diff --git a/convert_hf_to_gguf.py b/convert_hf_to_gguf.py index be32ca142..1df514d47 100755 --- a/convert_hf_to_gguf.py +++ b/convert_hf_to_gguf.py @@ -3817,7 +3817,7 @@ class JaisModel(Model): self.gguf_writer.add_max_alibi_bias(self.max_alibi_bias) -@Model.register("ChatGLMModel", "ChatGLMForConditionalGeneration") +@Model.register("GlmForCausalLM", "ChatGLMModel", "ChatGLMForConditionalGeneration") class ChatGLMModel(Model): model_arch = gguf.MODEL_ARCH.CHATGLM @@ -3923,47 +3923,56 @@ class ChatGLMModel(Model): from transformers import AutoTokenizer tokenizer = AutoTokenizer.from_pretrained(dir_model, trust_remote_code=True) - vocab_size = hparams["padded_vocab_size"] + vocab_size = hparams.get("padded_vocab_size",hparams["vocab_size"]) assert max(tokenizer.get_vocab().values()) < vocab_size - tokpre = self.get_vocab_base_pre(tokenizer) + if(hparams["partial_rotary_factor"] == 1.0): + # only for glm-edge series + tokens, toktypes, tokpre = self.get_vocab_base() + self.gguf_writer.add_tokenizer_model("gpt2") + self.gguf_writer.add_tokenizer_pre(tokpre) + self.gguf_writer.add_token_list(tokens) + self.gguf_writer.add_token_types(toktypes) + special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=True) + else: + # for glm4 series + tokpre = self.get_vocab_base_pre(tokenizer) + merges = [] + vocab = {} + mergeable_ranks = tokenizer._mergeable_ranks + for token, rank in mergeable_ranks.items(): + vocab[ChatGLMModel.token_bytes_to_string(token)] = rank + if len(token) == 1: + continue + merged = ChatGLMModel.bpe(mergeable_ranks, token, max_rank=rank) + assert len(merged) >= 2 and len(merged) <= 7 + merges.append(' '.join(map(ChatGLMModel.token_bytes_to_string, merged))) - merges = [] - vocab = {} - mergeable_ranks = tokenizer.mergeable_ranks - for token, rank in mergeable_ranks.items(): - vocab[ChatGLMModel.token_bytes_to_string(token)] = rank - if len(token) == 1: - continue - merged = ChatGLMModel.bpe(mergeable_ranks, token, max_rank=rank) - assert len(merged) >= 2 and len(merged) <= 7 - merges.append(' '.join(map(ChatGLMModel.token_bytes_to_string, merged))) + # for this kind of tokenizer, added_vocab is not a subset of vocab, so they need to be combined + added_vocab = tokenizer.get_added_vocab() + reverse_vocab = {id_ : encoded_tok for encoded_tok, id_ in {**vocab, **added_vocab}.items()} - # for this kind of tokenizer, added_vocab is not a subset of vocab, so they need to be combined - added_vocab = tokenizer.get_added_vocab() - reverse_vocab = {id_ : encoded_tok for encoded_tok, id_ in {**vocab, **added_vocab}.items()} - - for i in range(vocab_size): - if i not in reverse_vocab: - tokens.append(f"[PAD{i}]") - toktypes.append(gguf.TokenType.UNUSED) - elif reverse_vocab[i] in added_vocab: - tokens.append(reverse_vocab[i]) - if tokenizer.added_tokens_decoder[i].special: - toktypes.append(gguf.TokenType.CONTROL) + for i in range(vocab_size): + if i not in reverse_vocab: + tokens.append(f"[PAD{i}]") + toktypes.append(gguf.TokenType.UNUSED) + elif reverse_vocab[i] in added_vocab: + tokens.append(reverse_vocab[i]) + if tokenizer.added_tokens_decoder[i].special: + toktypes.append(gguf.TokenType.CONTROL) + else: + toktypes.append(gguf.TokenType.USER_DEFINED) else: - toktypes.append(gguf.TokenType.USER_DEFINED) - else: - tokens.append(reverse_vocab[i]) - toktypes.append(gguf.TokenType.NORMAL) + tokens.append(reverse_vocab[i]) + toktypes.append(gguf.TokenType.NORMAL) - self.gguf_writer.add_tokenizer_model("gpt2") - self.gguf_writer.add_tokenizer_pre(tokpre) - self.gguf_writer.add_token_list(tokens) - self.gguf_writer.add_token_types(toktypes) + self.gguf_writer.add_tokenizer_model("gpt2") + self.gguf_writer.add_tokenizer_pre(tokpre) + self.gguf_writer.add_token_list(tokens) + self.gguf_writer.add_token_types(toktypes) - special_vocab = gguf.SpecialVocab(dir_model, load_merges=False) - special_vocab.merges = merges + special_vocab = gguf.SpecialVocab(dir_model, load_merges=False) + special_vocab.merges = merges # only add special tokens when they were not already loaded from config.json special_vocab._set_special_token("eos", tokenizer.get_added_vocab()["<|endoftext|>"]) special_vocab._set_special_token("eot", tokenizer.get_added_vocab()["<|user|>"]) @@ -3974,14 +3983,14 @@ class ChatGLMModel(Model): def set_gguf_parameters(self): n_embed = self.hparams.get("hidden_size", self.hparams.get("n_embed")) n_head = self.hparams.get("n_head", self.hparams.get("num_attention_heads")) - n_head_kv = self.hparams.get("multi_query_group_num", n_head) + n_head_kv = self.hparams.get("multi_query_group_num", self.hparams.get("num_key_value_heads", n_head)) self.gguf_writer.add_context_length(self.hparams.get("seq_length", n_embed)) self.gguf_writer.add_embedding_length(n_embed) - self.gguf_writer.add_feed_forward_length(self.hparams.get("ffn_hidden_size", 4 * n_embed)) - self.gguf_writer.add_block_count(self.hparams["num_layers"]) + self.gguf_writer.add_feed_forward_length(self.hparams.get("ffn_hidden_size", self.hparams.get("intermediate_size", 4 * n_embed))) + self.gguf_writer.add_block_count(self.hparams.get("num_layers", self.hparams["num_hidden_layers"])) self.gguf_writer.add_head_count(n_head) self.gguf_writer.add_head_count_kv(n_head_kv) - self.gguf_writer.add_layer_norm_rms_eps(self.hparams["layernorm_epsilon"]) + self.gguf_writer.add_layer_norm_rms_eps(self.hparams.get("layernorm_epsilon",1e-5)) self.gguf_writer.add_file_type(self.ftype) if "attention_dim" in self.hparams: rope_dim = self.hparams["attention_dim"] diff --git a/gguf-py/gguf/constants.py b/gguf-py/gguf/constants.py index 7ab08b036..eb94f8408 100644 --- a/gguf-py/gguf/constants.py +++ b/gguf-py/gguf/constants.py @@ -1142,6 +1142,9 @@ MODEL_TENSORS: dict[MODEL_ARCH, list[MODEL_TENSOR]] = { MODEL_TENSOR.OUTPUT, MODEL_TENSOR.ATTN_NORM, MODEL_TENSOR.ATTN_QKV, + MODEL_TENSOR.ATTN_Q, + MODEL_TENSOR.ATTN_K, + MODEL_TENSOR.ATTN_V, MODEL_TENSOR.ATTN_OUT, MODEL_TENSOR.FFN_NORM, MODEL_TENSOR.FFN_DOWN, diff --git a/src/llama.cpp b/src/llama.cpp index fbe486360..52a453a95 100644 --- a/src/llama.cpp +++ b/src/llama.cpp @@ -1303,6 +1303,9 @@ static const std::map> LLM_TENSOR_N { LLM_TENSOR_OUTPUT, "output" }, { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" }, { LLM_TENSOR_ATTN_QKV, "blk.%d.attn_qkv" }, + { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" }, + { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" }, + { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" }, { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" }, { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" }, { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" }, @@ -8869,9 +8872,14 @@ static bool llm_load_tensors( auto & layer = model.layers[i]; layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0); - - layer.wqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa}, 0); - layer.bqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "bias", i), {n_embd + 2*n_embd_gqa}, llama_model_loader::TENSOR_NOT_REQUIRED); + if(model.type == e_model::MODEL_1_6B || model.type == e_model::MODEL_4B){ + layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd_head_k * n_head}, 0); + layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_k_gqa}, 0); + layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_v_gqa}, 0); + }else{ + layer.wqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa}, 0); + layer.bqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "bias", i), {n_embd + 2*n_embd_gqa}, llama_model_loader::TENSOR_NOT_REQUIRED); + } layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0); @@ -15730,22 +15738,28 @@ struct llm_build_context { struct ggml_tensor * Qcur = nullptr; struct ggml_tensor * Kcur = nullptr; struct ggml_tensor * Vcur = nullptr; - - cur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wqkv, cur); - cb(cur, "wqkv", il); - - if(model.layers[il].bqkv){ - cur = ggml_add(ctx0, cur, model.layers[il].bqkv); - cb(cur, "bqkv", il); + if(model.type == e_model::MODEL_1_6B || model.type == e_model::MODEL_4B){ + Qcur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wq, cur); + cb(Qcur, "Qcur", il); + Kcur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wk, cur); + cb(Kcur, "Kcur", il); + Vcur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wv, cur); + cb(Vcur, "Vcur", il); + }else{ + cur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wqkv, cur); + cb(cur, "wqkv", il); + if(model.layers[il].bqkv){ + cur = ggml_add(ctx0, cur, model.layers[il].bqkv); + cb(cur, "bqkv", il); + } + Qcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 0*sizeof(float)*(n_embd))); + Kcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd))); + Vcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd + n_embd_gqa))); + cb(Qcur, "Qcur", il); + cb(Kcur, "Kcur", il); + cb(Vcur, "Vcur", il); } - Qcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 0*sizeof(float)*(n_embd))); - Kcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd))); - Vcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd + n_embd_gqa))); - - cb(Qcur, "Qcur", il); - cb(Kcur, "Kcur", il); - cb(Vcur, "Vcur", il); //printf("freq_base: %f freq_scale: %f ext_factor: %f attn_factor: %f\n", freq_base, freq_scale, ext_factor, attn_factor); Qcur = ggml_rope_ext( ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos, nullptr,