Add RMS norm and use it (#187)

* add ggml_rms_norm

* update op num
This commit is contained in:
hoangmit 2023-03-15 18:41:38 -04:00 committed by GitHub
parent 27944c4206
commit 6eac39ba95
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
3 changed files with 134 additions and 5 deletions

128
ggml.c
View File

@ -2069,6 +2069,7 @@ static const char * GGML_OP_LABEL[GGML_OP_COUNT] = {
"GELU",
"SILU",
"NORM",
"RMS_NORM",
"MUL_MAT",
@ -2089,7 +2090,7 @@ static const char * GGML_OP_LABEL[GGML_OP_COUNT] = {
"FLASH_FF",
};
static_assert(GGML_OP_COUNT == 34, "GGML_OP_COUNT != 34");
static_assert(GGML_OP_COUNT == 35, "GGML_OP_COUNT != 35");
static const char * GGML_OP_SYMBOL[GGML_OP_COUNT] = {
"none",
@ -2112,6 +2113,7 @@ static const char * GGML_OP_SYMBOL[GGML_OP_COUNT] = {
"gelu(x)",
"silu(x)",
"norm(x)",
"rms_norm(x)",
"X*Y",
@ -2132,7 +2134,7 @@ static const char * GGML_OP_SYMBOL[GGML_OP_COUNT] = {
"flash_ff(x)",
};
static_assert(GGML_OP_COUNT == 34, "GGML_OP_COUNT != 34");
static_assert(GGML_OP_COUNT == 35, "GGML_OP_COUNT != 35");
//
// ggml object
@ -3618,6 +3620,39 @@ struct ggml_tensor * ggml_norm_inplace(
return ggml_norm_impl(ctx, a, true);
}
struct ggml_tensor * ggml_rms_norm_impl(
struct ggml_context * ctx,
struct ggml_tensor * a,
bool inplace) {
bool is_node = false;
if (!inplace && (a->grad)) {
GGML_ASSERT(false); // TODO: implement backward
is_node = true;
}
struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
result->op = GGML_OP_RMS_NORM;
result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
result->src0 = a;
result->src1 = NULL; // TODO: maybe store epsilon here?
return result;
}
struct ggml_tensor * ggml_rms_norm(
struct ggml_context * ctx,
struct ggml_tensor * a) {
return ggml_rms_norm_impl(ctx, a, false);
}
struct ggml_tensor * ggml_rms_norm_inplace(
struct ggml_context * ctx,
struct ggml_tensor * a) {
return ggml_rms_norm_impl(ctx, a, true);
}
// ggml_mul_mat
struct ggml_tensor * ggml_mul_mat(
@ -5406,6 +5441,87 @@ static void ggml_compute_forward_norm(
}
}
static void ggml_compute_forward_rms_norm_f32(
const struct ggml_compute_params * params,
const struct ggml_tensor * src0,
struct ggml_tensor * dst) {
GGML_ASSERT(ggml_are_same_shape(src0, dst));
if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
return;
}
GGML_ASSERT(src0->nb[0] == sizeof(float));
const int ith = params->ith;
const int nth = params->nth;
const int ne00 = src0->ne[0];
const int ne01 = src0->ne[1];
const int ne02 = src0->ne[2];
const int ne03 = src0->ne[3];
const size_t nb01 = src0->nb[1];
const size_t nb02 = src0->nb[2];
const size_t nb03 = src0->nb[3];
const size_t nb1 = dst->nb[1];
const size_t nb2 = dst->nb[2];
const size_t nb3 = dst->nb[3];
const ggml_float eps = 1e-5f; // TODO: make this a parameter
// TODO: optimize
for (int i03 = 0; i03 < ne03; i03++) {
for (int i02 = 0; i02 < ne02; i02++) {
for (int i01 = ith; i01 < ne01; i01 += nth) {
const float * x = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
ggml_float mean = 0.0;
for (int i00 = 0; i00 < ne00; i00++) {
mean += x[i00] * x[i00];
}
mean /= ne00;
float * y = (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3);
memcpy(y, x, ne00 * sizeof(float));
// for (int i00 = 0; i00 < ne00; i00++) {
// y[i00] = x[i00];
// }
const float scale = 1.0/sqrt(mean + eps);
ggml_vec_scale_f32(ne00, y, scale);
}
}
}
}
static void ggml_compute_forward_rms_norm(
const struct ggml_compute_params * params,
const struct ggml_tensor * src0,
struct ggml_tensor * dst) {
switch (src0->type) {
case GGML_TYPE_F32:
{
ggml_compute_forward_rms_norm_f32(params, src0, dst);
} break;
case GGML_TYPE_Q4_0:
case GGML_TYPE_Q4_1:
case GGML_TYPE_I8:
case GGML_TYPE_I16:
case GGML_TYPE_I32:
case GGML_TYPE_F16:
case GGML_TYPE_COUNT:
{
GGML_ASSERT(false);
} break;
}
}
// ggml_compute_forward_mul_mat
#if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
@ -8522,6 +8638,10 @@ static void ggml_compute_forward(struct ggml_compute_params * params, struct ggm
{
ggml_compute_forward_norm(params, tensor->src0, tensor);
} break;
case GGML_OP_RMS_NORM:
{
ggml_compute_forward_rms_norm(params, tensor->src0, tensor);
} break;
case GGML_OP_MUL_MAT:
{
ggml_compute_forward_mul_mat(params, tensor->src0, tensor->src1, tensor);
@ -8764,6 +8884,10 @@ static void ggml_compute_backward(struct ggml_context * ctx, struct ggml_tensor
{
GGML_ASSERT(false); // TODO: not implemented
} break;
case GGML_OP_RMS_NORM:
{
GGML_ASSERT(false); // TODO: not implemented
} break;
case GGML_OP_MUL_MAT:
{
if (src0->grad) {

5
ggml.h
View File

@ -230,6 +230,7 @@ enum ggml_op {
GGML_OP_GELU,
GGML_OP_SILU,
GGML_OP_NORM, // normalize
GGML_OP_RMS_NORM,
GGML_OP_MUL_MAT,
@ -482,6 +483,10 @@ struct ggml_tensor * ggml_norm(
struct ggml_context * ctx,
struct ggml_tensor * a);
struct ggml_tensor * ggml_rms_norm(
struct ggml_context * ctx,
struct ggml_tensor * a);
// A: m rows, n columns
// B: p rows, n columns (i.e. we transpose it internally)
// result is m columns, p rows

View File

@ -588,7 +588,7 @@ bool llama_eval(
// norm
{
cur = ggml_norm(ctx0, inpL);
cur = ggml_rms_norm(ctx0, inpL);
// cur = attention_norm*cur
cur = ggml_mul(ctx0,
@ -678,7 +678,7 @@ bool llama_eval(
{
// norm
{
cur = ggml_norm(ctx0, inpFF);
cur = ggml_rms_norm(ctx0, inpFF);
// cur = ffn_norm*cur
cur = ggml_mul(ctx0,
@ -713,7 +713,7 @@ bool llama_eval(
// norm
{
inpL = ggml_norm(ctx0, inpL);
inpL = ggml_rms_norm(ctx0, inpL);
// inpL = norm*inpL
inpL = ggml_mul(ctx0,