||||
|
fprintf(stream, "%d, ", data[i]);
|
||||||
|
}
|
||||||
|
fprintf(stream, "%d]\n", data.back());
|
||||||
|
}
|
||||||
|
|
||||||
|
void dump_string_yaml_multiline(FILE * stream, const char * prop_name, const char * data) {
|
||||||
|
std::string data_str(data == NULL ? "" : data);
|
||||||
|
|
||||||
|
if (data_str.empty()) {
|
||||||
|
fprintf(stream, "%s:\n", prop_name);
|
||||||
|
return;
|
||||||
|
}
|
||||||
|
|
||||||
|
size_t pos_start = 0;
|
||||||
|
size_t pos_found = 0;
|
||||||
|
|
||||||
|
if (!data_str.empty() && (std::isspace(data_str[0]) || std::isspace(data_str.back()))) {
|
||||||
|
data_str = std::regex_replace(data_str, std::regex("\n"), "\\n");
|
||||||
|
data_str = std::regex_replace(data_str, std::regex("\""), "\\\"");
|
||||||
|
data_str = "\"" + data_str + "\"";
|
||||||
|
fprintf(stream, "%s: %s\n", prop_name, data_str.c_str());
|
||||||
|
return;
|
||||||
|
}
|
||||||
|
|
||||||
|
if (data_str.find('\n') == std::string::npos) {
|
||||||
|
fprintf(stream, "%s: %s\n", prop_name, data_str.c_str());
|
||||||
|
return;
|
||||||
|
}
|
||||||
|
|
||||||
|
fprintf(stream, "%s: |\n", prop_name);
|
||||||
|
while ((pos_found = data_str.find('\n', pos_start)) != std::string::npos) {
|
||||||
|
fprintf(stream, " %s\n", data_str.substr(pos_start, pos_found-pos_start).c_str());
|
||||||
|
pos_start = pos_found + 1;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
std::string get_sortable_timestamp() {
|
||||||
|
using clock = std::chrono::system_clock;
|
||||||
|
|
||||||
|
const clock::time_point current_time = clock::now();
|
||||||
|
const time_t as_time_t = clock::to_time_t(current_time);
|
||||||
|
char timestamp_no_ns[100];
|
||||||
|
std::strftime(timestamp_no_ns, 100, "%Y_%m_%d-%H_%M_%S", std::localtime(&as_time_t));
|
||||||
|
|
||||||
|
const int64_t ns = std::chrono::duration_cast<std::chrono::nanoseconds>(
|
||||||
|
current_time.time_since_epoch() % 1000000000).count();
|
||||||
|
char timestamp_ns[10];
|
||||||
|
snprintf(timestamp_ns, 11, "%09ld", ns);
|
||||||
|
|
||||||
|
return std::string(timestamp_no_ns) + "." + std::string(timestamp_ns);
|
||||||
|
}
|
||||||
|
|
||||||
|
void dump_non_result_info_yaml(FILE * stream, const gpt_params & params, const llama_context * lctx,
|
||||||
|
const std::string & timestamp, const std::vector<int> & prompt_tokens, const char * model_desc) {
|
||||||
|
fprintf(stream, "build_commit: %s\n", BUILD_COMMIT);
|
||||||
|
fprintf(stream, "build_number: %d\n", BUILD_NUMBER);
|
||||||
|
fprintf(stream, "cpu_has_arm_fma: %s\n", ggml_cpu_has_arm_fma() ? "true" : "false");
|
||||||
|
fprintf(stream, "cpu_has_avx: %s\n", ggml_cpu_has_avx() ? "true" : "false");
|
||||||
|
fprintf(stream, "cpu_has_avx2: %s\n", ggml_cpu_has_avx2() ? "true" : "false");
|
||||||
|
fprintf(stream, "cpu_has_avx512: %s\n", ggml_cpu_has_avx512() ? "true" : "false");
|
||||||
|
fprintf(stream, "cpu_has_avx512_vbmi: %s\n", ggml_cpu_has_avx512_vbmi() ? "true" : "false");
|
||||||
|
fprintf(stream, "cpu_has_avx512_vnni: %s\n", ggml_cpu_has_avx512_vnni() ? "true" : "false");
|
||||||
|
fprintf(stream, "cpu_has_blas: %s\n", ggml_cpu_has_blas() ? "true" : "false");
|
||||||
|
fprintf(stream, "cpu_has_cublas: %s\n", ggml_cpu_has_cublas() ? "true" : "false");
|
||||||
|
fprintf(stream, "cpu_has_clblast: %s\n", ggml_cpu_has_clblast() ? "true" : "false");
|
||||||
|
fprintf(stream, "cpu_has_fma: %s\n", ggml_cpu_has_fma() ? "true" : "false");
|
||||||
|
fprintf(stream, "cpu_has_gpublas: %s\n", ggml_cpu_has_gpublas() ? "true" : "false");
|
||||||
|
fprintf(stream, "cpu_has_neon: %s\n", ggml_cpu_has_neon() ? "true" : "false");
|
||||||
|
fprintf(stream, "cpu_has_f16c: %s\n", ggml_cpu_has_f16c() ? "true" : "false");
|
||||||
|
fprintf(stream, "cpu_has_fp16_va: %s\n", ggml_cpu_has_fp16_va() ? "true" : "false");
|
||||||
|
fprintf(stream, "cpu_has_wasm_simd: %s\n", ggml_cpu_has_wasm_simd() ? "true" : "false");
|
||||||
|
fprintf(stream, "cpu_has_blas: %s\n", ggml_cpu_has_blas() ? "true" : "false");
|
||||||
|
fprintf(stream, "cpu_has_sse3: %s\n", ggml_cpu_has_sse3() ? "true" : "false");
|
||||||
|
fprintf(stream, "cpu_has_vsx: %s\n", ggml_cpu_has_vsx() ? "true" : "false");
|
||||||
|
|
||||||
|
#ifdef NDEBUG
|
||||||
|
fprintf(stream, "debug: false\n");
|
||||||
|
#else
|
||||||
|
fprintf(stream, "debug: true\n");
|
||||||
|
#endif // NDEBUG
|
||||||
|
|
||||||
|
fprintf(stream, "model_desc: %s\n", model_desc);
|
||||||
|
fprintf(stream, "n_vocab: %d # output size of the final layer, 32001 for some models\n", llama_n_vocab(lctx));
|
||||||
|
|
||||||
|
#ifdef __OPTIMIZE__
|
||||||
|
fprintf(stream, "optimize: true\n");
|
||||||
|
#else
|
||||||
|
fprintf(stream, "optimize: false\n");
|
||||||
|
#endif // __OPTIMIZE__
|
||||||
|
|
||||||
|
fprintf(stream, "time: %s\n", timestamp.c_str());
|
||||||
|
|
||||||
|
fprintf(stream, "\n");
|
||||||
|
fprintf(stream, "###############\n");
|
||||||
|
fprintf(stream, "# User Inputs #\n");
|
||||||
|
fprintf(stream, "###############\n");
|
||||||
|
fprintf(stream, "\n");
|
||||||
|
|
||||||
|
fprintf(stream, "alias: %s # default: unknown\n", params.model_alias.c_str());
|
||||||
|
fprintf(stream, "batch_size: %d # default: 512\n", params.n_batch);
|
||||||
|
dump_string_yaml_multiline(stream, "cfg_negative_prompt", params.cfg_negative_prompt.c_str());
|
||||||
|
fprintf(stream, "cfg_scale: %f # default: 1.0\n", params.cfg_scale);
|
||||||
|
fprintf(stream, "chunks: %d # default: -1 (unlimited)\n", params.n_chunks);
|
||||||
|
fprintf(stream, "color: %s # default: false\n", params.use_color ? "true" : "false");
|
||||||
|
fprintf(stream, "ctx_size: %d # default: 512\n", params.n_ctx);
|
||||||
|
fprintf(stream, "escape: %s # default: false\n", params.escape ? "true" : "false");
|
||||||
|
fprintf(stream, "export: %s # default: false\n", params.export_cgraph ? "true" : "false");
|
||||||
|
fprintf(stream, "file: # never logged, see prompt instead. Can still be specified for input.\n");
|
||||||
|
fprintf(stream, "frequency_penalty: %f # default: 0.0 \n", params.frequency_penalty);
|
||||||
|
dump_string_yaml_multiline(stream, "grammar", params.grammar.c_str());
|
||||||
|
fprintf(stream, "grammar-file: # never logged, see grammar instead. Can still be specified for input.\n");
|
||||||
|
fprintf(stream, "hellaswag: %s # default: false\n", params.hellaswag ? "true" : "false");
|
||||||
|
fprintf(stream, "hellaswag_tasks: %ld # default: 400\n", params.hellaswag_tasks);
|
||||||
|
|
||||||
|
const auto logit_bias_eos = params.logit_bias.find(llama_token_eos(lctx));
|
||||||
|
const bool ignore_eos = logit_bias_eos != params.logit_bias.end() && logit_bias_eos->second == -INFINITY;
|
||||||
|
fprintf(stream, "ignore_eos: %s # default: false\n", ignore_eos ? "true" : "false");
|
||||||
|
|
||||||
|
dump_string_yaml_multiline(stream, "in_prefix", params.input_prefix.c_str());
|
||||||
|
fprintf(stream, "in_prefix_bos: %s # default: false\n", params.input_prefix_bos ? "true" : "false");
|
||||||
|
dump_string_yaml_multiline(stream, "in_suffix", params.input_prefix.c_str());
|
||||||
|
fprintf(stream, "instruct: %s # default: false\n", params.instruct ? "true" : "false");
|
||||||
|
fprintf(stream, "interactive: %s # default: false\n", params.interactive ? "true" : "false");
|
||||||
|
fprintf(stream, "interactive_first: %s # default: false\n", params.interactive_first ? "true" : "false");
|
||||||
|
fprintf(stream, "keep: %d # default: 0\n", params.n_keep);
|
||||||
|
fprintf(stream, "logdir: %s # default: unset (no logging)\n", params.logdir.c_str());
|
||||||
|
|
||||||
|
fprintf(stream, "logit_bias:\n");
|
||||||
|
for (std::pair<llama_token, float> lb : params.logit_bias) {
|
||||||
|
if (ignore_eos && lb.first == logit_bias_eos->first) {
|
||||||
|
continue;
|
||||||
|
}
|
||||||
|
fprintf(stream, " %d: %f", lb.first, lb.second);
|
||||||
|
}
|
||||||
|
|
||||||
|
fprintf(stream, "lora: %s\n", params.lora_adapter.c_str());
|
||||||
|
fprintf(stream, "lora_base: %s\n", params.lora_base.c_str());
|
||||||
|
fprintf(stream, "low_vram: %s # default: false\n", params.low_vram ? "true" : "false");
|
||||||
|
fprintf(stream, "main_gpu: %d # default: 0\n", params.main_gpu);
|
||||||
|
fprintf(stream, "memory_f32: %s # default: false\n", !params.memory_f16 ? "true" : "false");
|
||||||
|
fprintf(stream, "mirostat: %d # default: 0 (disabled)\n", params.mirostat);
|
||||||
|
fprintf(stream, "mirostat_ent: %f # default: 5.0\n", params.mirostat_tau);
|
||||||
|
fprintf(stream, "mirostat_lr: %f # default: 0.1\n", params.mirostat_eta);
|
||||||
|
fprintf(stream, "mlock: %s # default: false\n", params.use_mlock ? "true" : "false");
|
||||||
|
fprintf(stream, "model: %s # default: models/7B/ggml-model.bin\n", params.model.c_str());
|
||||||
|
fprintf(stream, "mtest: %s # default: false\n", params.mem_test ? "true" : "false");
|
||||||
|
fprintf(stream, "multiline_input: %s # default: false\n", params.multiline_input ? "true" : "false");
|
||||||
|
fprintf(stream, "n_gpu_layers: %d # default: 0\n", params.n_gpu_layers);
|
||||||
|
fprintf(stream, "n_predict: %d # default: -1 (unlimited)\n", params.n_predict);
|
||||||
|
fprintf(stream, "n_probs: %d # only used by server binary, default: 0\n", params.n_probs);
|
||||||
|
fprintf(stream, "no_mmap: %s # default: false\n", !params.use_mmap ? "true" : "false");
|
||||||
|
fprintf(stream, "no_mul_mat_q: %s # default: false\n", !params.mul_mat_q ? "true" : "false");
|
||||||
|
fprintf(stream, "no_penalize_nl: %s # default: false\n", !params.penalize_nl ? "true" : "false");
|
||||||
|
fprintf(stream, "numa: %s # default: false\n", params.numa ? "true" : "false");
|
||||||
|
fprintf(stream, "ppl_output_type: %d # default: 0\n", params.ppl_output_type);
|
||||||
|
fprintf(stream, "ppl_stride: %d # default: 0\n", params.ppl_stride);
|
||||||
|
fprintf(stream, "presence_penalty: %f # default: 0.0\n", params.presence_penalty);
|
||||||
|
dump_string_yaml_multiline(stream, "prompt", params.prompt.c_str());
|
||||||
|
fprintf(stream, "prompt_cache: %s\n", params.path_prompt_cache.c_str());
|
||||||
|
fprintf(stream, "prompt_cache_all: %s # default: false\n", params.prompt_cache_all ? "true" : "false");
|
||||||
|
fprintf(stream, "prompt_cache_ro: %s # default: false\n", params.prompt_cache_ro ? "true" : "false");
|
||||||
|
dump_vector_int_yaml(stream, "prompt_tokens", prompt_tokens);
|
||||||
|
fprintf(stream, "random_prompt: %s # default: false\n", params.random_prompt ? "true" : "false");
|
||||||
|
fprintf(stream, "repeat_penalty: %f # default: 1.1\n", params.repeat_penalty);
|
||||||
|
|
||||||
|
fprintf(stream, "reverse_prompt:\n");
|
||||||
|
for (std::string ap : params.antiprompt) {
|
||||||
|
size_t pos = 0;
|
||||||
|
while ((pos = ap.find('\n', pos)) != std::string::npos) {
|
||||||
|
ap.replace(pos, 1, "\\n");
|
||||||
|
pos += 1;
|
||||||
|
}
|
||||||
|
|
||||||
|
fprintf(stream, " - %s\n", ap.c_str());
|
||||||
|
}
|
||||||
|
|
||||||
|
fprintf(stream, "rope_freq_base: %f # default: 10000.0\n", params.rope_freq_base);
|
||||||
|
fprintf(stream, "rope_freq_scale: %f # default: 1.0\n", params.rope_freq_scale);
|
||||||
|
fprintf(stream, "seed: %d # default: -1 (random seed)\n", params.seed);
|
||||||
|
fprintf(stream, "simple_io: %s # default: false\n", params.simple_io ? "true" : "false");
|
||||||
|
fprintf(stream, "temp: %f # default: 0.8\n", params.temp);
|
||||||
|
|
||||||
|
const std::vector<float> tensor_split_vector(params.tensor_split, params.tensor_split + LLAMA_MAX_DEVICES);
|
||||||
|
dump_vector_float_yaml(stream, "tensor_split", tensor_split_vector);
|
||||||
|
|
||||||
|
fprintf(stream, "tfs: %f # default: 1.0\n", params.tfs_z);
|
||||||
|
fprintf(stream, "threads: %d # default: %d\n", params.n_threads, std::thread::hardware_concurrency());
|
||||||
|
fprintf(stream, "top_k: %d # default: 40\n", params.top_k);
|
||||||
|
fprintf(stream, "top_p: %f # default: 0.95\n", params.top_p);
|
||||||
|
fprintf(stream, "typical_p: %f # default: 1.0\n", params.typical_p);
|
||||||
|
fprintf(stream, "verbose_prompt: %s # default: false\n", params.verbose_prompt ? "true" : "false");
|
||||||
|
}
|
||||||
|
@ -11,6 +11,12 @@
|
|||||||
#include <unordered_map>
|
#include <unordered_map>
|
||||||
#include <tuple>
|
#include <tuple>
|
||||||
|
|
||||||
|
#ifdef _WIN32
|
||||||
|
#define DIRECTORY_SEPARATOR '\\'
|
||||||
|
#else
|
||||||
|
#define DIRECTORY_SEPARATOR '/'
|
||||||
|
#endif // _WIN32
|
||||||
|
|
||||||
//
|
//
|
||||||
// CLI argument parsing
|
// CLI argument parsing
|
||||||
//
|
//
|
||||||
@ -61,6 +67,7 @@ struct gpt_params {
|
|||||||
std::string input_suffix = ""; // string to suffix user inputs with
|
std::string input_suffix = ""; // string to suffix user inputs with
|
||||||
std::string grammar = ""; // optional BNF-like grammar to constrain sampling
|
std::string grammar = ""; // optional BNF-like grammar to constrain sampling
|
||||||
std::vector<std::string> antiprompt; // string upon seeing which more user input is prompted
|
std::vector<std::string> antiprompt; // string upon seeing which more user input is prompted
|
||||||
|
std::string logdir = ""; // directory in which to save YAML log files
|
||||||
|
|
||||||
std::string lora_adapter = ""; // lora adapter path
|
std::string lora_adapter = ""; // lora adapter path
|
||||||
std::string lora_base = ""; // base model path for the lora adapter
|
std::string lora_base = ""; // base model path for the lora adapter
|
||||||
@ -82,6 +89,7 @@ struct gpt_params {
|
|||||||
bool prompt_cache_ro = false; // open the prompt cache read-only and do not update it
|
bool prompt_cache_ro = false; // open the prompt cache read-only and do not update it
|
||||||
|
|
||||||
bool embedding = false; // get only sentence embedding
|
bool embedding = false; // get only sentence embedding
|
||||||
|
bool escape = false; // escape "\n", "\r", "\t", "\'", "\"", and "\\"
|
||||||
bool interactive_first = false; // wait for user input immediately
|
bool interactive_first = false; // wait for user input immediately
|
||||||
bool multiline_input = false; // reverse the usage of `\`
|
bool multiline_input = false; // reverse the usage of `\`
|
||||||
bool simple_io = false; // improves compatibility with subprocesses and limited consoles
|
bool simple_io = false; // improves compatibility with subprocesses and limited consoles
|
||||||
@ -144,3 +152,13 @@ std::string llama_detokenize_spm(
|
|||||||
std::string llama_detokenize_bpe(
|
std::string llama_detokenize_bpe(
|
||||||
llama_context * ctx,
|
llama_context * ctx,
|
||||||
const std::vector<llama_token> & tokens);
|
const std::vector<llama_token> & tokens);
|
||||||
|
|
||||||
|
bool create_directory_with_parents(const std::string & path);
|
||||||
|
void dump_vector_float_yaml(FILE * stream, const char * prop_name, const std::vector<float> & data);
|
||||||
|
void dump_vector_int_yaml(FILE * stream, const char * prop_name, const std::vector<int> & data);
|
||||||
|
void dump_string_yaml_multiline(FILE * stream, const char * prop_name, const char * data);
|
||||||
|
std::string get_sortable_timestamp();
|
||||||
|
|
||||||
|
void dump_non_result_info_yaml(
|
||||||
|
FILE * stream, const gpt_params & params, const llama_context * lctx,
|
||||||
|
const std::string & timestamp, const std::vector<int> & prompt_tokens, const char * model_desc);
|
||||||
|
@ -17,6 +17,7 @@
|
|||||||
#include <ctime>
|
#include <ctime>
|
||||||
#include <fstream>
|
#include <fstream>
|
||||||
#include <iostream>
|
#include <iostream>
|
||||||
|
#include <sstream>
|
||||||
#include <string>
|
#include <string>
|
||||||
#include <vector>
|
#include <vector>
|
||||||
|
|
||||||
@ -37,8 +38,56 @@
|
|||||||
#endif
|
#endif
|
||||||
|
|
||||||
static llama_context ** g_ctx;
|
static llama_context ** g_ctx;
|
||||||
|
static llama_model ** g_model;
|
||||||
|
static gpt_params * g_params;
|
||||||
|
static std::vector<llama_token> * g_input_tokens;
|
||||||
|
static std::ostringstream * g_output_ss;
|
||||||
|
static std::vector<llama_token> * g_output_tokens;
|
||||||
static bool is_interacting = false;
|
static bool is_interacting = false;
|
||||||
|
|
||||||
|
void write_logfile(
|
||||||
|
const llama_context * ctx, const gpt_params & params, const llama_model * model,
|
||||||
|
const std::vector<llama_token> input_tokens, const std::string output, const std::vector<llama_token> output_tokens) {
|
||||||
|
|
||||||
|
if (params.logdir.empty()) {
|
||||||
|
return;
|
||||||
|
}
|
||||||
|
|
||||||
|
const std::string timestamp = get_sortable_timestamp();
|
||||||
|
|
||||||
|
const bool success = create_directory_with_parents(params.logdir);
|
||||||
|
if (!success) {
|
||||||
|
fprintf(stderr, "%s: warning: failed to create logdir %s, cannot write logfile\n",
|
||||||
|
__func__, params.logdir.c_str());
|
||||||
|
return;
|
||||||
|
}
|
||||||
|
|
||||||
|
const std::string logfile_path = params.logdir + timestamp + ".yml";
|
||||||
|
FILE * logfile = fopen(logfile_path.c_str(), "w");
|
||||||
|
|
||||||
|
if (logfile == NULL) {
|
||||||
|
fprintf(stderr, "%s: failed to open logfile %s\n", __func__, logfile_path.c_str());
|
||||||
|
return;
|
||||||
|
}
|
||||||
|
|
||||||
|
fprintf(logfile, "binary: main\n");
|
||||||
|
char model_desc[128];
|
||||||
|
llama_model_desc(model, model_desc, sizeof(model_desc));
|
||||||
|
dump_non_result_info_yaml(logfile, params, ctx, timestamp, input_tokens, model_desc);
|
||||||
|
|
||||||
|
fprintf(logfile, "\n");
|
||||||
|
fprintf(logfile, "######################\n");
|
||||||
|
fprintf(logfile, "# Generation Results #\n");
|
||||||
|
fprintf(logfile, "######################\n");
|
||||||
|
fprintf(logfile, "\n");
|
||||||
|
|
||||||
|
dump_string_yaml_multiline(logfile, "output", output.c_str());
|
||||||
|
dump_vector_int_yaml(logfile, "output_tokens", output_tokens);
|
||||||
|
|
||||||
|
llama_dump_timing_info_yaml(logfile, ctx);
|
||||||
|
fclose(logfile);
|
||||||
|
}
|
||||||
|
|
||||||
#if defined (__unix__) || (defined (__APPLE__) && defined (__MACH__)) || defined (_WIN32)
|
#if defined (__unix__) || (defined (__APPLE__) && defined (__MACH__)) || defined (_WIN32)
|
||||||
void sigint_handler(int signo) {
|
void sigint_handler(int signo) {
|
||||||
if (signo == SIGINT) {
|
if (signo == SIGINT) {
|
||||||
@ -48,6 +97,7 @@ void sigint_handler(int signo) {
|
|||||||
console::cleanup();
|
console::cleanup();
|
||||||
printf("\n");
|
printf("\n");
|
||||||
llama_print_timings(*g_ctx);
|
llama_print_timings(*g_ctx);
|
||||||
|
write_logfile(*g_ctx, *g_params, *g_model, *g_input_tokens, g_output_ss->str(), *g_output_tokens);
|
||||||
_exit(130);
|
_exit(130);
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
@ -56,6 +106,7 @@ void sigint_handler(int signo) {
|
|||||||
|
|
||||||
int main(int argc, char ** argv) {
|
int main(int argc, char ** argv) {
|
||||||
gpt_params params;
|
gpt_params params;
|
||||||
|
g_params = ¶ms;
|
||||||
|
|
||||||
if (gpt_params_parse(argc, argv, params) == false) {
|
if (gpt_params_parse(argc, argv, params) == false) {
|
||||||
return 1;
|
return 1;
|
||||||
@ -116,6 +167,7 @@ int main(int argc, char ** argv) {
|
|||||||
llama_model * model;
|
llama_model * model;
|
||||||
llama_context * ctx;
|
llama_context * ctx;
|
||||||
llama_context * ctx_guidance = NULL;
|
llama_context * ctx_guidance = NULL;
|
||||||
|
g_model = &model;
|
||||||
g_ctx = &ctx;
|
g_ctx = &ctx;
|
||||||
|
|
||||||
// load the model and apply lora adapter, if any
|
// load the model and apply lora adapter, if any
|
||||||
@ -397,6 +449,10 @@ int main(int argc, char ** argv) {
|
|||||||
int n_session_consumed = 0;
|
int n_session_consumed = 0;
|
||||||
int n_past_guidance = 0;
|
int n_past_guidance = 0;
|
||||||
|
|
||||||
|
std::vector<int> input_tokens; g_input_tokens = &input_tokens;
|
||||||
|
std::vector<int> output_tokens; g_output_tokens = &output_tokens;
|
||||||
|
std::ostringstream output_ss; g_output_ss = &output_ss;
|
||||||
|
|
||||||
// the first thing we will do is to output the prompt, so set color accordingly
|
// the first thing we will do is to output the prompt, so set color accordingly
|
||||||
console::set_display(console::prompt);
|
console::set_display(console::prompt);
|
||||||
|
|
||||||
@ -667,7 +723,15 @@ int main(int argc, char ** argv) {
|
|||||||
// display text
|
// display text
|
||||||
if (input_echo) {
|
if (input_echo) {
|
||||||
for (auto id : embd) {
|
for (auto id : embd) {
|
||||||
printf("%s", llama_token_to_piece(ctx, id).c_str());
|
const std::string token_str = llama_token_to_piece(ctx, id);
|
||||||
|
printf("%s", token_str.c_str());
|
||||||
|
|
||||||
|
if (embd.size() > 1) {
|
||||||
|
input_tokens.push_back(id);
|
||||||
|
} else {
|
||||||
|
output_tokens.push_back(id);
|
||||||
|
output_ss << token_str;
|
||||||
|
}
|
||||||
}
|
}
|
||||||
fflush(stdout);
|
fflush(stdout);
|
||||||
}
|
}
|
||||||
@ -761,6 +825,8 @@ int main(int argc, char ** argv) {
|
|||||||
printf("%s", params.input_suffix.c_str());
|
printf("%s", params.input_suffix.c_str());
|
||||||
}
|
}
|
||||||
|
|
||||||
|
const size_t original_size = embd_inp.size();
|
||||||
|
|
||||||
// instruct mode: insert instruction prefix
|
// instruct mode: insert instruction prefix
|
||||||
if (params.instruct && !is_antiprompt) {
|
if (params.instruct && !is_antiprompt) {
|
||||||
n_consumed = embd_inp.size();
|
n_consumed = embd_inp.size();
|
||||||
@ -775,6 +841,12 @@ int main(int argc, char ** argv) {
|
|||||||
embd_inp.insert(embd_inp.end(), inp_sfx.begin(), inp_sfx.end());
|
embd_inp.insert(embd_inp.end(), inp_sfx.begin(), inp_sfx.end());
|
||||||
}
|
}
|
||||||
|
|
||||||
|
for (size_t i = original_size; i < embd_inp.size(); ++i) {
|
||||||
|
const llama_token token = embd_inp[i];
|
||||||
|
output_tokens.push_back(token);
|
||||||
|
output_ss << llama_token_to_piece(ctx, token);
|
||||||
|
}
|
||||||
|
|
||||||
n_remain -= line_inp.size();
|
n_remain -= line_inp.size();
|
||||||
}
|
}
|
||||||
|
|
||||||
@ -817,6 +889,8 @@ int main(int argc, char ** argv) {
|
|||||||
}
|
}
|
||||||
|
|
||||||
llama_print_timings(ctx);
|
llama_print_timings(ctx);
|
||||||
|
write_logfile(ctx, params, model, input_tokens, output_ss.str(), output_tokens);
|
||||||
|
|
||||||
if (ctx_guidance) { llama_free(ctx_guidance); }
|
if (ctx_guidance) { llama_free(ctx_guidance); }
|
||||||
llama_free(ctx);
|
llama_free(ctx);
|
||||||
llama_free_model(model);
|
llama_free_model(model);
|
||||||
|
@ -3,16 +3,79 @@
|
|||||||
#include "build-info.h"
|
#include "build-info.h"
|
||||||
|
|
||||||
#include <cmath>
|
#include <cmath>
|
||||||
|
#include <cstdio>
|
||||||
|
#include <cstring>
|
||||||
#include <ctime>
|
#include <ctime>
|
||||||
#include <sstream>
|
#include <sstream>
|
||||||
#include <cstring>
|
|
||||||
#include <thread>
|
#include <thread>
|
||||||
#include <mutex>
|
#include <mutex>
|
||||||
|
#include <vector>
|
||||||
|
|
||||||
#if defined(_MSC_VER)
|
#if defined(_MSC_VER)
|
||||||
#pragma warning(disable: 4244 4267) // possible loss of data
|
#pragma warning(disable: 4244 4267) // possible loss of data
|
||||||
#endif
|
#endif
|
||||||
|
|
||||||
|
struct results_perplexity {
|
||||||
|
std::vector<llama_token> tokens;
|
||||||
|
double ppl_value;
|
||||||
|
std::vector<float> logits;
|
||||||
|
std::vector<float> probs;
|
||||||
|
};
|
||||||
|
|
||||||
|
struct results_log_softmax {
|
||||||
|
double log_softmax;
|
||||||
|
float logit;
|
||||||
|
float prob;
|
||||||
|
};
|
||||||
|
|
||||||
|
void write_logfile(const llama_context * ctx, const gpt_params & params,
|
||||||
|
const llama_model * model, const struct results_perplexity & results) {
|
||||||
|
|
||||||
|
if (params.logdir.empty()) {
|
||||||
|
return;
|
||||||
|
}
|
||||||
|
|
||||||
|
if (params.hellaswag) {
|
||||||
|
fprintf(stderr, "%s: warning: logging results is not implemented for HellaSwag. No files will be written.\n", __func__);
|
||||||
|
return;
|
||||||
|
}
|
||||||
|
|
||||||
|
const std::string timestamp = get_sortable_timestamp();
|
||||||
|
|
||||||
|
const bool success = create_directory_with_parents(params.logdir);
|
||||||
|
if (!success) {
|
||||||
|
fprintf(stderr, "%s: warning: failed to create logdir %s, cannot write logfile\n",
|
||||||
|
__func__, params.logdir.c_str());
|
||||||
|
return;
|
||||||
|
}
|
||||||
|
|
||||||
|
const std::string logfile_path = params.logdir + timestamp + ".yml";
|
||||||
|
FILE * logfile = fopen(logfile_path.c_str(), "w");
|
||||||
|
|
||||||
|
if (logfile == NULL) {
|
||||||
|
fprintf(stderr, "%s: failed to open logfile %s\n", __func__, logfile_path.c_str());
|
||||||
|
return;
|
||||||
|
}
|
||||||
|
|
||||||
|
fprintf(logfile, "binary: main\n");
|
||||||
|
char model_desc[128];
|
||||||
|
llama_model_desc(model, model_desc, sizeof(model_desc));
|
||||||
|
dump_non_result_info_yaml(logfile, params, ctx, timestamp, results.tokens, model_desc);
|
||||||
|
|
||||||
|
fprintf(logfile, "\n");
|
||||||
|
fprintf(logfile, "######################\n");
|
||||||
|
fprintf(logfile, "# Perplexity Results #\n");
|
||||||
|
fprintf(logfile, "######################\n");
|
||||||
|
fprintf(logfile, "\n");
|
||||||
|
|
||||||
|
dump_vector_float_yaml(logfile, "logits", results.logits);
|
||||||
|
fprintf(logfile, "ppl_value: %f\n", results.ppl_value);
|
||||||
|
dump_vector_float_yaml(logfile, "probs", results.probs);
|
||||||
|
|
||||||
|
llama_dump_timing_info_yaml(logfile, ctx);
|
||||||
|
fclose(logfile);
|
||||||
|
}
|
||||||
|
|
||||||
std::vector<float> softmax(const std::vector<float>& logits) {
|
std::vector<float> softmax(const std::vector<float>& logits) {
|
||||||
std::vector<float> probs(logits.size());
|
std::vector<float> probs(logits.size());
|
||||||
float max_logit = logits[0];
|
float max_logit = logits[0];
|
||||||
@ -29,20 +92,20 @@ std::vector<float> softmax(const std::vector<float>& logits) {
|
|||||||
return probs;
|
return probs;
|
||||||
}
|
}
|
||||||
|
|
||||||
float log_softmax(int n_vocab, const float * logits, int tok) {
|
results_log_softmax log_softmax(int n_vocab, const float * logits, int tok) {
|
||||||
float max_logit = logits[0];
|
float max_logit = logits[0];
|
||||||
for (int i = 1; i < n_vocab; ++i) max_logit = std::max(max_logit, logits[i]);
|
for (int i = 1; i < n_vocab; ++i) max_logit = std::max(max_logit, logits[i]);
|
||||||
double sum_exp = 0.0;
|
double sum_exp = 0.0;
|
||||||
for (int i = 0; i < n_vocab; ++i) sum_exp += expf(logits[i] - max_logit);
|
for (int i = 0; i < n_vocab; ++i) sum_exp += expf(logits[i] - max_logit);
|
||||||
return logits[tok] - max_logit - log(sum_exp);
|
return {logits[tok] - max_logit - log(sum_exp), logits[tok], expf(logits[tok] - max_logit) / (float) sum_exp};
|
||||||
}
|
}
|
||||||
|
|
||||||
void process_logits(int n_vocab, const float * logits, const int * tokens, int n_token, std::vector<std::thread> & workers,
|
void process_logits(int n_vocab, const float * logits, const int * tokens, int n_token, std::vector<std::thread> & workers,
|
||||||
double& nll, double& nll2) {
|
double & nll, double & nll2, float * logit_history, float * prob_history) {
|
||||||
|
|
||||||
std::mutex mutex;
|
std::mutex mutex;
|
||||||
int counter = 0;
|
int counter = 0;
|
||||||
auto compute = [&mutex, &counter, &nll, &nll2, n_vocab, logits, tokens, n_token] () {
|
auto compute = [&mutex, &counter, &nll, &nll2, logit_history, prob_history, n_vocab, logits, tokens, n_token] () {
|
||||||
double local_nll = 0, local_nll2 = 0;
|
double local_nll = 0, local_nll2 = 0;
|
||||||
while (true) {
|
while (true) {
|
||||||
std::unique_lock<std::mutex> lock(mutex);
|
std::unique_lock<std::mutex> lock(mutex);
|
||||||
@ -52,9 +115,13 @@ void process_logits(int n_vocab, const float * logits, const int * tokens, int n
|
|||||||
break;
|
break;
|
||||||
}
|
}
|
||||||
lock.unlock();
|
lock.unlock();
|
||||||
double v = -log_softmax(n_vocab, logits + i*n_vocab, tokens[i+1]);
|
const results_log_softmax results = log_softmax(n_vocab, logits + i*n_vocab, tokens[i+1]);
|
||||||
|
const double v = -results.log_softmax;
|
||||||
local_nll += v;
|
local_nll += v;
|
||||||
local_nll2 += v*v;
|
local_nll2 += v*v;
|
||||||
|
|
||||||
|
logit_history[i] = results.logit;
|
||||||
|
prob_history[i] = results.prob;
|
||||||
}
|
}
|
||||||
};
|
};
|
||||||
for (auto & w : workers) w = std::thread(compute);
|
for (auto & w : workers) w = std::thread(compute);
|
||||||
@ -63,23 +130,28 @@ void process_logits(int n_vocab, const float * logits, const int * tokens, int n
|
|||||||
|
|
||||||
}
|
}
|
||||||
|
|
||||||
void perplexity_v2(llama_context * ctx, const gpt_params & params) {
|
results_perplexity perplexity_v2(llama_context * ctx, const gpt_params & params) {
|
||||||
// Download: https://s3.amazonaws.com/research.metamind.io/wikitext/wikitext-2-raw-v1.zip?ref=salesforce-research
|
// Download: https://s3.amazonaws.com/research.metamind.io/wikitext/wikitext-2-raw-v1.zip?ref=salesforce-research
|
||||||
// Run `./perplexity -m models/7B/ggml-model-q4_0.bin -f wiki.test.raw`
|
// Run `./perplexity -m models/7B/ggml-model-q4_0.bin -f wiki.test.raw`
|
||||||
// Output: `perplexity: 13.5106 [114/114]`
|
// Output: `perplexity: 13.5106 [114/114]`
|
||||||
// BOS tokens will be added for each chunk before eval
|
// BOS tokens will be added for each chunk before eval
|
||||||
|
|
||||||
if (params.ppl_stride <= 0) {
|
|
||||||
fprintf(stderr, "%s: stride is %d but must be greater than zero!\n",__func__,params.ppl_stride);
|
|
||||||
return;
|
|
||||||
}
|
|
||||||
|
|
||||||
const bool is_spm = llama_vocab_type(ctx) == LLAMA_VOCAB_TYPE_SPM;
|
const bool is_spm = llama_vocab_type(ctx) == LLAMA_VOCAB_TYPE_SPM;
|
||||||
const bool add_bos = is_spm;
|
const bool add_bos = is_spm;
|
||||||
|
|
||||||
fprintf(stderr, "%s: tokenizing the input ..\n", __func__);
|
fprintf(stderr, "%s: tokenizing the input ..\n", __func__);
|
||||||
|
|
||||||
auto tokens = ::llama_tokenize(ctx, params.prompt, add_bos);
|
std::vector<llama_token> tokens = ::llama_tokenize(ctx, params.prompt, add_bos);
|
||||||
|
std::vector<float> logit_history;
|
||||||
|
std::vector<float> prob_history;
|
||||||
|
|
||||||
|
logit_history.resize(tokens.size());
|
||||||
|
prob_history.resize(tokens.size());
|
||||||
|
|
||||||
|
if (params.ppl_stride <= 0) {
|
||||||
|
fprintf(stderr, "%s: stride is %d but must be greater than zero!\n",__func__,params.ppl_stride);
|
||||||
|
return {tokens, -1, logit_history, prob_history};
|
||||||
|
}
|
||||||
|
|
||||||
const int calc_chunk = params.n_ctx;
|
const int calc_chunk = params.n_ctx;
|
||||||
|
|
||||||
@ -88,7 +160,7 @@ void perplexity_v2(llama_context * ctx, const gpt_params & params) {
|
|||||||
if (int(tokens.size()) <= calc_chunk) {
|
if (int(tokens.size()) <= calc_chunk) {
|
||||||
fprintf(stderr, "%s: there are only %zu tokens, this is not enough for a context size of %d and stride %d\n",__func__,
|
fprintf(stderr, "%s: there are only %zu tokens, this is not enough for a context size of %d and stride %d\n",__func__,
|
||||||
tokens.size(), params.n_ctx, params.ppl_stride);
|
tokens.size(), params.n_ctx, params.ppl_stride);
|
||||||
return;
|
return {tokens, -1, logit_history, prob_history};
|
||||||
}
|
}
|
||||||
|
|
||||||
const int n_chunk_max = (tokens.size() - calc_chunk + params.ppl_stride - 1) / params.ppl_stride;
|
const int n_chunk_max = (tokens.size() - calc_chunk + params.ppl_stride - 1) / params.ppl_stride;
|
||||||
@ -120,7 +192,7 @@ void perplexity_v2(llama_context * ctx, const gpt_params & params) {
|
|||||||
//fprintf(stderr, " Batch %d: starts at %d, size is %d, n_past is %d\n",j,batch_start,batch_size,j * n_batch);
|
//fprintf(stderr, " Batch %d: starts at %d, size is %d, n_past is %d\n",j,batch_start,batch_size,j * n_batch);
|
||||||
if (llama_eval(ctx, tokens.data() + batch_start, batch_size, j * n_batch, params.n_threads)) {
|
if (llama_eval(ctx, tokens.data() + batch_start, batch_size, j * n_batch, params.n_threads)) {
|
||||||
//fprintf(stderr, "%s : failed to eval\n", __func__);
|
//fprintf(stderr, "%s : failed to eval\n", __func__);
|
||||||
return;
|
return {tokens, -1, logit_history, prob_history};
|
||||||
}
|
}
|
||||||
|
|
||||||
// save original token and restore it after eval
|
// save original token and restore it after eval
|
||||||
@ -161,6 +233,8 @@ void perplexity_v2(llama_context * ctx, const gpt_params & params) {
|
|||||||
logits.begin() + (j + 1) * n_vocab);
|
logits.begin() + (j + 1) * n_vocab);
|
||||||
|
|
||||||
const float prob = softmax(tok_logits)[tokens[start + j + 1]];
|
const float prob = softmax(tok_logits)[tokens[start + j + 1]];
|
||||||
|
logit_history[start + j + 1] = tok_logits[tokens[start + j + 1]];
|
||||||
|
prob_history[start + j + 1] = prob;
|
||||||
|
|
||||||
nll += -std::log(prob);
|
nll += -std::log(prob);
|
||||||
++count;
|
++count;
|
||||||
@ -174,12 +248,14 @@ void perplexity_v2(llama_context * ctx, const gpt_params & params) {
|
|||||||
fflush(stdout);
|
fflush(stdout);
|
||||||
}
|
}
|
||||||
printf("\n");
|
printf("\n");
|
||||||
|
|
||||||
|
return {tokens, std::exp(nll / count), logit_history, prob_history};
|
||||||
}
|
}
|
||||||
|
|
||||||
void perplexity(llama_context * ctx, const gpt_params & params) {
|
results_perplexity perplexity(llama_context * ctx, const gpt_params & params) {
|
||||||
|
|
||||||
if (params.ppl_stride > 0) {
|
if (params.ppl_stride > 0) {
|
||||||
perplexity_v2(ctx, params);
|
return perplexity_v2(ctx, params);
|
||||||
return;
|
|
||||||
}
|
}
|
||||||
|
|
||||||
// Download: https://s3.amazonaws.com/research.metamind.io/wikitext/wikitext-2-raw-v1.zip?ref=salesforce-research
|
// Download: https://s3.amazonaws.com/research.metamind.io/wikitext/wikitext-2-raw-v1.zip?ref=salesforce-research
|
||||||
@ -193,11 +269,17 @@ void perplexity(llama_context * ctx, const gpt_params & params) {
|
|||||||
auto tim1 = std::chrono::high_resolution_clock::now();
|
auto tim1 = std::chrono::high_resolution_clock::now();
|
||||||
fprintf(stderr, "%s: tokenizing the input ..\n", __func__);
|
fprintf(stderr, "%s: tokenizing the input ..\n", __func__);
|
||||||
|
|
||||||
auto tokens = ::llama_tokenize(ctx, params.prompt, add_bos);
|
std::vector<llama_token> tokens = ::llama_tokenize(ctx, params.prompt, add_bos);
|
||||||
|
|
||||||
auto tim2 = std::chrono::high_resolution_clock::now();
|
auto tim2 = std::chrono::high_resolution_clock::now();
|
||||||
fprintf(stderr, "%s: tokenization took %g ms\n",__func__,1e-3*std::chrono::duration_cast<std::chrono::microseconds>(tim2-tim1).count());
|
fprintf(stderr, "%s: tokenization took %g ms\n",__func__,1e-3*std::chrono::duration_cast<std::chrono::microseconds>(tim2-tim1).count());
|
||||||
|
|
||||||
|
std::vector<float> logit_history;
|
||||||
|
logit_history.resize(tokens.size());
|
||||||
|
|
||||||
|
std::vector<float> prob_history;
|
||||||
|
prob_history.resize(tokens.size());
|
||||||
|
|
||||||
const int n_chunk_max = tokens.size() / params.n_ctx;
|
const int n_chunk_max = tokens.size() / params.n_ctx;
|
||||||
|
|
||||||
const int n_chunk = params.n_chunks < 0 ? n_chunk_max : std::min(params.n_chunks, n_chunk_max);
|
const int n_chunk = params.n_chunks < 0 ? n_chunk_max : std::min(params.n_chunks, n_chunk_max);
|
||||||
@ -236,7 +318,7 @@ void perplexity(llama_context * ctx, const gpt_params & params) {
|
|||||||
|
|
||||||
if (llama_eval(ctx, tokens.data() + batch_start, batch_size, j * n_batch, params.n_threads)) {
|
if (llama_eval(ctx, tokens.data() + batch_start, batch_size, j * n_batch, params.n_threads)) {
|
||||||
fprintf(stderr, "%s : failed to eval\n", __func__);
|
fprintf(stderr, "%s : failed to eval\n", __func__);
|
||||||
return;
|
return {tokens, -1, logit_history, prob_history};
|
||||||
}
|
}
|
||||||
|
|
||||||
// restore the original token in case it was set to BOS
|
// restore the original token in case it was set to BOS
|
||||||
@ -272,7 +354,8 @@ void perplexity(llama_context * ctx, const gpt_params & params) {
|
|||||||
// last 256 tokens. Then, we split the input up into context window size chunks to
|
// last 256 tokens. Then, we split the input up into context window size chunks to
|
||||||
// process the entire prompt.
|
// process the entire prompt.
|
||||||
const int first = std::min(512, params.n_ctx/2);
|
const int first = std::min(512, params.n_ctx/2);
|
||||||
process_logits(n_vocab, logits.data() + first*n_vocab, tokens.data() + start + first, params.n_ctx - 1 - first, workers, nll, nll2);
|
process_logits(n_vocab, logits.data() + first*n_vocab, tokens.data() + start + first, params.n_ctx - 1 - first,
|
||||||
|
workers, nll, nll2, logit_history.data() + start + first, prob_history.data() + start + first);
|
||||||
count += params.n_ctx - first - 1;
|
count += params.n_ctx - first - 1;
|
||||||
|
|
||||||
// perplexity is e^(average negative log-likelihood)
|
// perplexity is e^(average negative log-likelihood)
|
||||||
@ -287,16 +370,19 @@ void perplexity(llama_context * ctx, const gpt_params & params) {
|
|||||||
fflush(stdout);
|
fflush(stdout);
|
||||||
}
|
}
|
||||||
printf("\n");
|
printf("\n");
|
||||||
|
|
||||||
nll2 /= count;
|
nll2 /= count;
|
||||||
nll /= count;
|
nll /= count;
|
||||||
|
const double ppl = exp(nll);
|
||||||
nll2 -= nll * nll;
|
nll2 -= nll * nll;
|
||||||
if (nll2 > 0) {
|
if (nll2 > 0) {
|
||||||
nll2 = sqrt(nll2/(count-1));
|
nll2 = sqrt(nll2/(count-1));
|
||||||
double ppl = exp(nll);
|
|
||||||
printf("Final estimate: PPL = %.4lf +/- %.5lf\n", ppl, nll2*ppl);
|
printf("Final estimate: PPL = %.4lf +/- %.5lf\n", ppl, nll2*ppl);
|
||||||
} else {
|
} else {
|
||||||
printf("Unexpected negative standard deviation of log(prob)\n");
|
printf("Unexpected negative standard deviation of log(prob)\n");
|
||||||
}
|
}
|
||||||
|
|
||||||
|
return {tokens, ppl, logit_history, prob_history};
|
||||||
}
|
}
|
||||||
|
|
||||||
std::vector<float> hellaswag_evaluate_tokens(llama_context * ctx, const std::vector<int>& tokens, int n_past, int n_batch,
|
std::vector<float> hellaswag_evaluate_tokens(llama_context * ctx, const std::vector<int>& tokens, int n_past, int n_batch,
|
||||||
@ -604,13 +690,16 @@ int main(int argc, char ** argv) {
|
|||||||
params.n_threads, std::thread::hardware_concurrency(), llama_print_system_info());
|
params.n_threads, std::thread::hardware_concurrency(), llama_print_system_info());
|
||||||
}
|
}
|
||||||
|
|
||||||
|
struct results_perplexity results;
|
||||||
if (params.hellaswag) {
|
if (params.hellaswag) {
|
||||||
hellaswag_score(ctx, params);
|
hellaswag_score(ctx, params);
|
||||||
} else {
|
} else {
|
||||||
perplexity(ctx, params);
|
results = perplexity(ctx, params);
|
||||||
}
|
}
|
||||||
|
|
||||||
llama_print_timings(ctx);
|
llama_print_timings(ctx);
|
||||||
|
write_logfile(ctx, params, model, results);
|
||||||
|
|
||||||
llama_free(ctx);
|
llama_free(ctx);
|
||||||
llama_free_model(model);
|
llama_free_model(model);
|
||||||
|
|
||||||
|
29
llama.cpp
29
llama.cpp
@ -6247,6 +6247,35 @@ const char * llama_print_system_info(void) {
|
|||||||
return s.c_str();
|
return s.c_str();
|
||||||
}
|
}
|
||||||
|
|
||||||
|
void llama_dump_timing_info_yaml(FILE * stream, const llama_context * ctx) {
|
||||||
|
|
||||||
|
fprintf(stream, "\n");
|
||||||
|
fprintf(stream, "###########\n");
|
||||||
|
fprintf(stream, "# Timings #\n");
|
||||||
|
fprintf(stream, "###########\n");
|
||||||
|
fprintf(stream, "\n");
|
||||||
|
|
||||||
|
fprintf(stream, "mst_eval: %.2f # ms / token during generation\n",
|
||||||
|
1.0e-3 * ctx->t_eval_us / ctx->n_eval);
|
||||||
|
fprintf(stream, "mst_p_eval: %.2f # ms / token during prompt processing\n",
|
||||||
|
1.0e-3 * ctx->t_p_eval_us / ctx->n_p_eval);
|
||||||
|
fprintf(stream, "mst_sample: %.2f # ms / token during sampling\n",
|
||||||
|
1.0e-3 * ctx->t_sample_us / ctx->n_sample);
|
||||||
|
fprintf(stream, "n_eval: %d # number of tokens generated (excluding the first one)\n", ctx->n_eval);
|
||||||
|
fprintf(stream, "n_p_eval: %d # number of tokens processed in batches at the beginning\n", ctx->n_p_eval);
|
||||||
|
fprintf(stream, "n_sample: %d # number of sampled tokens\n", ctx->n_sample);
|
||||||
|
fprintf(stream, "t_eval_us: %ld # total microseconds spent generating tokens\n", ctx->t_eval_us);
|
||||||
|
fprintf(stream, "t_load_us: %ld # total microseconds spent loading the model\n", ctx->t_load_us);
|
||||||
|
fprintf(stream, "t_p_eval_us: %ld # total microseconds spent prompt processing\n", ctx->t_p_eval_us);
|
||||||
|
fprintf(stream, "t_sample_us: %ld # total microseconds spent sampling\n", ctx->t_sample_us);
|
||||||
|
fprintf(stream, "ts_eval: %.2f # tokens / second during generation\n",
|
||||||
|
1.0e6 * ctx->n_eval / ctx->t_eval_us);
|
||||||
|
fprintf(stream, "ts_p_eval: %.2f # tokens / second during prompt processing\n",
|
||||||
|
1.0e6 * ctx->n_p_eval / ctx->t_p_eval_us);
|
||||||
|
fprintf(stream, "ts_sample: %.2f # tokens / second during sampling\n",
|
||||||
|
1.0e6 * ctx->n_sample / ctx->t_sample_us);
|
||||||
|
}
|
||||||
|
|
||||||
// For internal test use
|
// For internal test use
|
||||||
const std::vector<std::pair<std::string, struct ggml_tensor *>>& llama_internal_get_tensor_map(struct llama_context * ctx) {
|
const std::vector<std::pair<std::string, struct ggml_tensor *>>& llama_internal_get_tensor_map(struct llama_context * ctx) {
|
||||||
return ctx->model.tensors_by_name;
|
return ctx->model.tensors_by_name;
|
||||||
|
3
llama.h
3
llama.h
@ -10,6 +10,7 @@
|
|||||||
#endif // GGML_USE_CUBLAS
|
#endif // GGML_USE_CUBLAS
|
||||||
#include <stddef.h>
|
#include <stddef.h>
|
||||||
#include <stdint.h>
|
#include <stdint.h>
|
||||||
|
#include <stdio.h>
|
||||||
#include <stdbool.h>
|
#include <stdbool.h>
|
||||||
|
|
||||||
#ifdef LLAMA_SHARED
|
#ifdef LLAMA_SHARED
|
||||||
@ -520,6 +521,8 @@ extern "C" {
|
|||||||
// If this is not called, or NULL is supplied, everything is output on stderr.
|
// If this is not called, or NULL is supplied, everything is output on stderr.
|
||||||
LLAMA_API void llama_log_set(llama_log_callback log_callback, void * user_data);
|
LLAMA_API void llama_log_set(llama_log_callback log_callback, void * user_data);
|
||||||
|
|
||||||
|
LLAMA_API void llama_dump_timing_info_yaml(FILE * stream, const llama_context * ctx);
|
||||||
|
|
||||||
#ifdef __cplusplus
|
#ifdef __cplusplus
|
||||||
}
|
}
|
||||||
#endif
|
#endif
|
||||||
|
140
run_with_preset.py
Executable file
140
run_with_preset.py
Executable file
@ -0,0 +1,140 @@
|
|||||||
|
#!/usr/bin/env python3
|
||||||
|
|
||||||
|
import argparse
|
||||||
|
import os
|
||||||
|
import subprocess
|
||||||
|
import sys
|
||||||
|
|
||||||
|
import yaml
|
||||||
|
|
||||||
|
CLI_ARGS_MAIN_PERPLEXITY = [
|
||||||
|
"batch-size", "cfg-negative-prompt", "cfg-scale", "chunks", "color", "ctx-size", "escape",
|
||||||
|
"export", "file", "frequency-penalty", "grammar", "grammar-file", "hellaswag",
|
||||||
|
"hellaswag-tasks", "ignore-eos", "in-prefix", "in-prefix-bos", "in-suffix", "instruct",
|
||||||
|
"interactive", "interactive-first", "keep", "logdir", "logit-bias", "lora", "lora-base",
|
||||||
|
"low-vram", "main-gpu", "memory-f32", "mirostat", "mirostat-ent", "mirostat-lr", "mlock",
|
||||||
|
"model", "mtest", "multiline-input", "n-gpu-layers", "n-predict", "no-mmap", "no-mul-mat-q",
|
||||||
|
"np-penalize-nl", "numa", "ppl-output-type", "ppl-stride", "presence-penalty", "prompt",
|
||||||
|
"prompt-cache", "prompt-cache-all", "prompt-cache-ro", "random-prompt", "repeat-last-n",
|
||||||
|
"repeat-penalty", "reverse-prompt", "rope-freq-base", "rope-freq-scale", "rope-scale", "seed",
|
||||||
|
"simple-io", "tensor-split", "threads", "temp", "tfs", "top-k", "top-p", "typical",
|
||||||
|
"verbose-prompt"
|
||||||
|
]
|
||||||
|
|
||||||
|
CLI_ARGS_LLAMA_BENCH = [
|
||||||
|
"batch-size", "memory-f32", "low-vram", "model", "mul-mat-q", "n-gen", "n-gpu-layers",
|
||||||
|
"n-prompt", "output", "repetitions", "tensor-split", "threads", "verbose"
|
||||||
|
]
|
||||||
|
|
||||||
|
CLI_ARGS_SERVER = [
|
||||||
|
"alias", "batch-size", "ctx-size", "embedding", "host", "memory-f32", "lora", "lora-base",
|
||||||
|
"low-vram", "main-gpu", "mlock", "model", "n-gpu-layers", "n-probs", "no-mmap", "no-mul-mat-q",
|
||||||
|
"numa", "path", "port", "rope-freq-base", "timeout", "rope-freq-scale", "tensor-split",
|
||||||
|
"threads", "verbose"
|
||||||
|
]
|
||||||
|
|
||||||
|
description = """Run llama.cpp binaries with presets from YAML file(s).
|
||||||
|
To specify which binary should be run, specify the "binary" property (main, perplexity, llama-bench, and server are supported).
|
||||||
|
To get a preset file template, run a llama.cpp binary with the "--logdir" CLI argument.
|
||||||
|
|
||||||
|
Formatting considerations:
|
||||||
|
- The YAML property names are the same as the CLI argument names of the corresponding binary.
|
||||||
|
- Properties must use the long name of their corresponding llama.cpp CLI arguments.
|
||||||
|
- Like the llama.cpp binaries the property names do not differentiate between hyphens and underscores.
|
||||||
|
- Flags must be defined as "<PROPERTY_NAME>: true" to be effective.
|
||||||
|
- To define the logit_bias property, the expected format is "<TOKEN_ID>: <BIAS>" in the "logit_bias" namespace.
|
||||||
|
- To define multiple "reverse_prompt" properties simultaneously the expected format is a list of strings.
|
||||||
|
- To define a tensor split, pass a list of floats.
|
||||||
|
"""
|
||||||
|
usage = "run_with_preset.py [-h] [yaml_files ...] [--<ARG_NAME> <ARG_VALUE> ...]"
|
||||||
|
epilog = (" --<ARG_NAME> specify additional CLI ars to be passed to the binary (override all preset files). "
|
||||||
|
"Unknown args will be ignored.")
|
||||||
|
|
||||||
|
parser = argparse.ArgumentParser(
|
||||||
|
description=description, usage=usage, epilog=epilog, formatter_class=argparse.RawTextHelpFormatter)
|
||||||
|
parser.add_argument("-bin", "--binary", help="The binary to run.")
|
||||||
|
parser.add_argument("yaml_files", nargs="*",
|
||||||
|
help="Arbitrary number of YAML files from which to read preset values. "
|
||||||
|
"If two files specify the same values the later one will be used.")
|
||||||
|
|
||||||
|
known_args, unknown_args = parser.parse_known_args()
|
||||||
|
|
||||||
|
if not known_args.yaml_files and not unknown_args:
|
||||||
|
parser.print_help()
|
||||||
|
sys.exit(0)
|
||||||
|
|
||||||
|
props = dict()
|
||||||
|
|
||||||
|
for yaml_file in known_args.yaml_files:
|
||||||
|
with open(yaml_file, "r") as f:
|
||||||
|
props.update(yaml.load(f, yaml.SafeLoader))
|
||||||
|
|
||||||
|
props = {prop.replace("_", "-"): val for prop, val in props.items()}
|
||||||
|
|
||||||
|
binary = props.pop("binary", "main")
|
||||||
|
if known_args.binary:
|
||||||
|
binary = known_args.binary
|
||||||
|
|
||||||
|
if os.path.exists(f"./{binary}"):
|
||||||
|
binary = f"./{binary}"
|
||||||
|
|
||||||
|
if binary.lower().endswith("main") or binary.lower().endswith("perplexity"):
|
||||||
|
cli_args = CLI_ARGS_MAIN_PERPLEXITY
|
||||||
|
elif binary.lower().endswith("llama-bench"):
|
||||||
|
cli_args = CLI_ARGS_LLAMA_BENCH
|
||||||
|
elif binary.lower().endswith("server"):
|
||||||
|
cli_args = CLI_ARGS_SERVER
|
||||||
|
else:
|
||||||
|
print(f"Unknown binary: {binary}")
|
||||||
|
sys.exit(1)
|
||||||
|
|
||||||
|
command_list = [binary]
|
||||||
|
|
||||||
|
for cli_arg in cli_args:
|
||||||
|
value = props.pop(cli_arg, None)
|
||||||
|
|
||||||
|
if not value or value == -1:
|
||||||
|
continue
|
||||||
|
|
||||||
|
if cli_arg == "logit-bias":
|
||||||
|
for token, bias in value.items():
|
||||||
|
command_list.append("--logit-bias")
|
||||||
|
command_list.append(f"{token}{bias:+}")
|
||||||
|
continue
|
||||||
|
|
||||||
|
if cli_arg == "reverse-prompt" and not isinstance(value, str):
|
||||||
|
for rp in value:
|
||||||
|
command_list.append("--reverse-prompt")
|
||||||
|
command_list.append(str(rp))
|
||||||
|
continue
|
||||||
|
|
||||||
|
command_list.append(f"--{cli_arg}")
|
||||||
|
|
||||||
|
if cli_arg == "tensor-split":
|
||||||
|
command_list.append(",".join([str(v) for v in value]))
|
||||||
|
continue
|
||||||
|
|
||||||
|
value = str(value)
|
||||||
|
|
||||||
|
if value != "True":
|
||||||
|
command_list.append(str(value))
|
||||||
|
|
||||||
|
num_unused = len(props)
|
||||||
|
if num_unused > 10:
|
||||||
|
print(f"The preset file contained a total of {num_unused} unused properties.")
|
||||||
|
elif num_unused > 0:
|
||||||
|
print("The preset file contained the following unused properties:")
|
||||||
|
for prop, value in props.items():
|
||||||
|
print(f" {prop}: {value}")
|
||||||
|
|
||||||
|
command_list += unknown_args
|
||||||
|
|
||||||
|
sp = subprocess.Popen(command_list)
|
||||||
|
|
||||||
|
while sp.returncode is None:
|
||||||
|
try:
|
||||||
|
sp.wait()
|
||||||
|
except KeyboardInterrupt:
|
||||||
|
pass
|
||||||
|
|
||||||
|
sys.exit(sp.returncode)
|
Loading…
x
Reference in New Issue
Block a user