llama : run all KQV ops on the CPU with no KV offload (#5049)

ggml-ci
This commit is contained in:
slaren 2024-01-20 16:05:49 +01:00 committed by GitHub
parent 77bc1bbd05
commit 6df465a91d
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
2 changed files with 99 additions and 80 deletions

View File

@ -1191,6 +1191,24 @@ static void sched_split_graph(ggml_backend_sched_t sched, struct ggml_cgraph * g
ggml_tallocr_t src_allocr = node_allocr(src); ggml_tallocr_t src_allocr = node_allocr(src);
GGML_ASSERT(src_allocr != NULL); // all inputs should be assigned by now GGML_ASSERT(src_allocr != NULL); // all inputs should be assigned by now
if (src_allocr != node_allocr) { if (src_allocr != node_allocr) {
// create a copy of the input in the split's backend
size_t id = hash_id(src);
if (sched->node_copies[id][cur_backend_id] == NULL) {
ggml_backend_t backend = get_allocr_backend(sched, cur_allocr);
struct ggml_tensor * tensor_copy = ggml_dup_tensor_layout(sched->ctx, src);
ggml_format_name(tensor_copy, "%s#%s", ggml_backend_name(backend), src->name);
sched->node_copies[id][cur_backend_id] = tensor_copy;
node_allocr(tensor_copy) = cur_allocr;
SET_CAUSE(tensor_copy, "4.cpy");
int n_inputs = sched->splits[cur_split].n_inputs++;
GGML_ASSERT(n_inputs < GGML_MAX_SPLIT_INPUTS);
sched->splits[cur_split].inputs[n_inputs] = src;
}
node->src[j] = sched->node_copies[id][cur_backend_id];
#if 0
// check if the input is already in the split // check if the input is already in the split
bool found = false; bool found = false;
for (int k = 0; k < sched->splits[cur_split].n_inputs; k++) { for (int k = 0; k < sched->splits[cur_split].n_inputs; k++) {
@ -1206,19 +1224,7 @@ static void sched_split_graph(ggml_backend_sched_t sched, struct ggml_cgraph * g
GGML_ASSERT(n_inputs < GGML_MAX_SPLIT_INPUTS); GGML_ASSERT(n_inputs < GGML_MAX_SPLIT_INPUTS);
sched->splits[cur_split].inputs[n_inputs] = src; sched->splits[cur_split].inputs[n_inputs] = src;
} }
#endif
// create a copy of the input in the split's backend
size_t id = hash_id(src);
if (sched->node_copies[id][cur_backend_id] == NULL) {
ggml_backend_t backend = get_allocr_backend(sched, cur_allocr);
struct ggml_tensor * tensor_copy = ggml_dup_tensor_layout(sched->ctx, src);
ggml_format_name(tensor_copy, "%s#%s", ggml_backend_name(backend), src->name);
sched->node_copies[id][cur_backend_id] = tensor_copy;
node_allocr(tensor_copy) = cur_allocr;
SET_CAUSE(tensor_copy, "4.cpy");
}
node->src[j] = sched->node_copies[id][cur_backend_id];
} }
} }
} }
@ -1333,7 +1339,7 @@ static void sched_compute_splits(ggml_backend_sched_t sched) {
uint64_t compute_start_us = ggml_time_us(); uint64_t compute_start_us = ggml_time_us();
if (!sched->callback_eval) { if (!sched->callback_eval) {
ggml_backend_graph_compute(split_backend, &split->graph); ggml_backend_graph_compute(split_backend, &split->graph);
//ggml_backend_synchronize(split_backend); // necessary to measure compute time //ggml_backend_synchronize(split_backend); // necessary to measure compute time
} else { } else {
// similar to ggml_backend_compare_graph_backend // similar to ggml_backend_compare_graph_backend
for (int j0 = 0; j0 < split->graph.n_nodes; j0++) { for (int j0 = 0; j0 < split->graph.n_nodes; j0++) {

145
llama.cpp
View File

@ -4315,6 +4315,7 @@ static struct ggml_tensor * llm_build_kqv(
const llama_model & model, const llama_model & model,
const llama_hparams & hparams, const llama_hparams & hparams,
const llama_kv_cache & kv, const llama_kv_cache & kv,
struct ggml_cgraph * graph,
struct ggml_tensor * wo, struct ggml_tensor * wo,
struct ggml_tensor * wo_b, struct ggml_tensor * wo_b,
struct ggml_tensor * q_cur, struct ggml_tensor * q_cur,
@ -4393,6 +4394,8 @@ static struct ggml_tensor * llm_build_kqv(
struct ggml_tensor * cur = ggml_cont_2d(ctx, kqv_merged, n_embd_head_k*n_head, n_tokens); struct ggml_tensor * cur = ggml_cont_2d(ctx, kqv_merged, n_embd_head_k*n_head, n_tokens);
cb(cur, "kqv_merged_cont", il); cb(cur, "kqv_merged_cont", il);
ggml_build_forward_expand(graph, cur);
cur = ggml_mul_mat(ctx, wo, cur); cur = ggml_mul_mat(ctx, wo, cur);
if (wo_b) { if (wo_b) {
cb(cur, "kqv_wo", il); cb(cur, "kqv_wo", il);
@ -4405,6 +4408,44 @@ static struct ggml_tensor * llm_build_kqv(
return cur; return cur;
} }
static struct ggml_tensor * llm_build_kv(
struct ggml_context * ctx,
const llama_model & model,
const llama_hparams & hparams,
const llama_kv_cache & kv,
struct ggml_cgraph * graph,
struct ggml_tensor * wo,
struct ggml_tensor * wo_b,
struct ggml_tensor * k_cur,
struct ggml_tensor * v_cur,
struct ggml_tensor * q_cur,
struct ggml_tensor * kq_mask,
int64_t n_ctx,
int32_t n_tokens,
int32_t kv_head,
int32_t n_kv,
float max_alibi_bias,
float kq_scale,
const llm_build_cb & cb,
int il) {
// these nodes are added to the graph together so that they are not reordered
// by doing so, the number of splits in the graph is reduced
ggml_build_forward_expand(graph, k_cur);
ggml_build_forward_expand(graph, v_cur);
ggml_build_forward_expand(graph, q_cur);
llm_build_kv_store(ctx, hparams, kv, graph, k_cur, v_cur, n_ctx, n_tokens, kv_head, cb, il);
struct ggml_tensor * cur;
cur = llm_build_kqv(ctx, model, hparams, kv, graph,
wo, wo_b,
q_cur, kq_mask, n_ctx, n_tokens, n_kv, max_alibi_bias, kq_scale, cb, il);
cb(cur, "kqv_out", il);
return cur;
}
struct llm_build_context { struct llm_build_context {
const llama_model & model; const llama_model & model;
const llama_hparams & hparams; const llama_hparams & hparams;
@ -4562,12 +4603,6 @@ struct llm_build_context {
cb(Vcur, "Vcur", il); cb(Vcur, "Vcur", il);
} }
// these nodes are added to the graph together so that they are not reordered
// by doing so, the number of splits in the graph is reduced
ggml_build_forward_expand(gf, Qcur);
ggml_build_forward_expand(gf, Kcur);
ggml_build_forward_expand(gf, Vcur);
Qcur = ggml_rope_custom( Qcur = ggml_rope_custom(
ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos, ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos,
hparams.n_rot, 0, 0, n_orig_ctx, freq_base, freq_scale, hparams.n_rot, 0, 0, n_orig_ctx, freq_base, freq_scale,
@ -4582,11 +4617,9 @@ struct llm_build_context {
); );
cb(Kcur, "Kcur", il); cb(Kcur, "Kcur", il);
llm_build_kv_store(ctx0, hparams, kv_self, gf, Kcur, Vcur, n_ctx, n_tokens, kv_head, cb, il); cur = llm_build_kv(ctx0, model, hparams, kv_self, gf,
cur = llm_build_kqv(ctx0, model, hparams, kv_self,
model.layers[il].wo, model.layers[il].bo, model.layers[il].wo, model.layers[il].bo,
Qcur, KQ_mask, n_ctx, n_tokens, n_kv, -1.0f, 1.0f/sqrtf(float(n_embd_head)), cb, il); Kcur, Vcur, Qcur, KQ_mask, n_ctx, n_tokens, kv_head, n_kv, -1.0f, 1.0f/sqrtf(float(n_embd_head)), cb, il);
cb(cur, "kqv_out", il); cb(cur, "kqv_out", il);
} }
@ -4763,14 +4796,13 @@ struct llm_build_context {
cb(Qcur, "Qcur", il); cb(Qcur, "Qcur", il);
cb(Kcur, "Kcur", il); cb(Kcur, "Kcur", il);
llm_build_kv_store(ctx0, hparams, kv_self, gf, Kcur, Vcur, n_ctx, n_tokens, kv_head, cb, il);
// apply ALiBi for 13B model // apply ALiBi for 13B model
const float max_alibi_bias = model.type == MODEL_13B ? 8.0f : -1.0f; const float max_alibi_bias = model.type == MODEL_13B ? 8.0f : -1.0f;
cur = llm_build_kqv(ctx0, model, hparams, kv_self, cur = llm_build_kv(ctx0, model, hparams, kv_self, gf,
model.layers[il].wo, NULL, model.layers[il].wo, NULL,
Qcur, KQ_mask, n_ctx, n_tokens, n_kv, max_alibi_bias, 1.0f/sqrtf(float(n_embd_head)), cb, il); Kcur, Vcur, Qcur, KQ_mask, n_ctx, n_tokens, kv_head, n_kv, max_alibi_bias, 1.0f/sqrtf(float(n_embd_head)), cb, il);
cb(cur, "kqv_out", il); cb(cur, "kqv_out", il);
} }
@ -4892,11 +4924,9 @@ struct llm_build_context {
); );
cb(Kcur, "Kcur", il); cb(Kcur, "Kcur", il);
llm_build_kv_store(ctx0, hparams, kv_self, gf, Kcur, Vcur, n_ctx, n_tokens, kv_head, cb, il); cur = llm_build_kv(ctx0, model, hparams, kv_self, gf,
cur = llm_build_kqv(ctx0, model, hparams, kv_self,
model.layers[il].wo, NULL, model.layers[il].wo, NULL,
Qcur, KQ_mask, n_ctx, n_tokens, n_kv, -1.0f, 1.0f/sqrtf(float(n_embd_head)), cb, il); Kcur, Vcur, Qcur, KQ_mask, n_ctx, n_tokens, kv_head, n_kv, -1.0f, 1.0f/sqrtf(float(n_embd_head)), cb, il);
cb(cur, "kqv_out", il); cb(cur, "kqv_out", il);
} }
@ -4993,11 +5023,9 @@ struct llm_build_context {
Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens); Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
llm_build_kv_store(ctx0, hparams, kv_self, gf, Kcur, Vcur, n_ctx, n_tokens, kv_head, cb, il); cur = llm_build_kv(ctx0, model, hparams, kv_self, gf,
cur = llm_build_kqv(ctx0, model, hparams, kv_self,
model.layers[il].wo, model.layers[il].bo, model.layers[il].wo, model.layers[il].bo,
Qcur, KQ_mask, n_ctx, n_tokens, n_kv, -1.0f, 1.0f/sqrtf(float(n_embd_head)), cb, il); Kcur, Vcur, Qcur, KQ_mask, n_ctx, n_tokens, kv_head, n_kv, -1.0f, 1.0f/sqrtf(float(n_embd_head)), cb, il);
cb(cur, "kqv_out", il); cb(cur, "kqv_out", il);
} }
@ -5200,12 +5228,9 @@ struct llm_build_context {
); );
cb(Vcur, "Vcur", il); cb(Vcur, "Vcur", il);
llm_build_kv_store(ctx0, hparams, kv_self, gf, Kcur, Vcur, n_ctx, n_tokens, kv_head, cb, il); cur = llm_build_kv(ctx0, model, hparams, kv_self, gf,
// TODO: not tested, could be broken
cur = llm_build_kqv(ctx0, model, hparams, kv_self,
model.layers[il].wo, model.layers[il].bo, model.layers[il].wo, model.layers[il].bo,
Q, KQ_mask, n_ctx, n_tokens, n_kv, -1.0f, 1.0f/sqrtf(float(n_embd_head)), cb, il); Kcur, Vcur, Q, KQ_mask, n_ctx, n_tokens, kv_head, n_kv, -1.0f, 1.0f/sqrtf(float(n_embd_head)), cb, il);
cb(cur, "kqv_out", il); cb(cur, "kqv_out", il);
} }
@ -5292,11 +5317,9 @@ struct llm_build_context {
Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens); Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
cb(Qcur, "Qcur", il); cb(Qcur, "Qcur", il);
llm_build_kv_store(ctx0, hparams, kv_self, gf, Kcur, Vcur, n_ctx, n_tokens, kv_head, cb, il); cur = llm_build_kv(ctx0, model, hparams, kv_self, gf,
cur = llm_build_kqv(ctx0, model, hparams, kv_self,
model.layers[il].wo, NULL, model.layers[il].wo, NULL,
Qcur, KQ_mask, n_ctx, n_tokens, n_kv, 8.0f, 1.0f/sqrtf(float(n_embd_head)), cb, il); Kcur, Vcur, Qcur, KQ_mask, n_ctx, n_tokens, kv_head, n_kv, 8.0f, 1.0f/sqrtf(float(n_embd_head)), cb, il);
cb(cur, "kqv_out", il); cb(cur, "kqv_out", il);
} }
@ -5390,11 +5413,9 @@ struct llm_build_context {
Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens); Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
llm_build_kv_store(ctx0, hparams, kv_self, gf, Kcur, Vcur, n_ctx, n_tokens, kv_head, cb, il); cur = llm_build_kv(ctx0, model, hparams, kv_self, gf,
cur = llm_build_kqv(ctx0, model, hparams, kv_self,
model.layers[il].wo, model.layers[il].bo, model.layers[il].wo, model.layers[il].bo,
Qcur, KQ_mask, n_ctx, n_tokens, n_kv, 8.0f, 1.0f/sqrtf(float(n_embd_head)), cb, il); Kcur, Vcur, Qcur, KQ_mask, n_ctx, n_tokens, kv_head, n_kv, 8.0f, 1.0f/sqrtf(float(n_embd_head)), cb, il);
cb(cur, "kqv_out", il); cb(cur, "kqv_out", il);
} }
@ -5485,11 +5506,9 @@ struct llm_build_context {
Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens); Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
llm_build_kv_store(ctx0, hparams, kv_self, gf, Kcur, Vcur, n_ctx, n_tokens, kv_head, cb, il); cur = llm_build_kv(ctx0, model, hparams, kv_self, gf,
cur = llm_build_kqv(ctx0, model, hparams, kv_self,
model.layers[il].wo, NULL, model.layers[il].wo, NULL,
Qcur, KQ_mask, n_ctx, n_tokens, n_kv, hparams.f_max_alibi_bias, 1.0f/sqrtf(float(n_embd_head)), cb, il); Kcur, Vcur, Qcur, KQ_mask, n_ctx, n_tokens, kv_head, n_kv, hparams.f_max_alibi_bias, 1.0f/sqrtf(float(n_embd_head)), cb, il);
cb(cur, "kqv_out", il); cb(cur, "kqv_out", il);
} }
@ -5597,11 +5616,9 @@ struct llm_build_context {
); );
cb(Kcur, "Kcur", il); cb(Kcur, "Kcur", il);
llm_build_kv_store(ctx0, hparams, kv_self, gf, Kcur, Vcur, n_ctx, n_tokens, kv_head, cb, il); cur = llm_build_kv(ctx0, model, hparams, kv_self, gf,
cur = llm_build_kqv(ctx0, model, hparams, kv_self,
model.layers[il].wo, NULL, model.layers[il].wo, NULL,
Qcur, KQ_mask, n_ctx, n_tokens, n_kv, -1.0f, 1.0f/sqrtf(float(n_embd_head)), cb, il); Kcur, Vcur, Qcur, KQ_mask, n_ctx, n_tokens, kv_head, n_kv, -1.0f, 1.0f/sqrtf(float(n_embd_head)), cb, il);
cb(cur, "kqv_out", il); cb(cur, "kqv_out", il);
} }
@ -5714,11 +5731,9 @@ struct llm_build_context {
); );
cb(Kcur, "Kcur", il); cb(Kcur, "Kcur", il);
llm_build_kv_store(ctx0, hparams, kv_self, gf, Kcur, Vcur, n_ctx, n_tokens, kv_head, cb, il); cur = llm_build_kv(ctx0, model, hparams, kv_self, gf,
cur = llm_build_kqv(ctx0, model, hparams, kv_self,
model.layers[il].wo, NULL, model.layers[il].wo, NULL,
Qcur, KQ_mask, n_ctx, n_tokens, n_kv, -1.0f, 1.0f/sqrtf(float(n_embd_head)), cb, il); Kcur, Vcur, Qcur, KQ_mask, n_ctx, n_tokens, kv_head, n_kv, -1.0f, 1.0f/sqrtf(float(n_embd_head)), cb, il);
cb(cur, "kqv_out", il); cb(cur, "kqv_out", il);
} }
@ -5837,11 +5852,9 @@ struct llm_build_context {
); );
cb(Kcur, "Kcur", il); cb(Kcur, "Kcur", il);
llm_build_kv_store(ctx0, hparams, kv_self, gf, Kcur, Vcur, n_ctx, n_tokens, kv_head, cb, il); cur = llm_build_kv(ctx0, model, hparams, kv_self, gf,
cur = llm_build_kqv(ctx0, model, hparams, kv_self,
model.layers[il].wo, model.layers[il].bo, model.layers[il].wo, model.layers[il].bo,
Qcur, KQ_mask, n_ctx, n_tokens, n_kv, -1.0f, 1.0f/sqrtf(float(n_embd_head)), cb, il); Kcur, Vcur, Qcur, KQ_mask, n_ctx, n_tokens, kv_head, n_kv, -1.0f, 1.0f/sqrtf(float(n_embd_head)), cb, il);
cb(cur, "kqv_out", il); cb(cur, "kqv_out", il);
} }
@ -5966,11 +5979,9 @@ struct llm_build_context {
); );
cb(Kcur, "Kcur", il); cb(Kcur, "Kcur", il);
llm_build_kv_store(ctx0, hparams, kv_self, gf, Kcur, Vcur, n_ctx, n_tokens, kv_head, cb, il); cur = llm_build_kv(ctx0, model, hparams, kv_self, gf,
cur = llm_build_kqv(ctx0, model, hparams, kv_self,
model.layers[il].wo, model.layers[il].bo, model.layers[il].wo, model.layers[il].bo,
Qcur, KQ_mask, n_ctx, n_tokens, n_kv, -1.0f, 1.0f, cb, il); Kcur, Vcur, Qcur, KQ_mask, n_ctx, n_tokens, kv_head, n_kv, -1.0f, 1.0f, cb, il);
cb(cur, "kqv_out", il); cb(cur, "kqv_out", il);
} }
@ -6071,11 +6082,9 @@ struct llm_build_context {
ext_factor, attn_factor, beta_fast, beta_slow); ext_factor, attn_factor, beta_fast, beta_slow);
cb(Kcur, "Kcur", il); cb(Kcur, "Kcur", il);
llm_build_kv_store(ctx0, hparams, kv_self, gf, Kcur, Vcur, n_ctx, n_tokens, kv_head, cb, il); cur = llm_build_kv(ctx0, model, hparams, kv_self, gf,
cur = llm_build_kqv(ctx0, model, hparams, kv_self,
model.layers[il].wo, NULL, model.layers[il].wo, NULL,
Qcur, KQ_mask, n_ctx, n_tokens, n_kv, -1.0f, 1.0f/sqrtf(float(n_embd_head)), cb, il); Kcur, Vcur, Qcur, KQ_mask, n_ctx, n_tokens, kv_head, n_kv, -1.0f, 1.0f/sqrtf(float(n_embd_head)), cb, il);
cb(cur, "kqv_out", il); cb(cur, "kqv_out", il);
} }
struct ggml_tensor * sa_out = cur; struct ggml_tensor * sa_out = cur;
@ -6172,11 +6181,9 @@ struct llm_build_context {
Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens); Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
llm_build_kv_store(ctx0, hparams, kv_self, gf, Kcur, Vcur, n_ctx, n_tokens, kv_head, cb, il); cur = llm_build_kv(ctx0, model, hparams, kv_self, gf,
cur = llm_build_kqv(ctx0, model, hparams, kv_self,
model.layers[il].wo, model.layers[il].bo, model.layers[il].wo, model.layers[il].bo,
Qcur, KQ_mask, n_ctx, n_tokens, n_kv, -1.0f, 1.0f/sqrtf(float(n_embd_head)), cb, il); Kcur, Vcur, Qcur, KQ_mask, n_ctx, n_tokens, kv_head, n_kv, -1.0f, 1.0f/sqrtf(float(n_embd_head)), cb, il);
cb(cur, "kqv_out", il); cb(cur, "kqv_out", il);
} }
@ -6283,11 +6290,9 @@ struct llm_build_context {
); );
cb(Kcur, "Kcur", il); cb(Kcur, "Kcur", il);
llm_build_kv_store(ctx0, hparams, kv_self, gf, Kcur, Vcur, n_ctx, n_tokens, kv_head, cb, il); cur = llm_build_kv(ctx0, model, hparams, kv_self, gf,
cur = llm_build_kqv(ctx0, model, hparams, kv_self,
model.layers[il].wo, model.layers[il].bo, model.layers[il].wo, model.layers[il].bo,
Qcur, KQ_mask, n_ctx, n_tokens, n_kv, -1.0f, 1.0f/sqrtf(float(n_embd_head)), cb, il); Kcur, Vcur, Qcur, KQ_mask, n_ctx, n_tokens, kv_head, n_kv, -1.0f, 1.0f/sqrtf(float(n_embd_head)), cb, il);
cb(cur, "kqv_out", il); cb(cur, "kqv_out", il);
} }
@ -6355,6 +6360,14 @@ static struct ggml_cgraph * llama_build_graph(
ggml_set_name(cur, name); ggml_set_name(cur, name);
} }
if (!lctx.cparams.offload_kqv) {
if (strcmp(name, "kqv_merged_cont") == 0) {
// all nodes between the KV store and the attention output are run on the CPU
ggml_backend_sched_set_node_backend(lctx.sched, cur, lctx.backend_cpu);
}
}
// //
// allocate input tensors and set input data // allocate input tensors and set input data
// //