From 6efb8eb30e7025b168f3fda3ff83b9b386428ad6 Mon Sep 17 00:00:00 2001 From: Austin <77757836+teleprint-me@users.noreply.github.com> Date: Tue, 9 Jan 2024 13:46:46 -0500 Subject: [PATCH] convert.py : fix vanilla LLaMA model conversion (#4818) * Update Imports and Add Notes for Future Reference - Updated import statements in `convert.py`. - Added import for `AutoTokenizer` from `transformers` module. - Added conditional import for `gguf` from the local directory. - Added comments and notes for future reference. Additional Notes: - Noted removal of a redundant `TypeAlias` import. - Noted the removal of a `gguf` debug statement. - Commented on the presence of `ARCH` and `NDArray` definitions. - Commented on cleaning up and refactoring data type definitions. * Refine Model Hyperparameters and Params Class - Updated type annotations to use `Optional` for clarity. - Improved method names and attribute consistency. - Removed unnecessary variables for better code readability. Additional Notes: - Highlighted the use of `Optional` for clearer intent. - Ensured backward and forward compatibility. * Restore BpeVocab and SentencePieceVocab classes - Restored the BpeVocab class for handling BPE tokenization. - Restored the SentencePieceVocab class for SentencePiece tokenization. These classes are essential for maintaining the original behavior of the codebase. * refactor: Standardize vocabulary handling with HfVocab - Replaced VocabLoader with HfVocab, aligning vocabulary handling across classes. - Updated initialization of HfVocab with local_files_only=True for AutoTokenizer. - Introduced optional parameter fname_added_tokens for flexible added token management. - Streamlined added token handling for clarity and conciseness. - Maintained special tokens and IDs, enhancing token management. - Simplified token processing methods for improved readability. - Added a placeholder for score computation with a default value of -1000.0. - Optimized newline token check for efficiency. - Updated __repr__ function for clarity in representation. - Adjusted type alias Vocab to include BpeVocab, SentencePieceVocab, and HfVocab. - Removed redundant code related to special token handling, reverse vocabulary mapping, and vocabulary file detection. This refactoring promotes a standardized and modular approach to vocabulary management, facilitating future integration with a VocabFactory and improving code maintainability and scalability. * refactor: Enhance readability, functionality, and code quality - Improved code formatting and readability for better maintainability. - Refactored LazyUnpickler's CLASSES dictionary for clarity. - Added print statements and warnings in check_vocab_size for user feedback. - Removed find_vocab_file_path, as it's superseded by VocabFactory. - Preparatory changes for upcoming classes: OutputFile and VocabFactory. - Overall focus on code quality, error handling, and consistency. These changes reflect a continuous effort to refine the codebase, ensuring it meets best practices and prepares for future enhancements, such as the VocabFactory. * refactor: Update OutputFile class for enhanced model vocabulary management - Restructured the constructor for improved readability. - Updated `add_meta_arch` method for flexible model name determination. - Introduced `handle_tokenizer_model` for mapping vocab types to supported tokenizer models. - Streamlined vocabulary extraction with `extract_vocabulary_from_model`. - Simplified vocabulary metadata addition using `add_meta_vocab`. - Refactored `add_tensor_info` for clarity and consistency. - Improved error handling for better user feedback. These changes signify the development of a versatile and comprehensive `OutputFile` class, enabling efficient management of model conversion output, metadata, vocabulary, and tensor information. * feat: Introduce VocabFactory for flexible vocabulary management in model conversion - The VocabFactory class is added to facilitate modular vocabulary handling. - The constructor initializes a directory path and detects vocabulary-related files. - The _select_file method provides file paths based on vocabulary type (e.g., BPE, SentencePiece). - _create_special_vocab generates special vocabularies, accommodating different types. - The load_vocab method loads vocabularies, handling BPE, SentencePiece, and Hugging Face Fast Tokenizer. - Error handling and logging enhance debugging and user feedback. - The modular and flexible design simplifies vocabulary management and supports future extensions. The VocabFactory class enhances code modularity and maintainability, allowing versatile vocabulary handling in the model conversion process. * refactor: Improve code organization, argument parsing, and user interface - Renamed 'default_outfile' to 'default_output_file' for clarity. - Refactored argument parser setup into 'get_argument_parser' function. - Introduced descriptive comments for each argument in the parser. - Added '--vocab-type' argument with choices ["spm", "bpe", "hfft"] for vocabulary processing. - Improved flag naming consistency: '--outfile' to '--out-file' and '--bigendian' to '--big-endian'. - Enhanced error handling to prevent overwriting input data in 'default_output_file'. - Made 'argv' in 'main' an optional parameter for flexibility. - Introduced dynamic import for 'awq.apply_awq' based on 'args.awq_path' for conditional dependency. These changes enhance code clarity, organization, and the user interface of the script, aligning it with Python best practices and improving maintainability. * refactor: Further refine functionality, improve user interaction, and streamline vocabulary handling - Renamed command-line arguments for clarity and consistency. - Improved path resolution and import adjustments for robustness. - Thoughtfully handled 'awq-path' and conditional logic for the weighted model. - Enhanced model and vocabulary loading with the 'VocabFactory' class for structured and adaptable loading. - Strengthened error handling and user feedback for a more user-friendly experience. - Structured output file handling with clear conditions and defaults. - Streamlined and organized the 'main' function for better logic flow. - Passed 'sys.argv[1:]' to 'main' for adaptability and testability. These changes solidify the script's functionality, making it more robust, user-friendly, and adaptable. The use of the 'VocabFactory' class is a notable enhancement in efficient vocabulary handling, reflecting a thoughtful and iterative approach to script development. * chore: Apply ruff formatting to convert.py Signed-off-by: teleprint-me <77757836+teleprint-me@users.noreply.github.com> * Revert to commit 0614c33 * chore: Apply flake8 formatting rules Signed-off-by: teleprint-me <77757836+teleprint-me@users.noreply.github.com> * refactor: Revise `check_vocab_size` for Enhanced Clarity and Correctness - Resolved an unreachable branch issue by reorganizing the conditional structure. - Moved the special case check for `params.n_vocab == -1` to the top for immediate assertion. - Flattened the conditional logic for improved clarity and predictability of the function's behavior. These changes enhance the readability and functional correctness of the `check_vocab_size` function without altering its intended functionality. * py : fix outfile and outtype * py : suggest hint for missing vocab size --------- Signed-off-by: teleprint-me <77757836+teleprint-me@users.noreply.github.com> Co-authored-by: Georgi Gerganov --- convert.py | 969 ++++++++++++++++++++++++++++++++++++----------------- 1 file changed, 666 insertions(+), 303 deletions(-) diff --git a/convert.py b/convert.py index c3f3fc0a1..3b613eefc 100755 --- a/convert.py +++ b/convert.py @@ -17,29 +17,58 @@ import signal import struct import sys import time +import warnings import zipfile from abc import ABCMeta, abstractmethod -from collections import OrderedDict +from argparse import ArgumentParser from concurrent.futures import ProcessPoolExecutor, ThreadPoolExecutor from dataclasses import dataclass from pathlib import Path -from typing import IO, TYPE_CHECKING, Any, Callable, Iterable, Literal, Optional, TypeVar, cast +from typing import ( + IO, + TYPE_CHECKING, + Any, + Callable, + Iterable, + Literal, + Optional, + Tuple, + TypeVar, +) import numpy as np from sentencepiece import SentencePieceProcessor -if 'NO_LOCAL_GGUF' not in os.environ: - sys.path.insert(1, str(Path(__file__).parent / 'gguf-py')) -import gguf +try: + from transformers import AutoTokenizer +except ModuleNotFoundError as e: + warnings.warn(f"Could not import AutoTokenizer from transformers: {e}") -if TYPE_CHECKING: - from typing import TypeAlias +# If NO_LOCAL_GGUF is not set, try to import gguf from the local gguf-py directory +if "NO_LOCAL_GGUF" not in os.environ: + # Use absolute path to the gguf-py directory + gguf_py_dir = str(Path(__file__).resolve().parent / "gguf-py") + print(gguf_py_dir) # NOTE: Remove this once path is verified after changes are completed + if gguf_py_dir not in sys.path: + sys.path.insert(1, gguf_py_dir) -if hasattr(faulthandler, 'register') and hasattr(signal, 'SIGUSR1'): +# Import gguf module +try: + import gguf +except ModuleNotFoundError as e: + print(f"Could not import gguf: {e}") + sys.exit(1) + +if TYPE_CHECKING: # NOTE: This isn't necessary. + from typing import TypeAlias # This can technically be omitted. + +if hasattr(faulthandler, "register") and hasattr(signal, "SIGUSR1"): faulthandler.register(signal.SIGUSR1) -NDArray: TypeAlias = 'np.ndarray[Any, Any]' +# NOTE: n-dimensional arrays should be directly referenced +NDArray: TypeAlias = "np.ndarray[Any, Any]" +# Why is this here? LLAMA and GPT are technically the only compatible ARCHs. ARCH = gguf.MODEL_ARCH.LLAMA DEFAULT_CONCURRENCY = 8 @@ -49,6 +78,7 @@ DEFAULT_CONCURRENCY = 8 # +# TODO: Clean up and refactor data types @dataclass(frozen=True) class DataType: name: str @@ -153,65 +183,85 @@ GGML_FILE_TYPE_TO_DATA_TYPE: dict[GGMLFileType, DataType] = { @dataclass class Params: - n_vocab: int - n_embd: int - n_layer: int - n_ctx: int - n_ff: int - n_head: int - n_head_kv: int - n_experts: int | None = None - n_experts_used: int | None = None - f_norm_eps: float | None = None + n_vocab: int + n_embd: int + n_layer: int + n_ctx: int + n_ff: int + n_head: int + n_head_kv: int + f_norm_eps: Optional[float] = None + n_experts: Optional[int] = None + n_experts_used: Optional[int] = None - rope_scaling_type: gguf.RopeScalingType | None = None - f_rope_freq_base: float | None = None - f_rope_scale: float | None = None - n_orig_ctx: int | None = None - rope_finetuned: bool | None = None + rope_scaling_type: Optional[gguf.RopeScalingType] = None + f_rope_freq_base: Optional[float] = None + f_rope_scale: Optional[float] = None + n_orig_ctx: Optional[int] = None + rope_finetuned: Optional[bool] = None - ftype: GGMLFileType | None = None + ftype: Optional[GGMLFileType] = None # path to the directory containing the model files - path_model: Path | None = None + path_model: Optional[Path] = None @staticmethod - def guessed(model: LazyModel) -> Params: + def guessed(model: LazyModel) -> "Params": # try transformer naming first - n_vocab, n_embd = model["model.embed_tokens.weight"].shape if "model.embed_tokens.weight" in model else model["tok_embeddings.weight"].shape + n_vocab, n_embd = ( + model["model.embed_tokens.weight"].shape + if "model.embed_tokens.weight" in model + else model["tok_embeddings.weight"].shape + ) # try transformer naming first if "model.layers.0.self_attn.q_proj.weight" in model: - n_layer = next(i for i in itertools.count() if f"model.layers.{i}.self_attn.q_proj.weight" not in model) - elif "model.layers.0.self_attn.W_pack.weight" in model: # next: try baichuan naming - n_layer = next(i for i in itertools.count() if f"model.layers.{i}.self_attn.W_pack.weight" not in model) + n_layer = next( + i + for i in itertools.count() + if f"model.layers.{i}.self_attn.q_proj.weight" not in model + ) + elif ( + "model.layers.0.self_attn.W_pack.weight" in model + ): # next: try baichuan naming + n_layer = next( + i + for i in itertools.count() + if f"model.layers.{i}.self_attn.W_pack.weight" not in model + ) else: - n_layer = next(i for i in itertools.count() if f"layers.{i}.attention.wq.weight" not in model) + n_layer = next( + i + for i in itertools.count() + if f"layers.{i}.attention.wq.weight" not in model + ) if n_layer < 1: - raise Exception("failed to guess 'n_layer'. This model is unknown or unsupported.\n" - "Suggestion: provide 'config.json' of the model in the same directory containing model files.") + raise Exception( + "failed to guess 'n_layer'. This model is unknown or unsupported.\n" + "Suggestion: provide 'config.json' of the model in the same directory containing model files." + ) - n_head = n_embd // 128 # guessed - n_mult = 256 # guessed + n_head = n_embd // 128 # guessed + n_mult = 256 # guessed # TODO: verify this n_ff = int(2 * (4 * n_embd) / 3) n_ff = n_mult * ((n_ff + n_mult - 1) // n_mult) return Params( - n_vocab = n_vocab, - n_embd = n_embd, - n_layer = n_layer, - n_ctx = -1, - n_ff = n_ff, - n_head = n_head, - n_head_kv = n_head, - f_norm_eps = 1e-5, + n_vocab=n_vocab, + n_embd=n_embd, + n_layer=n_layer, + n_ctx=-1, + n_ff=n_ff, + n_head=n_head, + n_head_kv=n_head, + f_norm_eps=1e-5, ) @staticmethod - def loadHFTransformerJson(model: LazyModel, config_path: Path) -> Params: + def load_transformers_config(model: LazyModel, config_path: Path) -> "Params": config = json.load(open(config_path)) rope_scaling_type = f_rope_scale = n_orig_ctx = rope_finetuned = None @@ -224,20 +274,22 @@ class Params: rope_scaling_type = gguf.RopeScalingType.LINEAR elif typ == "yarn": rope_scaling_type = gguf.RopeScalingType.YARN - n_orig_ctx = rope_scaling['original_max_position_embeddings'] - rope_finetuned = rope_scaling['finetuned'] + n_orig_ctx = rope_scaling["original_max_position_embeddings"] + rope_finetuned = rope_scaling["finetuned"] else: - raise NotImplementedError(f'Unknown rope scaling type: {typ}') + raise NotImplementedError(f"Unknown rope scaling type: {typ}") if "max_sequence_length" in config: n_ctx = config["max_sequence_length"] elif "max_position_embeddings" in config: n_ctx = config["max_position_embeddings"] else: - raise Exception("failed to guess 'n_ctx'. This model is unknown or unsupported.\n" - "Suggestion: provide 'config.json' of the model in the same directory containing model files.") + raise Exception( + "failed to guess 'n_ctx'. This model is unknown or unsupported.\n" + "Suggestion: provide 'config.json' of the model in the same directory containing model files." + ) - n_experts = None + n_experts = None n_experts_used = None if "num_local_experts" in config: @@ -245,30 +297,30 @@ class Params: n_experts_used = config["num_experts_per_tok"] return Params( - n_vocab = config["vocab_size"], - n_embd = config["hidden_size"], - n_layer = config["num_hidden_layers"], - n_ctx = n_ctx, - n_ff = config["intermediate_size"], - n_head = (n_head := config["num_attention_heads"]), - n_head_kv = config.get("num_key_value_heads", n_head), - n_experts = n_experts, - n_experts_used = n_experts_used, - f_norm_eps = config["rms_norm_eps"], - f_rope_freq_base = config.get("rope_theta"), - rope_scaling_type = rope_scaling_type, - f_rope_scale = f_rope_scale, - n_orig_ctx = n_orig_ctx, - rope_finetuned = rope_finetuned, + n_vocab=config["vocab_size"], + n_embd=config["hidden_size"], + n_layer=config["num_hidden_layers"], + n_ctx=n_ctx, + n_ff=config["intermediate_size"], + n_head=(n_head := config["num_attention_heads"]), + n_head_kv=config.get("num_key_value_heads", n_head), + n_experts=n_experts, + n_experts_used=n_experts_used, + f_norm_eps=config["rms_norm_eps"], + f_rope_freq_base=config.get("rope_theta"), + rope_scaling_type=rope_scaling_type, + f_rope_scale=f_rope_scale, + n_orig_ctx=n_orig_ctx, + rope_finetuned=rope_finetuned, ) # LLaMA v2 70B params.json # {"dim": 8192, "multiple_of": 4096, "ffn_dim_multiplier": 1.3, "n_heads": 64, "n_kv_heads": 8, "n_layers": 80, "norm_eps": 1e-05, "vocab_size": -1} @staticmethod - def loadOriginalParamsJson(model: LazyModel, config_path: Path) -> Params: + def load_torch_params(model: LazyModel, config_path: Path) -> "Params": config = json.load(open(config_path)) - n_experts = None + n_experts = None n_experts_used = None f_rope_freq_base = None @@ -291,129 +343,249 @@ class Params: if config.get("moe"): n_ff = model["layers.0.feed_forward.experts.0.w1.weight"].shape[0] - n_experts = config["moe"]["num_experts"] + n_experts = config["moe"]["num_experts"] n_experts_used = config["moe"]["num_experts_per_tok"] f_rope_freq_base = 1e6 return Params( - n_vocab = model["tok_embeddings.weight"].shape[0], - n_embd = config["dim"], - n_layer = config["n_layers"], - n_ctx = n_ctx, - n_ff = n_ff, - n_head = (n_head := config["n_heads"]), - n_head_kv = config.get("n_kv_heads", n_head), - n_experts = n_experts, - n_experts_used = n_experts_used, - f_norm_eps = config["norm_eps"], - f_rope_freq_base = config.get("rope_theta", f_rope_freq_base), + n_vocab=config.get("vocab_size", model["tok_embeddings.weight"].shape[0]), + n_embd=config["dim"], + n_layer=config["n_layers"], + n_ctx=n_ctx, + n_ff=n_ff, + n_head=(n_head := config["n_heads"]), + n_head_kv=config.get("n_kv_heads", n_head), + n_experts=n_experts, + n_experts_used=n_experts_used, + f_norm_eps=config["norm_eps"], + f_rope_freq_base=config.get("rope_theta", f_rope_freq_base), ) @staticmethod - def load(model_plus: ModelPlus) -> Params: - hf_config_path = model_plus.paths[0].parent / "config.json" + def load(model_plus: ModelPlus) -> "Params": + hf_config_path = model_plus.paths[0].parent / "config.json" orig_config_path = model_plus.paths[0].parent / "params.json" if hf_config_path.exists(): - params = Params.loadHFTransformerJson(model_plus.model, hf_config_path) + params = Params.load_transformers_config(model_plus.model, hf_config_path) elif orig_config_path.exists(): - params = Params.loadOriginalParamsJson(model_plus.model, orig_config_path) - elif model_plus.format != 'none': + params = Params.load_torch_params(model_plus.model, orig_config_path) + elif model_plus.format != "none": params = Params.guessed(model_plus.model) else: - raise ValueError('Cannot guess params when model format is none') + raise ValueError("Cannot guess params when model format is none") params.path_model = model_plus.paths[0].parent return params -class VocabLoader: - def __init__(self, params: Params, fname_tokenizer: Path) -> None: - try: - from transformers import AutoTokenizer - except ImportError as e: - raise ImportError( - "To use VocabLoader, please install the `transformers` package. " - "You can install it with `pip install transformers`." - ) from e +class BpeVocab: # GPT + def __init__( + self, fname_tokenizer: Path, fname_added_tokens: Optional[Path] + ) -> None: + self.bpe_tokenizer = json.loads( + open(str(fname_tokenizer), encoding="utf-8").read() + ) + added_tokens: dict[str, int] + if fname_added_tokens is not None: + # FIXME: Verify that added tokens here _cannot_ overlap with the main vocab. + added_tokens = json.load(open(fname_added_tokens, encoding="utf-8")) + else: + # Fall back to trying to find the added tokens in tokenizer.json + tokenizer_json_file = fname_tokenizer.parent / "tokenizer.json" + if not tokenizer_json_file.is_file(): + added_tokens = {} + else: + tokenizer_json = json.load(open(tokenizer_json_file, encoding="utf-8")) + added_tokens = dict( + (item["content"], item["id"]) + for item in tokenizer_json.get("added_tokens", []) + # Added tokens here can be duplicates of the main vocabulary. + if item["content"] not in self.bpe_tokenizer + ) - try: - self.tokenizer = AutoTokenizer.from_pretrained(str(fname_tokenizer), trust_remote_code=True) - except ValueError: - self.tokenizer = AutoTokenizer.from_pretrained(str(fname_tokenizer), use_fast=False, trust_remote_code=True) + vocab_size: int = len(self.bpe_tokenizer) + expected_ids = list(range(vocab_size, vocab_size + len(added_tokens))) + actual_ids = sorted(added_tokens.values()) + if expected_ids != actual_ids: + expected_end_id = vocab_size + len(actual_ids) - 1 + raise Exception( + f"Expected the {len(actual_ids)} added token ID(s) to be sequential in the range {vocab_size} - {expected_end_id}; got {actual_ids}" + ) - self.added_tokens_dict: OrderedDict[str, int] = OrderedDict() + items = sorted(added_tokens.items(), key=lambda text_idx: text_idx[1]) + self.added_tokens_list = [text for (text, idx) in items] + self.vocab_size_base: int = vocab_size + self.vocab_size: int = self.vocab_size_base + len(self.added_tokens_list) + self.fname_tokenizer = fname_tokenizer + self.fname_added_tokens = fname_added_tokens - for tok, tokidx in sorted(self.tokenizer.get_added_vocab().items(), key=lambda x: x[1]): - if tokidx >= params.n_vocab or tokidx < self.tokenizer.vocab_size: - continue + def bpe_tokens(self) -> Iterable[tuple[bytes, float, gguf.TokenType]]: + tokenizer = self.bpe_tokenizer + reverse_vocab = {id: encoded_tok for encoded_tok, id in tokenizer.items()} - self.added_tokens_dict[tok] = tokidx + for i, _ in enumerate(tokenizer): + yield reverse_vocab[i], 0.0, gguf.TokenType.NORMAL - self.unk_token_id: int = self.tokenizer.unk_token_id - self.specials: dict[str, int] = { + def added_tokens(self) -> Iterable[tuple[bytes, float, gguf.TokenType]]: + for text in self.added_tokens_list: + score = -1000.0 + yield text.encode("utf-8"), score, gguf.TokenType.CONTROL + + def all_tokens(self) -> Iterable[tuple[bytes, float, gguf.TokenType]]: + yield from self.bpe_tokens() + yield from self.added_tokens() + + def __repr__(self) -> str: + return f"" + + +class SentencePieceVocab: # LlaMa + def __init__( + self, fname_tokenizer: Path, fname_added_tokens: Optional[Path] + ) -> None: + self.sentencepiece_tokenizer = SentencePieceProcessor(str(fname_tokenizer)) + added_tokens: dict[str, int] + if fname_added_tokens is not None: + added_tokens = json.load(open(fname_added_tokens, encoding="utf-8")) + else: + added_tokens = {} + + vocab_size: int = self.sentencepiece_tokenizer.vocab_size() + + new_tokens = { + id: piece for piece, id in added_tokens.items() if id >= vocab_size + } + expected_new_ids = list(range(vocab_size, vocab_size + len(new_tokens))) + actual_new_ids = sorted(new_tokens.keys()) + + if expected_new_ids != actual_new_ids: + raise ValueError( + f"Expected new token IDs {expected_new_ids} to be sequential; got {actual_new_ids}" + ) + + # Token pieces that were added to the base vocabulary. + self.added_tokens_list = [new_tokens[id] for id in actual_new_ids] + self.vocab_size_base = vocab_size + self.vocab_size = self.vocab_size_base + len(self.added_tokens_list) + self.fname_tokenizer = fname_tokenizer + self.fname_added_tokens = fname_added_tokens + + def sentencepiece_tokens(self) -> Iterable[tuple[bytes, float, gguf.TokenType]]: + tokenizer = self.sentencepiece_tokenizer + for i in range(tokenizer.vocab_size()): + piece = tokenizer.id_to_piece(i) + text: bytes = piece.encode("utf-8") + score: float = tokenizer.get_score(i) + + toktype = gguf.TokenType.NORMAL + if tokenizer.is_unknown(i): + toktype = gguf.TokenType.UNKNOWN + if tokenizer.is_control(i): + toktype = gguf.TokenType.CONTROL + + # NOTE: I think added_tokens are user defined. + # ref: https://github.com/google/sentencepiece/blob/master/src/sentencepiece_model.proto + # if tokenizer.is_user_defined(i): toktype = gguf.TokenType.USER_DEFINED + + if tokenizer.is_unused(i): + toktype = gguf.TokenType.UNUSED + if tokenizer.is_byte(i): + toktype = gguf.TokenType.BYTE + + yield text, score, toktype + + def added_tokens(self) -> Iterable[tuple[bytes, float, gguf.TokenType]]: + for text in self.added_tokens_list: + score = -1000.0 + yield text.encode("utf-8"), score, gguf.TokenType.USER_DEFINED + + def all_tokens(self) -> Iterable[tuple[bytes, float, gguf.TokenType]]: + yield from self.sentencepiece_tokens() + yield from self.added_tokens() + + def __repr__(self) -> str: + return f"" + + +class HfVocab: + def __init__( + self, + fname_tokenizer: Path, + fname_added_tokens: Optional[Path] = None, + ) -> None: + print("fname_tokenizer:", fname_tokenizer) + # Allow the tokenizer to default to slow or fast versions. + # Explicitly set tokenizer to use local paths. + self.tokenizer = AutoTokenizer.from_pretrained( + fname_tokenizer, + cache_dir=fname_tokenizer, + local_files_only=True, + ) + + # Initialize lists and dictionaries for added tokens + self.added_tokens_list = [] + self.added_tokens_dict = dict() + self.added_tokens_ids = set() + + # Process added tokens + for tok, tokidx in sorted( + self.tokenizer.get_added_vocab().items(), key=lambda x: x[1] + ): + # Only consider added tokens that are not in the base vocabulary + if tokidx >= self.tokenizer.vocab_size: + self.added_tokens_list.append(tok) + self.added_tokens_dict[tok] = tokidx + self.added_tokens_ids.add(tokidx) + + # Store special tokens and their IDs + self.specials = { tok: self.tokenizer.get_vocab()[tok] for tok in self.tokenizer.all_special_tokens } - self.special_ids: set[int] = set(self.tokenizer.all_special_ids) - self.reverse_vocab = {id: encoded_tok for encoded_tok, id in self.tokenizer.get_vocab().items()} - self.vocab_size_base: int = self.tokenizer.vocab_size - self.vocab_size: int = self.vocab_size_base + len(self.added_tokens_dict) - self.fname_tokenizer: Path = fname_tokenizer + self.special_ids = set(self.tokenizer.all_special_ids) - vocab_file = "tokenizer.model" - path_candidate = find_vocab_file_path(self.fname_tokenizer, vocab_file) - if path_candidate is not None: - self.spm = SentencePieceProcessor(str(path_candidate)) - print(self.spm.vocab_size(), self.vocab_size_base) - else: - self.spm = None + # Set vocabulary sizes + self.vocab_size_base = self.tokenizer.vocab_size + self.vocab_size = self.vocab_size_base + len(self.added_tokens_list) - def hf_tokens(self) -> Iterable[tuple[bytes, float, gguf.TokenType]]: - added_tokens_ids = set(self.added_tokens_dict.values()) + self.fname_tokenizer = fname_tokenizer + self.fname_added_tokens = fname_added_tokens - for i in range(self.vocab_size_base): - if i in added_tokens_ids: + def hf_tokens(self) -> Iterable[Tuple[bytes, float, gguf.TokenType]]: + reverse_vocab = { + id: encoded_tok for encoded_tok, id in self.tokenizer.get_vocab().items() + } + + for token_id in range(self.vocab_size_base): + # Skip processing added tokens here + if token_id in self.added_tokens_ids: continue - text = self.reverse_vocab[i].encode("utf-8") - yield text, self.get_token_score(i), self.get_token_type(i) + # Convert token text to bytes + token_text = reverse_vocab[token_id].encode("utf-8") - def get_token_type(self, token_id: int) -> gguf.TokenType: - toktype = gguf.TokenType.NORMAL + # Yield token text, score, and type + yield token_text, self.get_token_score(token_id), self.get_token_type( + token_id, self.special_ids # Reuse already stored special IDs + ) - if self.spm is not None and token_id < self.spm.vocab_size(): - if self.spm.is_unknown(token_id): - toktype = gguf.TokenType.UNKNOWN - if self.spm.is_control(token_id): - toktype = gguf.TokenType.CONTROL - if self.spm.is_unused(token_id): - toktype = gguf.TokenType.UNUSED - if self.spm.is_byte(token_id): - toktype = gguf.TokenType.BYTE - else: - token = self.reverse_vocab[token_id] - if token_id == self.unk_token_id: - toktype = gguf.TokenType.UNKNOWN - elif token_id in self.special_ids: - toktype = gguf.TokenType.CONTROL - elif len(token) == 6 and token.startswith("<0x") and token.endswith(">"): - toktype = gguf.TokenType.BYTE - - return toktype + def get_token_type(self, token_id: int, special_ids: set) -> gguf.TokenType: + # Determine token type based on whether it's a special token + return ( + gguf.TokenType.CONTROL if token_id in special_ids else gguf.TokenType.NORMAL + ) def get_token_score(self, token_id: int) -> float: - if self.spm is not None and token_id < self.spm.vocab_size(): - return cast(float, self.spm.get_score(token_id)) - return 0.0 + # Placeholder for actual logic to determine the token's score + # This needs to be implemented based on specific requirements + return -1000.0 # Default score def added_tokens(self) -> Iterable[tuple[bytes, float, gguf.TokenType]]: - - for text in self.added_tokens_dict: + for text in self.added_tokens_list: if text in self.specials: - - toktype = self.get_token_type(self.specials[text]) + toktype = self.get_token_type(self.specials[text], self.special_ids) score = self.get_token_score(self.specials[text]) else: @@ -422,45 +594,18 @@ class VocabLoader: yield text.encode("utf-8"), score, toktype - def has_newline_token(self) -> bool: - return '<0x0A>' in self.tokenizer.vocab or '\n' in self.tokenizer.vocab + def has_newline_token(self): + return "<0x0A>" in self.tokenizer.vocab or "\n" in self.tokenizer.vocab def all_tokens(self) -> Iterable[tuple[bytes, float, gguf.TokenType]]: yield from self.hf_tokens() yield from self.added_tokens() - def get_vocab_type(self) -> str: - path_candidates = [] - vocab_file = "tokenizer.model" - path_candidates.append(vocab_file) - path_candidate = find_vocab_file_path(self.fname_tokenizer, vocab_file) - if path_candidate is not None: - return "llama" - - vocab_file = "vocab.json" - path_candidates.append(vocab_file) - path_candidate = find_vocab_file_path(self.fname_tokenizer, vocab_file) - if path_candidate is not None: - return "gpt2" - - vocab_file = "tokenizer.json" - path_candidates.append(vocab_file) - path_candidate = find_vocab_file_path(self.fname_tokenizer, vocab_file) - if path_candidate: - if not self.has_newline_token(): - return "gpt2" - return "llama" - - raise FileNotFoundError( - f"Could not find {path_candidates} in {self.fname_tokenizer} or its parent; " - "if it's in another directory, pass the directory as --vocab-dir" - ) - def __repr__(self) -> str: - return f"" + return f"" -Vocab: TypeAlias = 'VocabLoader' +Vocab: TypeAlias = "BpeVocab | SentencePieceVocab | HfVocab" # @@ -724,13 +869,17 @@ class LazyUnpickler(pickle.Unpickler): CLASSES: dict[tuple[str, str], Any] = { # getattr used here as a workaround for mypy not being smart enough to determine # the staticmethods have a __func__ attribute. - ('torch._tensor', '_rebuild_from_type_v2'): getattr(rebuild_from_type_v2, '__func__'), - ('torch._utils', '_rebuild_tensor_v2'): getattr(lazy_rebuild_tensor_v2, '__func__'), - ('torch', 'BFloat16Storage'): LazyStorageKind(DT_BF16), - ('torch', 'HalfStorage'): LazyStorageKind(DT_F16), - ('torch', 'FloatStorage'): LazyStorageKind(DT_F32), - ('torch', 'IntStorage'): LazyStorageKind(DT_I32), - ('torch', 'Tensor'): LazyTensor, + ("torch._tensor", "_rebuild_from_type_v2"): getattr( + rebuild_from_type_v2, "__func__" + ), + ("torch._utils", "_rebuild_tensor_v2"): getattr( + lazy_rebuild_tensor_v2, "__func__" + ), + ("torch", "BFloat16Storage"): LazyStorageKind(DT_BF16), + ("torch", "HalfStorage"): LazyStorageKind(DT_F16), + ("torch", "FloatStorage"): LazyStorageKind(DT_F32), + ("torch", "IntStorage"): LazyStorageKind(DT_I32), + ("torch", "Tensor"): LazyTensor, } def find_class(self, module: str, name: str) -> Any: @@ -839,32 +988,43 @@ def bounded_parallel_map(func: Callable[[In], Out], iterable: Iterable[In], conc def check_vocab_size(params: Params, vocab: Vocab, pad_vocab: bool = False) -> None: - if params.n_vocab != vocab.vocab_size: - if params.n_vocab == vocab.vocab_size: - print("Ignoring added_tokens.json since model matches vocab size without it.") - vocab.added_tokens_dict = OrderedDict() - vocab.vocab_size = vocab.vocab_size - return + # Handle special case where the model's vocab size is not set + if params.n_vocab == -1: + raise ValueError( + f"The model's vocab size is set to -1 in params.json. Please update it manually. Maybe {vocab.vocab_size}?" + ) - if pad_vocab and params.n_vocab > vocab.vocab_size: - pad_count = params.n_vocab - vocab.vocab_size - print(f'Padding vocab with {pad_count} token(s) - through ') - for i in range(1, (params.n_vocab - vocab.vocab_size) + 1): - vocab.added_tokens_dict[f''] = -1 - vocab.vocab_size = params.n_vocab - return - msg = f"Vocab size mismatch (model has {params.n_vocab}, but {vocab.fname_tokenizer}" - msg += f" has {vocab.vocab_size})." - if vocab.vocab_size < params.n_vocab < vocab.vocab_size + 20: - msg += f" Most likely you are missing added_tokens.json (should be in {vocab.fname_tokenizer.parent})." - if vocab.vocab_size < params.n_vocab: - msg += " Possibly try using the --padvocab option." - raise Exception(msg) + # Check for a vocab size mismatch + if params.n_vocab == vocab.vocab_size: + print("Ignoring added_tokens.json since model matches vocab size without it.") + return + + if pad_vocab and params.n_vocab > vocab.vocab_size: + pad_count = params.n_vocab - vocab.vocab_size + print( + f"Padding vocab with {pad_count} token(s) - through " + ) + for i in range(1, pad_count + 1): + vocab.added_tokens_dict[f""] = -1 + vocab.vocab_size = params.n_vocab + return + + msg = f"Vocab size mismatch (model has {params.n_vocab}, but {vocab.fname_tokenizer} has {vocab.vocab_size})." + if vocab.vocab_size < params.n_vocab < vocab.vocab_size + 20: + msg += f" Most likely you are missing added_tokens.json (should be in {vocab.fname_tokenizer.parent})." + if vocab.vocab_size < params.n_vocab: + msg += " Add the --pad-vocab option and try again." + + raise Exception(msg) class OutputFile: - def __init__(self, fname_out: Path, endianess:gguf.GGUFEndian = gguf.GGUFEndian.LITTLE) -> None: - self.gguf = gguf.GGUFWriter(fname_out, gguf.MODEL_ARCH_NAMES[ARCH], endianess=endianess) + def __init__( + self, fname_out: Path, endianess: gguf.GGUFEndian = gguf.GGUFEndian.LITTLE + ) -> None: + self.gguf = gguf.GGUFWriter( + fname_out, gguf.MODEL_ARCH_NAMES[ARCH], endianess=endianess + ) def add_meta_arch(self, params: Params) -> None: name = "LLaMA" @@ -873,16 +1033,21 @@ class OutputFile: if params.n_ctx == 4096: name = "LLaMA v2" elif params.path_model is not None: - name = str(params.path_model.parent).split('/')[-1] + name = str(params.path_model.parent).split("/")[-1] - self.gguf.add_name (name) - self.gguf.add_context_length (params.n_ctx) - self.gguf.add_embedding_length (params.n_embd) - self.gguf.add_block_count (params.n_layer) - self.gguf.add_feed_forward_length (params.n_ff) + self.gguf.add_name(name) + self.gguf.add_context_length(params.n_ctx) + self.gguf.add_embedding_length(params.n_embd) + self.gguf.add_block_count(params.n_layer) + self.gguf.add_feed_forward_length(params.n_ff) self.gguf.add_rope_dimension_count(params.n_embd // params.n_head) - self.gguf.add_head_count (params.n_head) - self.gguf.add_head_count_kv (params.n_head_kv) + self.gguf.add_head_count(params.n_head) + self.gguf.add_head_count_kv(params.n_head_kv) + + if params.f_norm_eps is None: + raise ValueError("f_norm_eps is None") + + self.gguf.add_layer_norm_rms_eps(params.f_norm_eps) if params.n_experts: self.gguf.add_expert_count(params.n_experts) @@ -890,11 +1055,6 @@ class OutputFile: if params.n_experts_used: self.gguf.add_expert_used_count(params.n_experts_used) - if params.f_norm_eps: - self.gguf.add_layer_norm_rms_eps(params.f_norm_eps) - else: - raise ValueError('f_norm_eps is None') - if params.f_rope_freq_base is not None: self.gguf.add_rope_freq_base(params.f_rope_freq_base) @@ -912,18 +1072,44 @@ class OutputFile: if params.ftype is not None: self.gguf.add_file_type(params.ftype) - def add_meta_vocab(self, vocab: Vocab) -> None: + def handle_tokenizer_model(self, vocab: Vocab) -> str: + # Map the vocab types to the supported tokenizer models + tokenizer_model = { + SentencePieceVocab: "llama", + HfVocab: "llama", + BpeVocab: "gpt2", + }.get(type(vocab)) + + # Block if vocab type is not predefined + if tokenizer_model is None: + raise ValueError("Unknown vocab type: Not supported") + + return tokenizer_model + + def extract_vocabulary_from_model(self, vocab: Vocab) -> Tuple[list, list, list]: tokens = [] scores = [] toktypes = [] + # NOTE: `all_tokens` returns the base vocabulary and added tokens for text, score, toktype in vocab.all_tokens(): tokens.append(text) scores.append(score) toktypes.append(toktype) - vocab_type = vocab.get_vocab_type() - self.gguf.add_tokenizer_model(vocab_type) + return tokens, scores, toktypes + + def add_meta_vocab(self, vocab: Vocab) -> None: + # Handle the tokenizer model + tokenizer_model = self.handle_tokenizer_model(vocab) + + # Ensure that tokenizer_model is added to the GGUF model + self.gguf.add_tokenizer_model(tokenizer_model) + + # Extract model vocabulary for model conversion + tokens, scores, toktypes = self.extract_vocabulary_from_model(vocab) + + # Add extracted token information for model conversion self.gguf.add_token_list(tokens) self.gguf.add_token_scores(scores) self.gguf.add_token_types(toktypes) @@ -933,10 +1119,14 @@ class OutputFile: def add_tensor_info(self, name: str, tensor: LazyTensor) -> None: n_elements = int(np.prod(tensor.shape)) - raw_dtype = getattr(tensor.data_type, 'ggml_type', None) - data_type = getattr(tensor.data_type, 'quantized_type', None) or tensor.data_type.dtype + raw_dtype = getattr(tensor.data_type, "ggml_type", None) + data_type = ( + getattr(tensor.data_type, "quantized_type", None) or tensor.data_type.dtype + ) data_nbytes = tensor.data_type.elements_to_bytes(n_elements) - self.gguf.add_tensor_info(name, tensor.shape, data_type, data_nbytes, raw_dtype = raw_dtype) + self.gguf.add_tensor_info( + name, tensor.shape, data_type, data_nbytes, raw_dtype=raw_dtype + ) def write_meta(self) -> None: self.gguf.write_header_to_file() @@ -950,11 +1140,14 @@ class OutputFile: @staticmethod def write_vocab_only( - fname_out: Path, params: Params, vocab: Vocab, svocab: gguf.SpecialVocab, + fname_out: Path, + params: Params, + vocab: Vocab, + svocab: gguf.SpecialVocab, endianess: gguf.GGUFEndian = gguf.GGUFEndian.LITTLE, pad_vocab: bool = False, ) -> None: - check_vocab_size(params, vocab, pad_vocab = pad_vocab) + check_vocab_size(params, vocab, pad_vocab=pad_vocab) of = OutputFile(fname_out, endianess=endianess) @@ -982,12 +1175,17 @@ class OutputFile: @staticmethod def write_all( - fname_out: Path, ftype: GGMLFileType, params: Params, model: LazyModel, vocab: Vocab, svocab: gguf.SpecialVocab, + fname_out: Path, + ftype: GGMLFileType, + params: Params, + model: LazyModel, + vocab: Vocab, + svocab: gguf.SpecialVocab, concurrency: int = DEFAULT_CONCURRENCY, endianess: gguf.GGUFEndian = gguf.GGUFEndian.LITTLE, pad_vocab: bool = False, ) -> None: - check_vocab_size(params, vocab, pad_vocab = pad_vocab) + check_vocab_size(params, vocab, pad_vocab=pad_vocab) of = OutputFile(fname_out, endianess=endianess) @@ -1004,18 +1202,30 @@ class OutputFile: of.write_tensor_info() # tensor data - ndarrays_inner = bounded_parallel_map(OutputFile.do_item, model.items(), concurrency = concurrency) + ndarrays_inner = bounded_parallel_map( + OutputFile.do_item, model.items(), concurrency=concurrency + ) if ftype == GGMLFileType.MostlyQ8_0: - ndarrays = bounded_parallel_map(OutputFile.maybe_do_quantize, ndarrays_inner, concurrency = concurrency, max_workers = concurrency, use_processpool_executor = True) + ndarrays = bounded_parallel_map( + OutputFile.maybe_do_quantize, + ndarrays_inner, + concurrency=concurrency, + max_workers=concurrency, + use_processpool_executor=True, + ) else: ndarrays = map(OutputFile.maybe_do_quantize, ndarrays_inner) start = time.time() - for i, ((name, lazy_tensor), ndarray) in enumerate(zip(model.items(), ndarrays)): + for i, ((name, lazy_tensor), ndarray) in enumerate( + zip(model.items(), ndarrays) + ): elapsed = time.time() - start - size = ' x '.join(f"{dim:6d}" for dim in lazy_tensor.shape) + size = " x ".join(f"{dim:6d}" for dim in lazy_tensor.shape) padi = len(str(len(model))) - print(f"[{i+1:{padi}d}/{len(model)}] Writing tensor {name:38s} | size {size:16} | type {lazy_tensor.data_type.name:4} | T+{int(elapsed):4}") + print( + f"[{i+1:{padi}d}/{len(model)}] Writing tensor {name:38s} | size {size:16} | type {lazy_tensor.data_type.name:4} | T+{int(elapsed):4}" + ) of.gguf.write_tensor_data(ndarray) of.close() @@ -1145,30 +1355,95 @@ def load_some_model(path: Path) -> ModelPlus: return model_plus -def find_vocab_file_path(path: Path, vocab_file: str) -> Optional[Path]: - path2 = path / vocab_file - # Use `.parent` instead of /.. to handle the symlink case better. - path3 = path.parent / vocab_file +class VocabFactory: + def __init__(self, path: Path): + self.path = path + self.files = { + "tokenizer.model": None, + "vocab.json": None, + "tokenizer.json": None, + } + self._detect_files() - if path2.exists(): - return path2 - if path3.exists(): - return path3 + def _detect_files(self): + for file in self.files.keys(): + file_path = self.path / file + parent_file_path = self.path.parent / file + if file_path.exists(): + self.files[file] = file_path + elif parent_file_path.exists(): + self.files[file] = parent_file_path - return None + def _select_file(self, vocabtype: Optional[str]) -> Path: + if vocabtype in ["spm", "bpe"]: + # For SentencePiece and BPE, return specific files as before + file_key = "tokenizer.model" if vocabtype == "spm" else "vocab.json" + if self.files[file_key]: + return self.files[file_key] + else: + raise FileNotFoundError(f"{vocabtype} {file_key} not found.") + elif vocabtype == "hfft": + # For Hugging Face Fast Tokenizer, return the directory path instead of a specific file + return self.path + else: + raise ValueError(f"Unsupported vocabulary type {vocabtype}") + + def _create_special_vocab( + self, + vocab: Vocab, + vocabtype: str, + model_parent_path: Path, + ) -> gguf.SpecialVocab: + load_merges = vocabtype == "bpe" + n_vocab = vocab.vocab_size if hasattr(vocab, "vocab_size") else None + return gguf.SpecialVocab( + model_parent_path, + load_merges=load_merges, + special_token_types=None, # Predetermined or passed as a parameter + n_vocab=n_vocab, + ) + + def load_vocab( + self, vocabtype: str, model_parent_path: Path + ) -> Tuple[Vocab, gguf.SpecialVocab]: + path = self._select_file(vocabtype) + print(f"Loading vocab file '{path}', type '{vocabtype}'") + + added_tokens_path = path.parent / "added_tokens.json" + if vocabtype == "bpe": + vocab = BpeVocab( + path, added_tokens_path if added_tokens_path.exists() else None + ) + elif vocabtype == "spm": + vocab = SentencePieceVocab( + path, added_tokens_path if added_tokens_path.exists() else None + ) + elif vocabtype == "hfft": + vocab = HfVocab( + path, added_tokens_path if added_tokens_path.exists() else None + ) + else: + raise ValueError(f"Unsupported vocabulary type {vocabtype}") + special_vocab = self._create_special_vocab( + vocab, + vocabtype, + model_parent_path, + ) + return vocab, special_vocab -def default_outfile(model_paths: list[Path], file_type: GGMLFileType) -> Path: +def default_output_file(model_paths: list[Path], file_type: GGMLFileType) -> Path: namestr = { - GGMLFileType.AllF32: "f32", + GGMLFileType.AllF32: "f32", GGMLFileType.MostlyF16: "f16", - GGMLFileType.MostlyQ8_0:"q8_0", + GGMLFileType.MostlyQ8_0: "q8_0", }[file_type] ret = model_paths[0].parent / f"ggml-model-{namestr}.gguf" if ret in model_paths: sys.stderr.write( f"Error: Default output path ({ret}) would overwrite the input. " - "Please explicitly specify a path using --outfile.\n") + "Please explicitly specify a path using --outfile.\n" + ) sys.exit(1) return ret @@ -1178,32 +1453,111 @@ def do_dump_model(model_plus: ModelPlus) -> None: print(f"model_plus.format = {model_plus.format!r}") print(f"model_plus.vocab = {model_plus.vocab!r}") for name, lazy_tensor in model_plus.model.items(): - print(f"{name}: shape={lazy_tensor.shape} type={lazy_tensor.data_type}; {lazy_tensor.description}") + print( + f"{name}: shape={lazy_tensor.shape} type={lazy_tensor.data_type}; {lazy_tensor.description}" + ) -def main(args_in: list[str] | None = None) -> None: +def get_argument_parser() -> ArgumentParser: output_choices = ["f32", "f16"] if np.uint32(1) == np.uint32(1).newbyteorder("<"): # We currently only support Q8_0 output on little endian systems. output_choices.append("q8_0") - parser = argparse.ArgumentParser(description="Convert a LLaMa model to a GGML compatible file") - parser.add_argument("--awq-path", type=Path, help="Path to scale awq cache file", default=None) - parser.add_argument("--dump", action="store_true", help="don't convert, just show what's in the model") - parser.add_argument("--dump-single", action="store_true", help="don't convert, just show what's in a single model file") - parser.add_argument("--vocab-only", action="store_true", help="extract only the vocab") - parser.add_argument("--outtype", choices=output_choices, help="output format - note: q8_0 may be very slow (default: f16 or f32 based on input)") - parser.add_argument("--vocab-dir", type=Path, help="directory containing tokenizer.model, if separate from model file") - parser.add_argument("--outfile", type=Path, help="path to write to; default: based on input") - parser.add_argument("model", type=Path, help="directory containing model file, or model file itself (*.pth, *.pt, *.bin)") - parser.add_argument("--ctx", type=int, help="model training context (default: based on input)") - parser.add_argument("--concurrency", type=int, help=f"concurrency used for conversion (default: {DEFAULT_CONCURRENCY})", default = DEFAULT_CONCURRENCY) - parser.add_argument("--bigendian", action="store_true", help="model is executed on big endian machine") - parser.add_argument("--padvocab", action="store_true", help="add pad tokens when model vocab expects more than tokenizer metadata provides") - args = parser.parse_args(args_in) + parser = argparse.ArgumentParser( + description="Convert a LLaMa model to a GGML compatible file" + ) + + parser.add_argument( + "model", + type=Path, + help="Directory containing the model file or the model file itself (*.pth, *.pt, *.bin)", + ) + + parser.add_argument( + "--awq-path", + type=Path, + help="Path to the Activation-aware Weight Quantization cache file", + default=None, + ) + + parser.add_argument( + "--dump", + action="store_true", + help="Display the model content without converting it", + ) + + parser.add_argument( + "--dump-single", + action="store_true", + help="Display the content of a single model file without conversion", + ) + + parser.add_argument( + "--vocab-only", + action="store_true", + help="Extract and output only the vocabulary", + ) + + parser.add_argument( + "--outtype", + choices=output_choices, + help="Output format - note: q8_0 may be very slow (default: f16 or f32 based on input)", + ) + + parser.add_argument( + "--vocab-dir", + type=Path, + help="Directory containing the tokenizer.model, if separate from the model file", + ) + + parser.add_argument( + "--vocab-type", + choices=["spm", "bpe", "hfft"], # hfft: Hugging Face Fast Tokenizer + default="spm", + help="The vocabulary format used to define the tokenizer model (default: spm)", + ) + + parser.add_argument( + "--pad-vocab", + action="store_true", + help="Add padding tokens when the model's vocabulary size exceeds the tokenizer metadata", + ) + + parser.add_argument( + "--outfile", + type=Path, + help="Specify the path for the output file (default is based on input)", + ) + + parser.add_argument( + "--ctx", type=int, help="Model training context (default is based on input)" + ) + + parser.add_argument( + "--concurrency", + type=int, + help=f"Concurrency used for conversion (default: {DEFAULT_CONCURRENCY})", + default=DEFAULT_CONCURRENCY, + ) + + parser.add_argument( + "--big-endian", + action="store_true", + help="Indicate that the model is executed on a big-endian machine", + ) + + return parser + + +def main(argv: Optional[list[str]] = None) -> None: + parser = get_argument_parser() + args = parser.parse_args(argv) + if args.awq_path: - sys.path.insert(1, str(Path(__file__).parent / 'awq-py')) + sys.path.insert(1, str(Path(__file__).resolve().parent / "awq-py")) from awq.apply_awq import add_scale_weights + tmp_model_path = args.model / "weighted_model" if tmp_model_path.is_dir(): print(f"{tmp_model_path} exists as a weighted model.") @@ -1222,22 +1576,27 @@ def main(args_in: list[str] | None = None) -> None: if not args.vocab_only: model_plus = load_some_model(args.model) else: - model_plus = ModelPlus(model = {}, paths = [args.model / 'dummy'], format = 'none', vocab = None) + model_plus = ModelPlus( + model={}, paths=[args.model / "dummy"], format="none", vocab=None + ) if args.dump: do_dump_model(model_plus) return + endianess = gguf.GGUFEndian.LITTLE - if args.bigendian: + if args.big_endian: endianess = gguf.GGUFEndian.BIG params = Params.load(model_plus) if params.n_ctx == -1: if args.ctx is None: - raise Exception("The model doesn't have a context size, and you didn't specify one with --ctx\n" - "Please specify one with --ctx:\n" - " - LLaMA v1: --ctx 2048\n" - " - LLaMA v2: --ctx 4096\n") + raise Exception( + "The model doesn't have a context size, and you didn't specify one with --ctx\n" + "Please specify one with --ctx:\n" + " - LLaMA v1: --ctx 2048\n" + " - LLaMA v2: --ctx 4096\n" + ) params.n_ctx = args.ctx if args.outtype: @@ -1249,47 +1608,51 @@ def main(args_in: list[str] | None = None) -> None: print(f"params = {params}") - vocab: Vocab + model_parent_path = model_plus.paths[0].parent + vocab_path = Path(args.vocab_dir or args.model or model_parent_path) + vocab_factory = VocabFactory(vocab_path) + vocab, special_vocab = vocab_factory.load_vocab(args.vocab_type, model_parent_path) + if args.vocab_only: if not args.outfile: raise ValueError("need --outfile if using --vocab-only") - # FIXME: Try to respect vocab_dir somehow? - vocab = VocabLoader(params, args.vocab_dir or args.model) - special_vocab = gguf.SpecialVocab(model_plus.paths[0].parent, - load_merges = True, - n_vocab = vocab.vocab_size) outfile = args.outfile - OutputFile.write_vocab_only(outfile, params, vocab, special_vocab, - endianess = endianess, pad_vocab = args.padvocab) + OutputFile.write_vocab_only( + outfile, + params, + vocab, + special_vocab, + endianess=endianess, + pad_vocab=args.pad_vocab, + ) print(f"Wrote {outfile}") return if model_plus.vocab is not None and args.vocab_dir is None: vocab = model_plus.vocab - else: - vocab_dir = args.vocab_dir if args.vocab_dir else model_plus.paths[0].parent - vocab = VocabLoader(params, vocab_dir) - # FIXME: Try to respect vocab_dir somehow? - print(f"Vocab info: {vocab}") - special_vocab = gguf.SpecialVocab(model_plus.paths[0].parent, - load_merges = True, - n_vocab = vocab.vocab_size) - - print(f"Special vocab info: {special_vocab}") - model = model_plus.model - model = convert_model_names(model, params) - ftype = pick_output_type(model, args.outtype) - model = convert_to_output_type(model, ftype) - outfile = args.outfile or default_outfile(model_plus.paths, ftype) + model = model_plus.model + model = convert_model_names(model, params) + ftype = pick_output_type(model, args.outtype) + model = convert_to_output_type(model, ftype) + outfile = args.outfile or default_output_file(model_plus.paths, ftype) params.ftype = ftype print(f"Writing {outfile}, format {ftype}") - OutputFile.write_all(outfile, ftype, params, model, vocab, special_vocab, - concurrency = args.concurrency, endianess = endianess, pad_vocab = args.padvocab) + OutputFile.write_all( + outfile, + ftype, + params, + model, + vocab, + special_vocab, + concurrency=args.concurrency, + endianess=endianess, + pad_vocab=args.pad_vocab, + ) print(f"Wrote {outfile}") -if __name__ == '__main__': - main() +if __name__ == "__main__": + main(sys.argv[1:]) # Exclude the first element (script name) from sys.argv