control vector api and implementation

This commit is contained in:
Theia Vogel 2024-03-09 20:22:37 -08:00
parent 8030da7afe
commit 6b90566052
4 changed files with 364 additions and 0 deletions

View File

@ -562,6 +562,35 @@ bool gpt_params_parse_ex(int argc, char ** argv, gpt_params & params) {
break;
}
params.lora_base = argv[i];
} else if (arg == "--control-vector") {
if (++i >= argc) {
invalid_param = true;
break;
}
params.control_vectors.push_back(std::make_tuple(argv[i], 1.0f));
} else if (arg == "--control-vector-scaled") {
if (++i >= argc) {
invalid_param = true;
break;
}
const char * control_vector = argv[i];
if (++i >= argc) {
invalid_param = true;
break;
}
params.control_vectors.push_back(std::make_tuple(control_vector, std::stof(argv[i])));
} else if (arg == "--control-vector-layer-range") {
if (++i >= argc) {
invalid_param = true;
break;
}
int32_t start = std::stoi(argv[i]);
if (++i >= argc) {
invalid_param = true;
break;
}
int32_t end = std::stoi(argv[i]);
params.control_vector_layer_range = std::make_tuple(start, end);
} else if (arg == "--mmproj") {
if (++i >= argc) {
invalid_param = true;
@ -1087,6 +1116,12 @@ void gpt_print_usage(int /*argc*/, char ** argv, const gpt_params & params) {
printf(" --lora FNAME apply LoRA adapter (implies --no-mmap)\n");
printf(" --lora-scaled FNAME S apply LoRA adapter with user defined scaling S (implies --no-mmap)\n");
printf(" --lora-base FNAME optional model to use as a base for the layers modified by the LoRA adapter\n");
printf(" --control-vector FNAME\n");
printf(" add a control vector\n");
printf(" --control-vector-scaled FNAME S\n");
printf(" add a control vector with user defined scaling S\n");
printf(" --control-vector-layer-range START END\n");
printf(" layer range to apply the control vector(s) to, start and end inclusive\n");
printf(" -m FNAME, --model FNAME\n");
printf(" model path (default: %s)\n", params.model.c_str());
printf(" -md FNAME, --model-draft FNAME\n");
@ -1351,6 +1386,35 @@ std::tuple<struct llama_model *, struct llama_context *> llama_init_from_gpt_par
return std::make_tuple(nullptr, nullptr);
}
if (!params.control_vectors.empty()) {
int32_t layer_start, layer_end;
std::tie(layer_start, layer_end) = params.control_vector_layer_range;
if (layer_start == 0) layer_start = 1;
if (layer_end == 0) layer_end = 31;
std::vector<float> control_vector;
int n_embd;
std::tie(control_vector, n_embd) = llama_control_vector_load(params.control_vectors);
if (n_embd == -1) {
llama_free(lctx);
llama_free_model(model);
return std::make_tuple(nullptr, nullptr);
}
int err = llama_control_vector_apply(lctx,
control_vector.data(),
control_vector.size(),
n_embd,
layer_start,
layer_end);
if (err) {
llama_free(lctx);
llama_free_model(model);
return std::make_tuple(nullptr, nullptr);
}
}
for (unsigned int i = 0; i < params.lora_adapter.size(); ++i) {
const std::string& lora_adapter = std::get<0>(params.lora_adapter[i]);
float lora_scale = std::get<1>(params.lora_adapter[i]);
@ -1867,3 +1931,156 @@ void llama_embd_normalize(const float * inp, float * out, int n) {
}
}
//
// Control vector utils
//
static std::tuple<std::vector<float>, int> llama_control_vector_load_one(const std::string & path, float strength) {
int n_tensors;
size_t n_bytes = 0;
uint32_t max_direction_layer = 0;
int n_embd = -1;
// calculate size of ctx needed for tensors, ensure tensors are f32, and find max layer
{
struct ggml_init_params meta_params = {
/* .mem_size = */ ggml_tensor_overhead() * 128 + ggml_graph_overhead(),
/* .mem_buffer = */ nullptr,
/* .no_alloc = */ true,
};
ggml_context * meta_ctx = ggml_init(meta_params);
struct gguf_init_params meta_gguf_params = {
/* .no_alloc = */ true,
/* .ctx = */ &meta_ctx,
};
struct gguf_context * meta_ctx_gguf = gguf_init_from_file(path.c_str(), meta_gguf_params);
if (!meta_ctx_gguf) {
fprintf(stderr, "%s: failed to load control vector from %s\n", __func__, path.c_str());
ggml_free(meta_ctx);
return std::make_tuple(std::vector<float>(), -1);
}
n_tensors = gguf_get_n_tensors(meta_ctx_gguf);
for (int i = 0; i < n_tensors; i++) {
std::string name = gguf_get_tensor_name(meta_ctx_gguf, i);
// split on '.'
size_t dotpos = name.find('.');
if (dotpos != std::string::npos && name.substr(0, dotpos) == "direction") {
try {
uint32_t layer = std::stoi(name.substr(dotpos + 1));
if (layer == 0) {
fprintf(stderr, "%s: direction tensor invalid in %s\n", __func__, path.c_str());
ggml_free(meta_ctx);
gguf_free(meta_ctx_gguf);
return std::make_tuple(std::vector<float>(), -1);
}
if (layer > max_direction_layer) {
max_direction_layer = layer;
}
} catch (...) {
fprintf(stderr, "%s: direction tensor invalid in %s\n", __func__, path.c_str());
ggml_free(meta_ctx);
gguf_free(meta_ctx_gguf);
return std::make_tuple(std::vector<float>(), -1);
}
}
struct ggml_tensor * tensor_meta = ggml_get_tensor(meta_ctx, name.c_str());
if (tensor_meta->type != GGML_TYPE_F32 || ggml_n_dims(tensor_meta) != 1) {
fprintf(stderr, "%s: direction tensor invalid in %s\n", __func__, path.c_str());
ggml_free(meta_ctx);
gguf_free(meta_ctx_gguf);
return std::make_tuple(std::vector<float>(), -1);
}
if (n_embd == -1) {
n_embd = ggml_nelements(tensor_meta);
} else if (ggml_nelements(tensor_meta) != n_embd) {
fprintf(stderr, "%s: direction tensor sizes mismatched in %s\n", __func__, path.c_str());
ggml_free(meta_ctx);
gguf_free(meta_ctx_gguf);
return std::make_tuple(std::vector<float>(), -1);
}
n_bytes += ggml_nbytes(tensor_meta);
}
ggml_free(meta_ctx);
gguf_free(meta_ctx_gguf);
}
if (n_tensors == 0) {
fprintf(stderr, "%s: no direction tensors found in %s\n", __func__, path.c_str());
return std::make_tuple(std::vector<float>(), -1);
}
// load and scale tensors into final control vector context
struct ggml_init_params ggml_params = {
/* .mem_size = */ ggml_tensor_overhead() * n_tensors + n_bytes,
/* .mem_buffer = */ nullptr,
/* .no_alloc = */ false,
};
struct ggml_context * ctx = ggml_init(ggml_params);
struct gguf_init_params params = {
/*.no_alloc = */ false,
/*.ctx = */ &ctx,
};
struct gguf_context * ctx_gguf = gguf_init_from_file(path.c_str(), params);
if (!ctx_gguf) {
fprintf(stderr, "%s: failed to load control vector from %s\n", __func__, path.c_str());
ggml_free(ctx);
return std::make_tuple(std::vector<float>(), -1);
}
std::vector<float> vector;
for (uint32_t i = 1; i < max_direction_layer; i++) {
std::string name = "direction." + std::to_string(i);
ggml_tensor * tensor = ggml_get_tensor(ctx, name.c_str());
if (tensor) {
const float * data = (const float *) tensor->data;
for (int i = 0; i < n_embd; i++) {
vector.push_back(data[i] * strength);
}
} else {
vector.insert(vector.end(), n_embd, 0.); // as a filler
}
}
return std::make_tuple(vector, n_embd);
}
std::tuple<std::vector<float>, int> llama_control_vector_load(const std::vector<std::tuple<std::string, float>> & vectors) {
std::vector<float> vector;
int n_embd = -1;
for (const auto& pair : vectors) {
std::string path;
float strength;
std::tie(path, strength) = pair;
std::vector<float> v;
int v_n_embd;
std::tie(v, v_n_embd) = llama_control_vector_load_one(path, strength);
if (v_n_embd == -1) {
return std::make_tuple(std::vector<float>(), -1);
}
if (n_embd != -1 && (n_embd != v_n_embd || v.size() != vector.size())) {
fprintf(stderr, "%s: control vector in %s does not match previous vector dimensions\n", __func__, path.c_str());
return std::make_tuple(std::vector<float>(), -1);
}
if (n_embd == -1) {
vector = std::move(v);
n_embd = v_n_embd;
} else {
for (size_t i = 0; i < vector.size(); i++) {
vector[i] += v[i];
}
}
}
if (n_embd == -1) {
fprintf(stderr, "%s: no vectors passed\n", __func__);
}
return std::make_tuple(vector, n_embd);
}

View File

@ -102,6 +102,9 @@ struct gpt_params {
std::vector<std::tuple<std::string, float>> lora_adapter; // lora adapter path with user defined scale
std::string lora_base = ""; // base model path for the lora adapter
std::vector<std::tuple<std::string, float>> control_vectors; // control vector with user defined scale
std::tuple<int32_t, int32_t> control_vector_layer_range; // layer range for control vector
int ppl_stride = 0; // stride for perplexity calculations. If left at 0, the pre-existing approach will be used.
int ppl_output_type = 0; // = 0 -> ppl output is as usual, = 1 -> ppl output is num_tokens, ppl, one per line
// (which is more convenient to use for plotting)
@ -267,3 +270,12 @@ void dump_kv_cache_view_seqs(const llama_kv_cache_view & view, int row_size = 40
void llama_embd_normalize(const float * inp, float * out, int n);
//
// Control vector utils
//
// Load control vectors from a tuple of {path, strength}, scale each by strength, and add them together.
// Returns a tuple of {concatenated vector data (n_emnd x n_layer), n_embd}
// On error, returns a tuple of {empty, -1}
std::tuple<std::vector<float>, int> llama_control_vector_load(
const std::vector<std::tuple<std::string, float>> & vectors);

121
llama.cpp
View File

@ -1885,6 +1885,31 @@ struct llama_kv_cache {
}
};
struct llama_control_vector {
std::vector<struct ggml_tensor *> tensors; // per layer
std::vector<struct ggml_context *> ctxs;
std::vector<ggml_backend_buffer_t> bufs;
int32_t layer_start = 0;
int32_t layer_end = 0;
ggml_tensor * tensor_for(int il) const {
if (il < 0 || il < layer_start || il > layer_end || (size_t) il >= tensors.size()) {
return nullptr;
}
return tensors[il];
}
~llama_control_vector() {
for (struct ggml_context * ctx : ctxs) {
ggml_free(ctx);
}
for (ggml_backend_buffer_t buf : bufs) {
ggml_backend_buffer_free(buf);
}
}
};
struct llama_vocab {
using id = int32_t;
using token = std::string;
@ -2093,6 +2118,9 @@ struct llama_context {
struct ggml_tensor * inp_s_mask; // F32 [kv_size]
struct ggml_tensor * inp_s_seq; // I32 [kv_size, n_batch]
// control vectors
struct llama_control_vector cvec;
#ifdef GGML_USE_MPI
ggml_mpi_context * ctx_mpi = NULL;
#endif
@ -5772,6 +5800,12 @@ struct llm_build_context {
}
cur = ggml_add(ctx0, cur, ffn_inp);
cb(cur, "ffn_out", il);
ggml_tensor * layer_dir = lctx.cvec.tensor_for(il);
if (layer_dir != nullptr) {
cur = ggml_add(ctx0, cur, layer_dir);
}
cb(cur, "l_out", il);
// input for next layer
@ -13188,6 +13222,93 @@ int32_t llama_model_apply_lora_from_file(const struct llama_model * model, const
}
}
static bool llama_control_vector_init(struct llama_control_vector & cvec, const llama_model & model) {
GGML_ASSERT(cvec.tensors.empty());
GGML_ASSERT(cvec.ctxs.empty());
GGML_ASSERT(cvec.bufs.empty());
// count layer buffer types
std::map<ggml_backend_buffer_type_t, int> buft_layer_count;
for (int64_t i = 0; i < model.hparams.n_layer; i++) {
buft_layer_count[model.buft_layer[i].buft]++;
}
// allocate contexts
std::map<ggml_backend_buffer_type_t, ggml_context *> ctx_map;
for (auto & it : buft_layer_count) {
int n_layers = it.second;
struct ggml_init_params params = {
/*.mem_size =*/ n_layers * ggml_tensor_overhead(),
/*.mem_buffer =*/ NULL,
/*.no_alloc =*/ true,
};
ggml_context * ctx = ggml_init(params);
if (!ctx) {
LLAMA_LOG_ERROR("%s: failed to allocate context for control vector\n", __func__);
return 1;
}
ctx_map[it.first] = ctx;
}
// make tensors
cvec.tensors.push_back(nullptr); // there's never a tensor for layer 0
for (size_t il = 1; il < model.hparams.n_layer; il++) {
struct ggml_context * ctx = ctx_map.at(model.buft_layer[il].buft);
ggml_tensor * tensor = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, model.hparams.n_embd);
cvec.tensors.push_back(tensor);
}
// allocate tensors / buffers and zero
for (auto it : ctx_map) {
ggml_backend_buffer_type_t buft = it.first;
ggml_context * ctx = it.second;
ggml_backend_buffer_t buf = ggml_backend_alloc_ctx_tensors_from_buft(ctx, buft);
if (!buf) {
LLAMA_LOG_ERROR("%s: failed to allocate buffer for control vector\n", __func__);
return false;
}
ggml_backend_buffer_clear(buf, 0);
cvec.ctxs.push_back(ctx);
cvec.bufs.push_back(buf);
}
return true;
}
int32_t llama_control_vector_apply(struct llama_context * lctx, float * data, size_t len, int n_embd, int32_t il_start, int32_t il_end) {
const llama_model & model = lctx->model;
llama_control_vector & cvec = lctx->cvec;
if (n_embd != (int) model.hparams.n_embd) {
LLAMA_LOG_ERROR("%s: control vector n_embd does not match model\n", __func__);
return 1;
}
if (cvec.tensors.empty()) {
if (!llama_control_vector_init(cvec, model)) {
return 1;
}
}
cvec.layer_start = il_start;
cvec.layer_end = il_end;
for (size_t il = 1; il < model.hparams.n_layer; il++) {
if (il >= cvec.tensors.size() || cvec.tensors[il] == nullptr) {
continue;
}
size_t off = n_embd * (il - 1); // buffer doesn't have data for layer 0, since it's never present
if (off + n_embd <= len) {
ggml_backend_tensor_set(cvec.tensors[il],
data + off,
0,
n_embd * ggml_element_size(cvec.tensors[il]));
}
}
return 0;
}
struct llama_kv_cache_view llama_kv_cache_view_init(const struct llama_context * ctx, int32_t n_seq_max) {
struct llama_kv_cache_view result = {
/*.n_cells = */ 0,

14
llama.h
View File

@ -437,6 +437,20 @@ extern "C" {
const char * path_base_model,
int32_t n_threads);
// Apply a loaded control vector to a llama_context, or if data is NULL, clear
// the currently loaded vector.
// n_embd should be the size of a single layer's control, and data should point
// to an n_embd x n_layers buffer starting from layer 1.
// il_start and il_end are the layer range the vector should apply to (both inclusive)
// See llama_control_vector_load in common to load a control vector.
LLAMA_API int32_t llama_control_vector_apply(
struct llama_context * lctx,
float * data,
size_t len,
int n_embd,
int32_t il_start,
int32_t il_end);
//
// KV cache
//