diff --git a/convert-llama-7b-pth-to-gguf.py b/convert-llama-7b-pth-to-gguf.py new file mode 100644 index 000000000..d76350356 --- /dev/null +++ b/convert-llama-7b-pth-to-gguf.py @@ -0,0 +1,302 @@ +# 7b pth llama --> gguf conversion, GQA/70b not supported +# Only models with a single datafile are supported, like 7B +# HF files required in the model dir: config.json tokenizer_config.json tokenizer.json tokenizer.model + +import gguf +import gguf_namemap as tmap +import os +import sys +import struct +import json +import numpy as np +import torch +from typing import Any, List +from pathlib import Path +from sentencepiece import SentencePieceProcessor + + +#NDArray = np.ndarray[Any, Any] +# compatible with python < 3.9 +NDArray: 'TypeAlias' = 'np.ndarray[Any, Any]' + +def count_model_parts(dir_model: str) -> int: + num_parts = 0 + for filename in os.listdir(dir_model): + if filename.startswith("consolidated."): + num_parts += 1 + + if num_parts > 0: + print("gguf: found " + str(num_parts) + " model parts") + return num_parts + +if len(sys.argv) < 3: + print("Usage: convert-h5-to-ggml.py dir-model ftype\n") + print(" ftype == 0 -> float32") + print(" ftype == 1 -> float16") + sys.exit(1) + + +# output in the same directory as the model +dir_model = sys.argv[1] +last_dir = os.path.basename(os.path.normpath(dir_model)) + + +# possible tensor data types +# ftype == 0 -> float32 +# ftype == 1 -> float16 +# +# map from ftype to string +ftype_str = ["f32", "f16"] + +ftype = 1 +if len(sys.argv) > 2: + ftype = int(sys.argv[2]) + if ftype < 0 or ftype > 1: + print("Invalid ftype: " + str(ftype)) + sys.exit(1) + +fname_out = sys.argv[1] + "/ggml-model-" + ftype_str[ftype] + ".gguf" + +print("gguf: loading model "+last_dir) + +with open(dir_model + "/config.json", "r", encoding="utf-8") as f: + hparams = json.load(f) + +if hparams["architectures"][0] != "LlamaForCausalLM": + print("Model architecture not supported: " + hparams["architectures"][0]) + sys.exit() + +# get number of model parts +num_parts = count_model_parts(dir_model) + +if num_parts > 1: + print("gguf: Only models with a single datafile are supported.") + sys.exit() + +gguf_writer = gguf.GGUFWriter.open(fname_out) + + +print("gguf: get model metadata") + +llm_arch = "llama" +block_count = hparams["num_hidden_layers"] +head_count = hparams["num_attention_heads"] + +if "num_key_value_heads" in hparams: + head_count_kv = hparams["num_key_value_heads"] +else: + head_count_kv = head_count + +if "_name_or_path" in hparams: + hf_repo = hparams["_name_or_path"] +else: + hf_repo="" + +gguf_writer.add_architecture(llm_arch) +gguf_writer.add_name(last_dir) +gguf_writer.add_file_type( "All tensors F32" if ftype == 0 else "Most tensors F16, some F32") +gguf_writer.add_source_hf_repo(hf_repo) +gguf_writer.add_context_length(llm_arch, hparams["max_position_embeddings"]) +gguf_writer.add_embedding_length(llm_arch, hparams["hidden_size"]) +gguf_writer.add_block_count(llm_arch, block_count) +gguf_writer.add_feed_forward_length(llm_arch, hparams["intermediate_size"]) +gguf_writer.add_rope_dimension_count(llm_arch, hparams["hidden_size"] // hparams["num_attention_heads"]) +gguf_writer.add_head_count(llm_arch, head_count) +gguf_writer.add_head_count_kv(llm_arch, head_count_kv) +gguf_writer.add_layer_norm_rms_eps(llm_arch, hparams["rms_norm_eps"]) + + +# TOKENIZATION + +print("gguf: get tokenizer metadata") + +tokens: List[str] = [] +scores: List[float] = [] + +if Path(dir_model + "/tokenizer.model").is_file(): + # vocab type sentencepiece + print("gguf: get sentencepiece tokenizer vocab and scores") + + tokenizer = SentencePieceProcessor(dir_model + "/tokenizer.model") + + for i in range(tokenizer.vocab_size()): + text: bytes + if tokenizer.is_unknown(i): + text = " \u2047 ".encode("utf-8") + elif tokenizer.is_control(i): + text = b"" + if tokenizer.is_byte(i): + piece = tokenizer.id_to_piece(i) + if len(piece) != 6: + raise Exception(f"Invalid token: {piece}") + byte_value = int(piece[3:-1], 16) + text = struct.pack("B", byte_value) + else: + text = tokenizer.id_to_piece(i).replace("\u2581", " ").encode("utf-8") + score: float = tokenizer.get_score(i) + + tokens.append(text) + scores.append(score) + + gguf_writer.add_tokenizer_model("llama") + gguf_writer.add_token_list(tokens) + gguf_writer.add_token_scores(scores) + +if Path(dir_model + "/tokenizer.json").is_file(): + with open(dir_model + "/tokenizer.json", "r", encoding="utf-8") as f: + tokenizer = json.load(f) + + if "added_tokens" in tokenizer and Path(dir_model + "/tokenizer_config.json").is_file(): + print("gguf: get special token ids") + + with open(dir_model + "/tokenizer_config.json", "r", encoding="utf-8") as f: + tokenizer_config = json.load(f) + + # find special token ids + + if "bos_token" in tokenizer_config and tokenizer_config["bos_token"] != None: + for key in tokenizer["added_tokens"]: + if key["content"] == tokenizer_config["bos_token"]["content"]: + gguf_writer.add_bos_token_id(key["id"]) + + if "eos_token" in tokenizer_config and tokenizer_config["eos_token"] != None: + for key in tokenizer["added_tokens"]: + if key["content"] == tokenizer_config["eos_token"]["content"]: + gguf_writer.add_eos_token_id(key["id"]) + + if "unk_token" in tokenizer_config and tokenizer_config["unk_token"] != None: + for key in tokenizer["added_tokens"]: + if key["content"] == tokenizer_config["unk_token"]["content"]: + gguf_writer.add_unk_token_id(key["id"]) + + if "sep_token" in tokenizer_config and tokenizer_config["sep_token"] != None: + for key in tokenizer["added_tokens"]: + if key["content"] == tokenizer_config["sep_token"]["content"]: + gguf_writer.add_sep_token_id(key["id"]) + + if "pad_token" in tokenizer_config and tokenizer_config["pad_token"] != None: + for key in tokenizer["added_tokens"]: + if key["content"] == tokenizer_config["pad_token"]["content"]: + gguf_writer.add_pad_token_id(key["id"]) + + +# TENSORS + +tensor_map = tmap.get_tensor_namemap(block_count) + +# tensor info +print("gguf: get tensor metadata") + +part_names = ( f"consolidated.{n:02}.pth" for n in range(0, num_parts) ) + +for part_name in part_names: + print("gguf: loading model part '"+ part_name + "'") + model_part = torch.load(f"{dir_model}/{part_name}", map_location="cpu") + + for name in model_part.keys(): + data = model_part[name] + + # we don't need these + if name == "rope.freqs": + continue + + # convert any unsupported data types to float32 + if data.dtype != torch.float16 and data.dtype != torch.float32: + data = data.to(torch.float32) + + data = data.squeeze().numpy() + + # map tensor names + if name.endswith(".weight") and name[:-7] in tensor_map: + name = tensor_map[name[:-7]] + ".weight" + elif name.endswith(".bias") and name[:-5] in tensor_map: + name = tensor_map[name[:-5]] + ".bias" + else: + print( "Can not map tensor '" + name + "'" ) + sys.exit() + + n_dims = len(data.shape) + data_dtype = data.dtype + + # if f32 desired, convert any float16 to float32 + if ftype == 0 and data.dtype == np.float16: + data_dtype = np.float32 + + # TODO: Why cant we use these float16 as-is? There should be not reason to store float16 as float32 + if ftype == 1 and data_dtype == np.float16 and n_dims == 1: + data_dtype = np.float32 + + # if f16 desired, convert any float32 2-dim weight tensors to float16 + if ftype == 1 and data.dtype == np.float32 and name.endswith(".weight") and n_dims == 2: + data_dtype = np.float16 + + data_nbytes = data.size * 2 if data_dtype == np.float16 else data.size * 4 + + gguf_writer.add_tensor_info(name, data.shape, data_dtype, data_nbytes) + + +print("gguf: write header") +gguf_writer.write_header_to_file() +print("gguf: write metadata") +gguf_writer.write_kv_data_to_file() +print("gguf: write tensor metadata") +gguf_writer.write_ti_data_to_file() + +# tensor data +print("gguf: convert and write tensor data") + +part_names = ( f"consolidated.{n:02}.pth" for n in range(0, num_parts) ) + +for part_name in part_names: + print("gguf: loading model part '"+ part_name + "'") + model_part = torch.load(f"{dir_model}/{part_name}", map_location="cpu") + + for name in model_part.keys(): + data = model_part[name] + + + old_dtype = data.dtype + + # we don't need these + if name == "rope.freqs": + continue + + # convert any unsupported data types to float32 + if data.dtype != torch.float16 and data.dtype != torch.float32: + data = data.to(torch.float32) + + data = data.squeeze().numpy() + + # map tensor names + if name.endswith(".weight") and name[:-7] in tensor_map: + name = tensor_map[name[:-7]] + ".weight" + elif name.endswith(".bias") and name[:-5] in tensor_map: + name = tensor_map[name[:-5]] + ".bias" + else: + print( "Can not map tensor '" + name + "'" ) + sys.exit() + + n_dims = len(data.shape) + data_dtype = data.dtype + + # if f32 desired, convert any float16 to float32 + if ftype == 0 and data.dtype == np.float16: + data = data.astype(np.float32) + + # TODO: Why cant we use these float16 as-is? There should be not reason to store float16 as float32 + if ftype == 1 and data_dtype == np.float16 and n_dims == 1: + data = data.astype(np.float32) + + # if f16 desired, convert any float32 2-dim weight tensors to float16 + if ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and n_dims == 2: + data = data.astype(np.float16) + + print( name + ", shape " + str(len(data.shape)) + ", " + str(old_dtype) + " --> " + str(data.dtype)) + + gguf_writer.write_tensor_to_file(data) + +gguf_writer.close() + + +print("gguf: model successfully exported to '" + fname_out + "'") +print("")