mirror of
https://github.com/ggerganov/llama.cpp.git
synced 2025-01-26 03:12:23 +01:00
llama : add custom RoPE (#2054)
* Implement customizable RoPE The original RoPE has pre-defined parameters theta_i = 10000^(−2(i−1)/d), for i in [1, 2, ..., d/2] Our customizable RoPE, ggml_rope_custom_inplace, uses theta_i = scale * base^(−2(i−1)/d), for i in [1, 2, ..., d/2] with the default matches the original scale = 1.0 base = 10000 The new command line arguments --rope-freq-base --rope-freq-scale set the two new RoPE parameter. Recent researches show changing these two parameters extends the context limit with minimal loss. 1. Extending Context to 8K kaiokendev https://kaiokendev.github.io/til#extending-context-to-8k 2. Extending Context Window of Large Language Models via Positional Interpolation Shouyuan Chen, Sherman Wong, Liangjian Chen, Yuandong Tian https://arxiv.org/abs/2306.15595 3. NTK-Aware Scaled RoPE allows LLaMA models to have extended (8k+) context size without any fine-tuning and minimal perplexity degradation. https://www.reddit.com/user/bloc97 https://www.reddit.com/r/LocalLLaMA/comments/14lz7j5/ntkaware_scaled_rope_allows_llama_models_to_have/ For the bold, try adding the following command line parameters to your favorite model: -c 16384 --rope-freq-base 80000 --rope-freq-scale 0.5 * ggml-metal: fix custom rope * common: fix argument names in help * llama: increase MEM_REQ_EVAL for MODEL_3B It avoids crashing for quantized weights on CPU. Better ways to calculate the required buffer size would be better. * llama: make MEM_REQ_EVAL depend on n_ctx * server: use proper Content-Type in curl examples Without the header Content-Type: application/json, curl will POST with Content-Type: application/x-www-form-urlencoded Though our simple server doesn't care, the httplib.h used has a limit with CPPHTTPLIB_FORM_URL_ENCODED_PAYLOAD_MAX_LENGTH 8192 With Content-Type: application/json, we can send large json data. * style : minor fixes, mostly indentations * ggml : fix asserts --------- Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
This commit is contained in:
parent
a6803cab94
commit
6e7cca4047
@ -168,6 +168,18 @@ bool gpt_params_parse(int argc, char ** argv, gpt_params & params) {
|
|||||||
break;
|
break;
|
||||||
}
|
}
|
||||||
params.n_ctx = std::stoi(argv[i]);
|
params.n_ctx = std::stoi(argv[i]);
|
||||||
|
} else if (arg == "--rope-freq-base") {
|
||||||
|
if (++i >= argc) {
|
||||||
|
invalid_param = true;
|
||||||
|
break;
|
||||||
|
}
|
||||||
|
params.rope_freq_base = std::stof(argv[i]);
|
||||||
|
} else if (arg == "--rope-freq-scale") {
|
||||||
|
if (++i >= argc) {
|
||||||
|
invalid_param = true;
|
||||||
|
break;
|
||||||
|
}
|
||||||
|
params.rope_freq_scale = std::stof(argv[i]);
|
||||||
} else if (arg == "--memory-f32") {
|
} else if (arg == "--memory-f32") {
|
||||||
params.memory_f16 = false;
|
params.memory_f16 = false;
|
||||||
} else if (arg == "--top-p") {
|
} else if (arg == "--top-p") {
|
||||||
@ -493,6 +505,8 @@ void gpt_print_usage(int /*argc*/, char ** argv, const gpt_params & params) {
|
|||||||
fprintf(stderr, " --cfg-scale N strength of guidance (default: %f, 1.0 = disable)\n", params.cfg_scale);
|
fprintf(stderr, " --cfg-scale N strength of guidance (default: %f, 1.0 = disable)\n", params.cfg_scale);
|
||||||
fprintf(stderr, " --cfg-smooth-factor N smooth factor between old and new logits (default: %f, 1.0 = no smoothing)\n", params.cfg_smooth_factor);
|
fprintf(stderr, " --cfg-smooth-factor N smooth factor between old and new logits (default: %f, 1.0 = no smoothing)\n", params.cfg_smooth_factor);
|
||||||
fprintf(stderr, " -c N, --ctx-size N size of the prompt context (default: %d)\n", params.n_ctx);
|
fprintf(stderr, " -c N, --ctx-size N size of the prompt context (default: %d)\n", params.n_ctx);
|
||||||
|
fprintf(stderr, " --rope-freq-base N RoPE base frequency (default: %.1f)\n", params.rope_freq_base);
|
||||||
|
fprintf(stderr, " --rope-freq-scale N RoPE frequency scaling factor (default: %g)\n", params.rope_freq_scale);
|
||||||
fprintf(stderr, " --ignore-eos ignore end of stream token and continue generating (implies --logit-bias 2-inf)\n");
|
fprintf(stderr, " --ignore-eos ignore end of stream token and continue generating (implies --logit-bias 2-inf)\n");
|
||||||
fprintf(stderr, " --no-penalize-nl do not penalize newline token\n");
|
fprintf(stderr, " --no-penalize-nl do not penalize newline token\n");
|
||||||
fprintf(stderr, " --memory-f32 use f32 instead of f16 for memory key+value (default: disabled)\n");
|
fprintf(stderr, " --memory-f32 use f32 instead of f16 for memory key+value (default: disabled)\n");
|
||||||
@ -573,6 +587,8 @@ struct llama_context_params llama_context_params_from_gpt_params(const gpt_param
|
|||||||
lparams.use_mlock = params.use_mlock;
|
lparams.use_mlock = params.use_mlock;
|
||||||
lparams.logits_all = params.perplexity;
|
lparams.logits_all = params.perplexity;
|
||||||
lparams.embedding = params.embedding;
|
lparams.embedding = params.embedding;
|
||||||
|
lparams.rope_freq_base = params.rope_freq_base;
|
||||||
|
lparams.rope_freq_scale = params.rope_freq_scale;
|
||||||
|
|
||||||
return lparams;
|
return lparams;
|
||||||
}
|
}
|
||||||
|
@ -32,6 +32,8 @@ struct gpt_params {
|
|||||||
int32_t main_gpu = 0; // the GPU that is used for scratch and small tensors
|
int32_t main_gpu = 0; // the GPU that is used for scratch and small tensors
|
||||||
float tensor_split[LLAMA_MAX_DEVICES] = {0}; // how split tensors should be distributed across GPUs
|
float tensor_split[LLAMA_MAX_DEVICES] = {0}; // how split tensors should be distributed across GPUs
|
||||||
int32_t n_probs = 0; // if greater than 0, output the probabilities of top n_probs tokens.
|
int32_t n_probs = 0; // if greater than 0, output the probabilities of top n_probs tokens.
|
||||||
|
float rope_freq_base = 10000.0f; // RoPE base frequency
|
||||||
|
float rope_freq_scale = 1.0f; // RoPE frequency scaling factor
|
||||||
|
|
||||||
// sampling parameters
|
// sampling parameters
|
||||||
std::unordered_map<llama_token, float> logit_bias; // logit bias for specific tokens
|
std::unordered_map<llama_token, float> logit_bias; // logit bias for specific tokens
|
||||||
|
@ -84,9 +84,17 @@ int main(int argc, char ** argv) {
|
|||||||
return 0;
|
return 0;
|
||||||
}
|
}
|
||||||
|
|
||||||
|
if (params.rope_freq_base != 10000.0) {
|
||||||
|
fprintf(stderr, "%s: warning: changing RoPE frequency base to %g (default 10000.0)\n", __func__, params.rope_freq_base);
|
||||||
|
}
|
||||||
|
|
||||||
|
if (params.rope_freq_scale != 1.0) {
|
||||||
|
fprintf(stderr, "%s: warning: scaling RoPE frequency by %g (default 1.0)\n", __func__, params.rope_freq_scale);
|
||||||
|
}
|
||||||
|
|
||||||
if (params.n_ctx > 2048) {
|
if (params.n_ctx > 2048) {
|
||||||
fprintf(stderr, "%s: warning: model might not support context sizes greater than 2048 tokens (%d specified);"
|
fprintf(stderr, "%s: warning: base model only supports context sizes no greater than 2048 tokens (%d specified);"
|
||||||
"expect poor results\n", __func__, params.n_ctx);
|
" you are on your own\n", __func__, params.n_ctx);
|
||||||
} else if (params.n_ctx < 8) {
|
} else if (params.n_ctx < 8) {
|
||||||
fprintf(stderr, "%s: warning: minimum context size is 8, using minimum size.\n", __func__);
|
fprintf(stderr, "%s: warning: minimum context size is 8, using minimum size.\n", __func__);
|
||||||
params.n_ctx = 8;
|
params.n_ctx = 8;
|
||||||
|
@ -66,6 +66,7 @@ Using [curl](https://curl.se/). On Windows `curl.exe` should be available in the
|
|||||||
```sh
|
```sh
|
||||||
curl --request POST \
|
curl --request POST \
|
||||||
--url http://localhost:8080/completion \
|
--url http://localhost:8080/completion \
|
||||||
|
--header "Content-Type: application/json" \
|
||||||
--data '{"prompt": "Building a website can be done in 10 simple steps:","n_predict": 128}'
|
--data '{"prompt": "Building a website can be done in 10 simple steps:","n_predict": 128}'
|
||||||
```
|
```
|
||||||
|
|
||||||
|
@ -32,6 +32,7 @@ tokenize() {
|
|||||||
--silent \
|
--silent \
|
||||||
--request POST \
|
--request POST \
|
||||||
--url "${API_URL}/tokenize" \
|
--url "${API_URL}/tokenize" \
|
||||||
|
--header "Content-Type: application/json" \
|
||||||
--data-raw "$(jq -ns --arg content "$1" '{content:$content}')" \
|
--data-raw "$(jq -ns --arg content "$1" '{content:$content}')" \
|
||||||
| jq '.tokens[]'
|
| jq '.tokens[]'
|
||||||
}
|
}
|
||||||
@ -64,6 +65,7 @@ chat_completion() {
|
|||||||
--no-buffer \
|
--no-buffer \
|
||||||
--request POST \
|
--request POST \
|
||||||
--url "${API_URL}/completion" \
|
--url "${API_URL}/completion" \
|
||||||
|
--header "Content-Type: application/json" \
|
||||||
--data-raw "${DATA}")
|
--data-raw "${DATA}")
|
||||||
|
|
||||||
printf "\n"
|
printf "\n"
|
||||||
|
@ -608,6 +608,8 @@ static void server_print_usage(const char *argv0, const gpt_params ¶ms,
|
|||||||
fprintf(stderr, " -v, --verbose verbose output (default: %s)\n", server_verbose ? "enabled" : "disabled");
|
fprintf(stderr, " -v, --verbose verbose output (default: %s)\n", server_verbose ? "enabled" : "disabled");
|
||||||
fprintf(stderr, " -t N, --threads N number of threads to use during computation (default: %d)\n", params.n_threads);
|
fprintf(stderr, " -t N, --threads N number of threads to use during computation (default: %d)\n", params.n_threads);
|
||||||
fprintf(stderr, " -c N, --ctx-size N size of the prompt context (default: %d)\n", params.n_ctx);
|
fprintf(stderr, " -c N, --ctx-size N size of the prompt context (default: %d)\n", params.n_ctx);
|
||||||
|
fprintf(stderr, " --rope-freq-base N RoPE base frequency (default: %.1f)\n", params.rope_freq_base);
|
||||||
|
fprintf(stderr, " --rope-freq-scale N RoPE frequency scaling factor (default: %g)\n", params.rope_freq_scale);
|
||||||
fprintf(stderr, " -b N, --batch-size N batch size for prompt processing (default: %d)\n", params.n_batch);
|
fprintf(stderr, " -b N, --batch-size N batch size for prompt processing (default: %d)\n", params.n_batch);
|
||||||
fprintf(stderr, " --memory-f32 use f32 instead of f16 for memory key+value (default: disabled)\n");
|
fprintf(stderr, " --memory-f32 use f32 instead of f16 for memory key+value (default: disabled)\n");
|
||||||
fprintf(stderr, " not recommended: doubles context memory required and no measurable increase in quality\n");
|
fprintf(stderr, " not recommended: doubles context memory required and no measurable increase in quality\n");
|
||||||
@ -722,6 +724,22 @@ static void server_params_parse(int argc, char **argv, server_params &sparams,
|
|||||||
}
|
}
|
||||||
params.n_ctx = std::stoi(argv[i]);
|
params.n_ctx = std::stoi(argv[i]);
|
||||||
}
|
}
|
||||||
|
else if (arg == "--rope-freq-base")
|
||||||
|
{
|
||||||
|
if (++i >= argc) {
|
||||||
|
invalid_param = true;
|
||||||
|
break;
|
||||||
|
}
|
||||||
|
params.rope_freq_base = std::stof(argv[i]);
|
||||||
|
}
|
||||||
|
else if (arg == "--rope-freq-scale")
|
||||||
|
{
|
||||||
|
if (++i >= argc) {
|
||||||
|
invalid_param = true;
|
||||||
|
break;
|
||||||
|
}
|
||||||
|
params.rope_freq_scale = std::stof(argv[i]);
|
||||||
|
}
|
||||||
else if (arg == "--memory-f32" || arg == "--memory_f32")
|
else if (arg == "--memory-f32" || arg == "--memory_f32")
|
||||||
{
|
{
|
||||||
params.memory_f16 = false;
|
params.memory_f16 = false;
|
||||||
|
@ -881,6 +881,11 @@ void ggml_metal_graph_compute(
|
|||||||
|
|
||||||
const int n_past = ((int32_t *)(src1->data))[0];
|
const int n_past = ((int32_t *)(src1->data))[0];
|
||||||
|
|
||||||
|
float freq_base;
|
||||||
|
float freq_scale;
|
||||||
|
memcpy(&freq_base, (int32_t *) src1->data + 4, sizeof(float));
|
||||||
|
memcpy(&freq_scale, (int32_t *) src1->data + 5, sizeof(float));
|
||||||
|
|
||||||
[encoder setComputePipelineState:ctx->pipeline_rope];
|
[encoder setComputePipelineState:ctx->pipeline_rope];
|
||||||
[encoder setBuffer:id_src0 offset:offs_src0 atIndex:0];
|
[encoder setBuffer:id_src0 offset:offs_src0 atIndex:0];
|
||||||
[encoder setBuffer:id_dst offset:offs_dst atIndex:1];
|
[encoder setBuffer:id_dst offset:offs_dst atIndex:1];
|
||||||
@ -903,6 +908,8 @@ void ggml_metal_graph_compute(
|
|||||||
[encoder setBytes:&n_past length:sizeof( int) atIndex:18];
|
[encoder setBytes:&n_past length:sizeof( int) atIndex:18];
|
||||||
[encoder setBytes:&n_dims length:sizeof( int) atIndex:19];
|
[encoder setBytes:&n_dims length:sizeof( int) atIndex:19];
|
||||||
[encoder setBytes:&mode length:sizeof( int) atIndex:20];
|
[encoder setBytes:&mode length:sizeof( int) atIndex:20];
|
||||||
|
[encoder setBytes:&freq_base length:sizeof(float) atIndex:21];
|
||||||
|
[encoder setBytes:&freq_scale length:sizeof(float) atIndex:22];
|
||||||
|
|
||||||
[encoder dispatchThreadgroups:MTLSizeMake(ne01, ne02, ne03) threadsPerThreadgroup:MTLSizeMake(1, 1, 1)];
|
[encoder dispatchThreadgroups:MTLSizeMake(ne01, ne02, ne03) threadsPerThreadgroup:MTLSizeMake(1, 1, 1)];
|
||||||
} break;
|
} break;
|
||||||
|
@ -656,17 +656,19 @@ kernel void kernel_rope(
|
|||||||
constant int & n_past,
|
constant int & n_past,
|
||||||
constant int & n_dims,
|
constant int & n_dims,
|
||||||
constant int & mode,
|
constant int & mode,
|
||||||
|
constant float & freq_base,
|
||||||
|
constant float & freq_scale,
|
||||||
uint3 tpig[[thread_position_in_grid]]) {
|
uint3 tpig[[thread_position_in_grid]]) {
|
||||||
const int64_t i3 = tpig[2];
|
const int64_t i3 = tpig[2];
|
||||||
const int64_t i2 = tpig[1];
|
const int64_t i2 = tpig[1];
|
||||||
const int64_t i1 = tpig[0];
|
const int64_t i1 = tpig[0];
|
||||||
|
|
||||||
const bool is_neox = mode & 2;
|
const bool is_neox = mode & 2;
|
||||||
const float theta_scale = pow(10000.0, -2.0f/n_dims);
|
const float theta_scale = pow(freq_base, -2.0f/n_dims);
|
||||||
|
|
||||||
const int64_t p = ((mode & 1) == 0 ? n_past + i2 : i2);
|
const int64_t p = ((mode & 1) == 0 ? n_past + i2 : i2);
|
||||||
|
|
||||||
float theta = (float)p;
|
float theta = freq_scale * (float)p;
|
||||||
|
|
||||||
if (!is_neox) {
|
if (!is_neox) {
|
||||||
for (int64_t i0 = 0; i0 < ne0; i0 += 2) {
|
for (int64_t i0 = 0; i0 < ne0; i0 += 2) {
|
||||||
|
48
ggml.c
48
ggml.c
@ -6956,6 +6956,8 @@ struct ggml_tensor * ggml_rope_impl(
|
|||||||
int n_past,
|
int n_past,
|
||||||
int n_dims,
|
int n_dims,
|
||||||
int mode,
|
int mode,
|
||||||
|
float freq_base,
|
||||||
|
float freq_scale,
|
||||||
int n_ctx,
|
int n_ctx,
|
||||||
bool inplace) {
|
bool inplace) {
|
||||||
GGML_ASSERT(n_past >= 0);
|
GGML_ASSERT(n_past >= 0);
|
||||||
@ -6969,12 +6971,14 @@ struct ggml_tensor * ggml_rope_impl(
|
|||||||
|
|
||||||
ggml_scratch_save(ctx);
|
ggml_scratch_save(ctx);
|
||||||
|
|
||||||
struct ggml_tensor * b = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 4);
|
struct ggml_tensor * b = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 6);
|
||||||
|
|
||||||
((int32_t *) b->data)[0] = n_past;
|
((int32_t *) b->data)[0] = n_past;
|
||||||
((int32_t *) b->data)[1] = n_dims;
|
((int32_t *) b->data)[1] = n_dims;
|
||||||
((int32_t *) b->data)[2] = mode;
|
((int32_t *) b->data)[2] = mode;
|
||||||
((int32_t *) b->data)[3] = n_ctx;
|
((int32_t *) b->data)[3] = n_ctx;
|
||||||
|
memcpy((int32_t *) b->data + 4, &freq_base, sizeof(float));
|
||||||
|
memcpy((int32_t *) b->data + 5, &freq_scale, sizeof(float));
|
||||||
|
|
||||||
ggml_scratch_load(ctx);
|
ggml_scratch_load(ctx);
|
||||||
|
|
||||||
@ -6993,7 +6997,7 @@ struct ggml_tensor * ggml_rope(
|
|||||||
int n_dims,
|
int n_dims,
|
||||||
int mode,
|
int mode,
|
||||||
int n_ctx) {
|
int n_ctx) {
|
||||||
return ggml_rope_impl(ctx, a, n_past, n_dims, mode, n_ctx, false);
|
return ggml_rope_impl(ctx, a, n_past, n_dims, mode, 10000.0f, 1.0f, n_ctx, false);
|
||||||
}
|
}
|
||||||
|
|
||||||
struct ggml_tensor * ggml_rope_inplace(
|
struct ggml_tensor * ggml_rope_inplace(
|
||||||
@ -7003,7 +7007,19 @@ struct ggml_tensor * ggml_rope_inplace(
|
|||||||
int n_dims,
|
int n_dims,
|
||||||
int mode,
|
int mode,
|
||||||
int n_ctx) {
|
int n_ctx) {
|
||||||
return ggml_rope_impl(ctx, a, n_past, n_dims, mode, n_ctx, true);
|
return ggml_rope_impl(ctx, a, n_past, n_dims, mode, 10000.0f, 1.0f, n_ctx, true);
|
||||||
|
}
|
||||||
|
|
||||||
|
struct ggml_tensor * ggml_rope_custom_inplace(
|
||||||
|
struct ggml_context * ctx,
|
||||||
|
struct ggml_tensor * a,
|
||||||
|
int n_past,
|
||||||
|
int n_dims,
|
||||||
|
int mode,
|
||||||
|
float freq_base,
|
||||||
|
float freq_scale,
|
||||||
|
int n_ctx) {
|
||||||
|
return ggml_rope_impl(ctx, a, n_past, n_dims, mode, freq_base, freq_scale, n_ctx, true);
|
||||||
}
|
}
|
||||||
|
|
||||||
// ggml_rope_back
|
// ggml_rope_back
|
||||||
@ -12074,16 +12090,21 @@ static void ggml_compute_forward_rope_f32(
|
|||||||
const struct ggml_tensor * src1,
|
const struct ggml_tensor * src1,
|
||||||
struct ggml_tensor * dst) {
|
struct ggml_tensor * dst) {
|
||||||
GGML_ASSERT(src1->type == GGML_TYPE_I32);
|
GGML_ASSERT(src1->type == GGML_TYPE_I32);
|
||||||
GGML_ASSERT(ggml_nelements(src1) == 4);
|
GGML_ASSERT(ggml_nelements(src1) == 6);
|
||||||
|
|
||||||
if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
|
if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
|
||||||
return;
|
return;
|
||||||
}
|
}
|
||||||
|
|
||||||
|
float freq_base;
|
||||||
|
float freq_scale;
|
||||||
|
|
||||||
const int n_past = ((int32_t *) src1->data)[0];
|
const int n_past = ((int32_t *) src1->data)[0];
|
||||||
const int n_dims = ((int32_t *) src1->data)[1];
|
const int n_dims = ((int32_t *) src1->data)[1];
|
||||||
const int mode = ((int32_t *) src1->data)[2];
|
const int mode = ((int32_t *) src1->data)[2];
|
||||||
const int n_ctx = ((int32_t *) src1->data)[3];
|
const int n_ctx = ((int32_t *) src1->data)[3];
|
||||||
|
memcpy(&freq_base, (int32_t *) src1->data + 4, sizeof(float));
|
||||||
|
memcpy(&freq_scale, (int32_t *) src1->data + 5, sizeof(float));
|
||||||
|
|
||||||
assert(n_past >= 0);
|
assert(n_past >= 0);
|
||||||
|
|
||||||
@ -12112,7 +12133,7 @@ static void ggml_compute_forward_rope_f32(
|
|||||||
// row index used to determine which thread to use
|
// row index used to determine which thread to use
|
||||||
int ir = 0;
|
int ir = 0;
|
||||||
|
|
||||||
const float theta_scale = powf(10000.0, -2.0f/n_dims);
|
const float theta_scale = powf(freq_base, -2.0f/n_dims);
|
||||||
|
|
||||||
const bool is_neox = mode & 2;
|
const bool is_neox = mode & 2;
|
||||||
const bool is_glm = mode & 4;
|
const bool is_glm = mode & 4;
|
||||||
@ -12124,7 +12145,7 @@ static void ggml_compute_forward_rope_f32(
|
|||||||
if (ir++ < ir0) continue;
|
if (ir++ < ir0) continue;
|
||||||
if (ir > ir1) break;
|
if (ir > ir1) break;
|
||||||
|
|
||||||
float theta = (float)p;
|
float theta = freq_scale * (float)p;
|
||||||
|
|
||||||
if (is_glm) {
|
if (is_glm) {
|
||||||
theta = MIN(p, n_ctx - 2);
|
theta = MIN(p, n_ctx - 2);
|
||||||
@ -12201,16 +12222,21 @@ static void ggml_compute_forward_rope_f16(
|
|||||||
const struct ggml_tensor * src1,
|
const struct ggml_tensor * src1,
|
||||||
struct ggml_tensor * dst) {
|
struct ggml_tensor * dst) {
|
||||||
GGML_ASSERT(src1->type == GGML_TYPE_I32);
|
GGML_ASSERT(src1->type == GGML_TYPE_I32);
|
||||||
GGML_ASSERT(ggml_nelements(src1) == 4);
|
GGML_ASSERT(ggml_nelements(src1) == 6);
|
||||||
|
|
||||||
if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
|
if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
|
||||||
return;
|
return;
|
||||||
}
|
}
|
||||||
|
|
||||||
|
float freq_base;
|
||||||
|
float freq_scale;
|
||||||
|
|
||||||
const int n_past = ((int32_t *) src1->data)[0];
|
const int n_past = ((int32_t *) src1->data)[0];
|
||||||
const int n_dims = ((int32_t *) src1->data)[1];
|
const int n_dims = ((int32_t *) src1->data)[1];
|
||||||
const int mode = ((int32_t *) src1->data)[2];
|
const int mode = ((int32_t *) src1->data)[2];
|
||||||
const int n_ctx = ((int32_t *) src1->data)[3];
|
const int n_ctx = ((int32_t *) src1->data)[3];
|
||||||
|
memcpy(&freq_base, (int32_t *) src1->data + 4, sizeof(float));
|
||||||
|
memcpy(&freq_scale, (int32_t *) src1->data + 5, sizeof(float));
|
||||||
|
|
||||||
assert(n_past >= 0);
|
assert(n_past >= 0);
|
||||||
|
|
||||||
@ -12239,7 +12265,7 @@ static void ggml_compute_forward_rope_f16(
|
|||||||
// row index used to determine which thread to use
|
// row index used to determine which thread to use
|
||||||
int ir = 0;
|
int ir = 0;
|
||||||
|
|
||||||
const float theta_scale = powf(10000.0, -2.0f/n_dims);
|
const float theta_scale = powf(freq_base, -2.0f/n_dims);
|
||||||
|
|
||||||
const bool is_neox = mode & 2;
|
const bool is_neox = mode & 2;
|
||||||
const bool is_glm = mode & 4;
|
const bool is_glm = mode & 4;
|
||||||
@ -12251,7 +12277,7 @@ static void ggml_compute_forward_rope_f16(
|
|||||||
if (ir++ < ir0) continue;
|
if (ir++ < ir0) continue;
|
||||||
if (ir > ir1) break;
|
if (ir > ir1) break;
|
||||||
|
|
||||||
float theta = (float)p;
|
float theta = freq_scale * (float)p;
|
||||||
|
|
||||||
if (is_glm) {
|
if (is_glm) {
|
||||||
theta = MIN(p, n_ctx - 2);
|
theta = MIN(p, n_ctx - 2);
|
||||||
@ -15710,7 +15736,7 @@ static void ggml_compute_backward(struct ggml_context * ctx, struct ggml_tensor
|
|||||||
// necessary for llama
|
// necessary for llama
|
||||||
if (src0->grad) {
|
if (src0->grad) {
|
||||||
assert(src1->type == GGML_TYPE_I32);
|
assert(src1->type == GGML_TYPE_I32);
|
||||||
assert(ggml_nelements(src1) == 4);
|
assert(ggml_nelements(src1) == 6);
|
||||||
const int n_past = ((int32_t *) src1->data)[0];
|
const int n_past = ((int32_t *) src1->data)[0];
|
||||||
const int n_dims = ((int32_t *) src1->data)[1];
|
const int n_dims = ((int32_t *) src1->data)[1];
|
||||||
const int mode = ((int32_t *) src1->data)[2];
|
const int mode = ((int32_t *) src1->data)[2];
|
||||||
@ -15731,7 +15757,7 @@ static void ggml_compute_backward(struct ggml_context * ctx, struct ggml_tensor
|
|||||||
{
|
{
|
||||||
if (src0->grad) {
|
if (src0->grad) {
|
||||||
assert(src1->type == GGML_TYPE_I32);
|
assert(src1->type == GGML_TYPE_I32);
|
||||||
assert(ggml_nelements(src1) == 4);
|
assert(ggml_nelements(src1) == 3);
|
||||||
const int n_past = ((int32_t *) src1->data)[0];
|
const int n_past = ((int32_t *) src1->data)[0];
|
||||||
const int n_dims = ((int32_t *) src1->data)[1];
|
const int n_dims = ((int32_t *) src1->data)[1];
|
||||||
const int mode = ((int32_t *) src1->data)[2];
|
const int mode = ((int32_t *) src1->data)[2];
|
||||||
|
11
ggml.h
11
ggml.h
@ -1121,6 +1121,17 @@ extern "C" {
|
|||||||
int mode,
|
int mode,
|
||||||
int n_ctx);
|
int n_ctx);
|
||||||
|
|
||||||
|
// custom RoPE, in-place, returns view(a)
|
||||||
|
GGML_API struct ggml_tensor * ggml_rope_custom_inplace(
|
||||||
|
struct ggml_context * ctx,
|
||||||
|
struct ggml_tensor * a,
|
||||||
|
int n_past,
|
||||||
|
int n_dims,
|
||||||
|
int mode,
|
||||||
|
float freq_base,
|
||||||
|
float freq_scale,
|
||||||
|
int n_ctx);
|
||||||
|
|
||||||
// rotary position embedding backward, i.e compute dx from dy
|
// rotary position embedding backward, i.e compute dx from dy
|
||||||
// a - dy
|
// a - dy
|
||||||
GGML_API struct ggml_tensor * ggml_rope_back(
|
GGML_API struct ggml_tensor * ggml_rope_back(
|
||||||
|
64
llama.cpp
64
llama.cpp
@ -101,14 +101,15 @@ static void ggml_graph_compute_helper(std::vector<uint8_t> & buf, ggml_cgraph *
|
|||||||
// memory sizes
|
// memory sizes
|
||||||
//
|
//
|
||||||
|
|
||||||
static const std::map<e_model, size_t> & MEM_REQ_SCRATCH0()
|
static const std::map<e_model, size_t> & MEM_REQ_SCRATCH0(int n_ctx)
|
||||||
{
|
{
|
||||||
static std::map<e_model, size_t> k_sizes = {
|
static std::map<e_model, size_t> k_sizes = {
|
||||||
{ MODEL_3B, 256ull * MB },
|
/* empirical scaling, still a guess */
|
||||||
{ MODEL_7B, 512ull * MB },
|
{ MODEL_3B, ((size_t) n_ctx / 16ull + 128ull) * MB },
|
||||||
{ MODEL_13B, 512ull * MB },
|
{ MODEL_7B, ((size_t) n_ctx / 16ull + 256ull) * MB },
|
||||||
{ MODEL_30B, 512ull * MB },
|
{ MODEL_13B, ((size_t) n_ctx / 12ull + 256ull) * MB },
|
||||||
{ MODEL_65B, 1024ull * MB },
|
{ MODEL_30B, ((size_t) n_ctx / 10ull + 256ull) * MB },
|
||||||
|
{ MODEL_65B, ((size_t) n_ctx / 8ull + 512ull) * MB },
|
||||||
};
|
};
|
||||||
return k_sizes;
|
return k_sizes;
|
||||||
}
|
}
|
||||||
@ -140,14 +141,14 @@ static const std::map<e_model, size_t> & MEM_REQ_KV_SELF()
|
|||||||
|
|
||||||
// this is mostly needed for temporary mul_mat buffers to dequantize the data
|
// this is mostly needed for temporary mul_mat buffers to dequantize the data
|
||||||
// not actually needed if BLAS is disabled
|
// not actually needed if BLAS is disabled
|
||||||
static const std::map<e_model, size_t> & MEM_REQ_EVAL()
|
static const std::map<e_model, size_t> & MEM_REQ_EVAL(int n_ctx)
|
||||||
{
|
{
|
||||||
static std::map<e_model, size_t> k_sizes = {
|
static std::map<e_model, size_t> k_sizes = {
|
||||||
{ MODEL_3B, 512ull * MB },
|
{ MODEL_3B, ((size_t) n_ctx / 256ull + 512ull) * MB },
|
||||||
{ MODEL_7B, 768ull * MB },
|
{ MODEL_7B, ((size_t) n_ctx / 256ull + 768ull) * MB },
|
||||||
{ MODEL_13B, 1024ull * MB },
|
{ MODEL_13B, ((size_t) n_ctx / 256ull + 1024ull) * MB },
|
||||||
{ MODEL_30B, 1280ull * MB },
|
{ MODEL_30B, ((size_t) n_ctx / 256ull + 1280ull) * MB },
|
||||||
{ MODEL_65B, 1536ull * MB },
|
{ MODEL_65B, ((size_t) n_ctx / 256ull + 1536ull) * MB },
|
||||||
};
|
};
|
||||||
return k_sizes;
|
return k_sizes;
|
||||||
}
|
}
|
||||||
@ -189,6 +190,10 @@ struct llama_hparams {
|
|||||||
uint32_t n_head = 32;
|
uint32_t n_head = 32;
|
||||||
uint32_t n_layer = 32;
|
uint32_t n_layer = 32;
|
||||||
uint32_t n_rot = 64;
|
uint32_t n_rot = 64;
|
||||||
|
|
||||||
|
float rope_freq_base = 10000.0f;
|
||||||
|
float rope_freq_scale = 1.0f;
|
||||||
|
|
||||||
enum llama_ftype ftype = LLAMA_FTYPE_MOSTLY_F16;
|
enum llama_ftype ftype = LLAMA_FTYPE_MOSTLY_F16;
|
||||||
|
|
||||||
bool operator!=(const llama_hparams & other) const {
|
bool operator!=(const llama_hparams & other) const {
|
||||||
@ -647,7 +652,7 @@ struct llama_model_loader {
|
|||||||
*ctx_size_p = *mmapped_size_p = 0;
|
*ctx_size_p = *mmapped_size_p = 0;
|
||||||
for (const llama_load_tensor & lt : tensors_map.tensors) {
|
for (const llama_load_tensor & lt : tensors_map.tensors) {
|
||||||
*ctx_size_p += sizeof(struct ggml_tensor) + GGML_OBJECT_SIZE;
|
*ctx_size_p += sizeof(struct ggml_tensor) + GGML_OBJECT_SIZE;
|
||||||
*(use_mmap ? mmapped_size_p : ctx_size_p) += lt.size;
|
*(use_mmap ? mmapped_size_p : ctx_size_p) += lt.size + 16;
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
@ -843,6 +848,8 @@ struct llama_context_params llama_context_default_params() {
|
|||||||
/*.gpu_layers =*/ 0,
|
/*.gpu_layers =*/ 0,
|
||||||
/*.main_gpu =*/ 0,
|
/*.main_gpu =*/ 0,
|
||||||
/*.tensor_split =*/ {0},
|
/*.tensor_split =*/ {0},
|
||||||
|
/*.rope_freq_base =*/ 10000.0f,
|
||||||
|
/*.rope_freq_scale =*/ 1.0f,
|
||||||
/*.progress_callback =*/ nullptr,
|
/*.progress_callback =*/ nullptr,
|
||||||
/*.progress_callback_user_data =*/ nullptr,
|
/*.progress_callback_user_data =*/ nullptr,
|
||||||
/*.low_vram =*/ false,
|
/*.low_vram =*/ false,
|
||||||
@ -966,6 +973,8 @@ static void llama_model_load_internal(
|
|||||||
int n_gpu_layers,
|
int n_gpu_layers,
|
||||||
int main_gpu,
|
int main_gpu,
|
||||||
const float * tensor_split,
|
const float * tensor_split,
|
||||||
|
float rope_freq_base,
|
||||||
|
float rope_freq_scale,
|
||||||
bool low_vram,
|
bool low_vram,
|
||||||
ggml_type memory_type,
|
ggml_type memory_type,
|
||||||
bool use_mmap,
|
bool use_mmap,
|
||||||
@ -1000,6 +1009,9 @@ static void llama_model_load_internal(
|
|||||||
}
|
}
|
||||||
|
|
||||||
hparams.n_ctx = n_ctx;
|
hparams.n_ctx = n_ctx;
|
||||||
|
|
||||||
|
hparams.rope_freq_base = rope_freq_base;
|
||||||
|
hparams.rope_freq_scale = rope_freq_scale;
|
||||||
}
|
}
|
||||||
|
|
||||||
const uint32_t n_ff = ((2*(4*hparams.n_embd)/3 + hparams.n_mult - 1)/hparams.n_mult)*hparams.n_mult;
|
const uint32_t n_ff = ((2*(4*hparams.n_embd)/3 + hparams.n_mult - 1)/hparams.n_mult)*hparams.n_mult;
|
||||||
@ -1013,6 +1025,8 @@ static void llama_model_load_internal(
|
|||||||
fprintf(stderr, "%s: n_head = %u\n", __func__, hparams.n_head);
|
fprintf(stderr, "%s: n_head = %u\n", __func__, hparams.n_head);
|
||||||
fprintf(stderr, "%s: n_layer = %u\n", __func__, hparams.n_layer);
|
fprintf(stderr, "%s: n_layer = %u\n", __func__, hparams.n_layer);
|
||||||
fprintf(stderr, "%s: n_rot = %u\n", __func__, hparams.n_rot);
|
fprintf(stderr, "%s: n_rot = %u\n", __func__, hparams.n_rot);
|
||||||
|
fprintf(stderr, "%s: freq_base = %.1f\n", __func__, hparams.rope_freq_base);
|
||||||
|
fprintf(stderr, "%s: freq_scale = %g\n", __func__, hparams.rope_freq_scale);
|
||||||
fprintf(stderr, "%s: ftype = %u (%s)\n", __func__, hparams.ftype, llama_ftype_name(hparams.ftype));
|
fprintf(stderr, "%s: ftype = %u (%s)\n", __func__, hparams.ftype, llama_ftype_name(hparams.ftype));
|
||||||
fprintf(stderr, "%s: n_ff = %u\n", __func__, n_ff);
|
fprintf(stderr, "%s: n_ff = %u\n", __func__, n_ff);
|
||||||
fprintf(stderr, "%s: model size = %s\n", __func__, llama_model_type_name(model.type));
|
fprintf(stderr, "%s: model size = %s\n", __func__, llama_model_type_name(model.type));
|
||||||
@ -1164,9 +1178,9 @@ static void llama_model_load_internal(
|
|||||||
const size_t mem_required =
|
const size_t mem_required =
|
||||||
ctx_size +
|
ctx_size +
|
||||||
mmapped_size - vram_weights + // weights in VRAM not in memory
|
mmapped_size - vram_weights + // weights in VRAM not in memory
|
||||||
MEM_REQ_SCRATCH0().at(model.type) +
|
MEM_REQ_SCRATCH0(hparams.n_ctx).at(model.type) +
|
||||||
MEM_REQ_SCRATCH1().at(model.type) +
|
MEM_REQ_SCRATCH1().at(model.type) +
|
||||||
MEM_REQ_EVAL().at (model.type);
|
MEM_REQ_EVAL(hparams.n_ctx).at(model.type);
|
||||||
|
|
||||||
// this is the memory required by one llama_state
|
// this is the memory required by one llama_state
|
||||||
const size_t mem_required_state =
|
const size_t mem_required_state =
|
||||||
@ -1270,6 +1284,8 @@ static bool llama_model_load(
|
|||||||
int n_gpu_layers,
|
int n_gpu_layers,
|
||||||
int main_gpu,
|
int main_gpu,
|
||||||
float * tensor_split,
|
float * tensor_split,
|
||||||
|
float rope_freq_base,
|
||||||
|
float rope_freq_scale,
|
||||||
bool low_vram,
|
bool low_vram,
|
||||||
ggml_type memory_type,
|
ggml_type memory_type,
|
||||||
bool use_mmap,
|
bool use_mmap,
|
||||||
@ -1278,7 +1294,7 @@ static bool llama_model_load(
|
|||||||
llama_progress_callback progress_callback,
|
llama_progress_callback progress_callback,
|
||||||
void *progress_callback_user_data) {
|
void *progress_callback_user_data) {
|
||||||
try {
|
try {
|
||||||
llama_model_load_internal(fname, model, vocab, n_ctx, n_batch, n_gpu_layers, main_gpu, tensor_split, low_vram, memory_type,
|
llama_model_load_internal(fname, model, vocab, n_ctx, n_batch, n_gpu_layers, main_gpu, tensor_split, rope_freq_base, rope_freq_scale, low_vram, memory_type,
|
||||||
use_mmap, use_mlock, vocab_only, progress_callback, progress_callback_user_data);
|
use_mmap, use_mlock, vocab_only, progress_callback, progress_callback_user_data);
|
||||||
return true;
|
return true;
|
||||||
} catch (const std::exception & err) {
|
} catch (const std::exception & err) {
|
||||||
@ -1330,6 +1346,9 @@ static bool llama_eval_internal(
|
|||||||
const int n_rot = hparams.n_embd/hparams.n_head;
|
const int n_rot = hparams.n_embd/hparams.n_head;
|
||||||
const int n_gpu_layers = model.n_gpu_layers;
|
const int n_gpu_layers = model.n_gpu_layers;
|
||||||
|
|
||||||
|
const float freq_base = hparams.rope_freq_base;
|
||||||
|
const float freq_scale = hparams.rope_freq_scale;
|
||||||
|
|
||||||
auto & mem_per_token = lctx.mem_per_token;
|
auto & mem_per_token = lctx.mem_per_token;
|
||||||
auto & buf_compute = lctx.buf_compute;
|
auto & buf_compute = lctx.buf_compute;
|
||||||
|
|
||||||
@ -1427,11 +1446,11 @@ static bool llama_eval_internal(
|
|||||||
offload_func_kq(tmpq);
|
offload_func_kq(tmpq);
|
||||||
ggml_set_name(tmpq, "tmpq");
|
ggml_set_name(tmpq, "tmpq");
|
||||||
|
|
||||||
struct ggml_tensor * Kcur = ggml_rope_inplace(ctx0, ggml_reshape_3d(ctx0, tmpk, n_embd/n_head, n_head, N), n_past, n_rot, 0, 0);
|
struct ggml_tensor * Kcur = ggml_rope_custom_inplace(ctx0, ggml_reshape_3d(ctx0, tmpk, n_embd/n_head, n_head, N), n_past, n_rot, 0, freq_base, freq_scale, 0);
|
||||||
offload_func_kq(Kcur);
|
offload_func_kq(Kcur);
|
||||||
ggml_set_name(Kcur, "Kcur");
|
ggml_set_name(Kcur, "Kcur");
|
||||||
|
|
||||||
struct ggml_tensor * Qcur = ggml_rope_inplace(ctx0, ggml_reshape_3d(ctx0, tmpq, n_embd/n_head, n_head, N), n_past, n_rot, 0, 0);
|
struct ggml_tensor * Qcur = ggml_rope_custom_inplace(ctx0, ggml_reshape_3d(ctx0, tmpq, n_embd/n_head, n_head, N), n_past, n_rot, 0, freq_base, freq_scale, 0);
|
||||||
offload_func_kq(Qcur);
|
offload_func_kq(Qcur);
|
||||||
ggml_set_name(Qcur, "Qcur");
|
ggml_set_name(Qcur, "Qcur");
|
||||||
|
|
||||||
@ -2674,8 +2693,9 @@ struct llama_model * llama_load_model_from_file(
|
|||||||
ggml_type memory_type = params.f16_kv ? GGML_TYPE_F16 : GGML_TYPE_F32;
|
ggml_type memory_type = params.f16_kv ? GGML_TYPE_F16 : GGML_TYPE_F32;
|
||||||
|
|
||||||
if (!llama_model_load(path_model, *model, model->vocab, params.n_ctx, params.n_batch, params.n_gpu_layers,
|
if (!llama_model_load(path_model, *model, model->vocab, params.n_ctx, params.n_batch, params.n_gpu_layers,
|
||||||
params.main_gpu, params.tensor_split, params.low_vram, memory_type, params.use_mmap, params.use_mlock,
|
params.main_gpu, params.tensor_split, params.rope_freq_base, params.rope_freq_scale,params.low_vram,
|
||||||
params.vocab_only, params.progress_callback, params.progress_callback_user_data)) {
|
memory_type, params.use_mmap, params.use_mlock, params.vocab_only, params.progress_callback,
|
||||||
|
params.progress_callback_user_data)) {
|
||||||
delete model;
|
delete model;
|
||||||
fprintf(stderr, "%s: failed to load model\n", __func__);
|
fprintf(stderr, "%s: failed to load model\n", __func__);
|
||||||
return nullptr;
|
return nullptr;
|
||||||
@ -2750,9 +2770,9 @@ struct llama_context * llama_new_context_with_model(
|
|||||||
ctx->embedding.resize(hparams.n_embd);
|
ctx->embedding.resize(hparams.n_embd);
|
||||||
}
|
}
|
||||||
|
|
||||||
ctx->buf_compute.resize(MEM_REQ_EVAL().at(ctx->model.type));
|
ctx->buf_compute.resize(MEM_REQ_EVAL(hparams.n_ctx).at(ctx->model.type));
|
||||||
|
|
||||||
ctx->buf_scratch[0].resize(MEM_REQ_SCRATCH0().at(ctx->model.type));
|
ctx->buf_scratch[0].resize(MEM_REQ_SCRATCH0(hparams.n_ctx).at(ctx->model.type));
|
||||||
ctx->buf_scratch[1].resize(MEM_REQ_SCRATCH1().at(ctx->model.type));
|
ctx->buf_scratch[1].resize(MEM_REQ_SCRATCH1().at(ctx->model.type));
|
||||||
}
|
}
|
||||||
|
|
||||||
|
5
llama.h
5
llama.h
@ -89,6 +89,11 @@ extern "C" {
|
|||||||
int32_t n_gpu_layers; // number of layers to store in VRAM
|
int32_t n_gpu_layers; // number of layers to store in VRAM
|
||||||
int32_t main_gpu; // the GPU that is used for scratch and small tensors
|
int32_t main_gpu; // the GPU that is used for scratch and small tensors
|
||||||
float tensor_split[LLAMA_MAX_DEVICES]; // how to split layers across multiple GPUs
|
float tensor_split[LLAMA_MAX_DEVICES]; // how to split layers across multiple GPUs
|
||||||
|
|
||||||
|
// ref: https://github.com/ggerganov/llama.cpp/pull/2054
|
||||||
|
float rope_freq_base; // RoPE base frequency
|
||||||
|
float rope_freq_scale; // RoPE frequency scaling factor
|
||||||
|
|
||||||
// called with a progress value between 0 and 1, pass NULL to disable
|
// called with a progress value between 0 and 1, pass NULL to disable
|
||||||
llama_progress_callback progress_callback;
|
llama_progress_callback progress_callback;
|
||||||
// context pointer passed to the progress callback
|
// context pointer passed to the progress callback
|
||||||
|
Loading…
Reference in New Issue
Block a user