mirror of
https://github.com/ggerganov/llama.cpp.git
synced 2025-01-07 19:33:58 +01:00
vulkan: optimize mul_mat for small values of N (#10991)
Make the mul_mat_vec shaders support N>1 (as a spec constant, NUM_COLS) where the batch_strides are overloaded to hold the row strides. Put the loads from the B matrix in the innermost loop because it should cache better. Share some code for reducing the result values to memory in mul_mat_vec_base.
This commit is contained in:
parent
c250ecb315
commit
716bd6dec3
@ -145,6 +145,8 @@ class vk_perf_logger;
|
||||
#endif
|
||||
static void ggml_vk_destroy_buffer(vk_buffer& buf);
|
||||
|
||||
static constexpr uint32_t mul_mat_vec_max_cols = 8;
|
||||
|
||||
struct vk_device_struct {
|
||||
std::mutex mutex;
|
||||
|
||||
@ -202,8 +204,8 @@ struct vk_device_struct {
|
||||
vk_matmul_pipeline2 pipeline_dequant_mul_mat_mat_id[GGML_TYPE_COUNT];
|
||||
|
||||
vk_pipeline pipeline_dequant[GGML_TYPE_COUNT];
|
||||
vk_pipeline pipeline_dequant_mul_mat_vec_f32_f32[GGML_TYPE_COUNT];
|
||||
vk_pipeline pipeline_dequant_mul_mat_vec_f16_f32[GGML_TYPE_COUNT];
|
||||
vk_pipeline pipeline_dequant_mul_mat_vec_f32_f32[GGML_TYPE_COUNT][mul_mat_vec_max_cols];
|
||||
vk_pipeline pipeline_dequant_mul_mat_vec_f16_f32[GGML_TYPE_COUNT][mul_mat_vec_max_cols];
|
||||
vk_pipeline pipeline_dequant_mul_mat_vec_id_f32[GGML_TYPE_COUNT];
|
||||
|
||||
vk_pipeline pipeline_mul_mat_vec_p021_f16_f32;
|
||||
@ -1866,33 +1868,35 @@ static void ggml_vk_load_shaders(vk_device& device) {
|
||||
} else if (device->vendor_id == VK_VENDOR_ID_INTEL)
|
||||
rm_stdq = 2;
|
||||
|
||||
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f32_f32[GGML_TYPE_F32 ], "mul_mat_vec_f32_f32_f32", mul_mat_vec_f32_f32_f32_len, mul_mat_vec_f32_f32_f32_data, "main", 3, sizeof(vk_mat_vec_push_constants), {2, 1, 1}, {device->subgroup_size, 2}, 1);
|
||||
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f32_f32[GGML_TYPE_F16 ], "mul_mat_vec_f16_f32_f32", mul_mat_vec_f16_f32_f32_len, mul_mat_vec_f16_f32_f32_data, "main", 3, sizeof(vk_mat_vec_push_constants), {2, 1, 1}, {device->subgroup_size, 2}, 1);
|
||||
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f32_f32[GGML_TYPE_Q4_0], "mul_mat_vec_q4_0_f32_f32", mul_mat_vec_q4_0_f32_f32_len, mul_mat_vec_q4_0_f32_f32_data, "main", 3, sizeof(vk_mat_vec_push_constants), {2*rm_stdq, 1, 1}, {device->subgroup_size, 2*rm_stdq}, 1, true);
|
||||
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f32_f32[GGML_TYPE_Q4_1], "mul_mat_vec_q4_1_f32_f32", mul_mat_vec_q4_1_f32_f32_len, mul_mat_vec_q4_1_f32_f32_data, "main", 3, sizeof(vk_mat_vec_push_constants), {2*rm_stdq, 1, 1}, {device->subgroup_size, 2*rm_stdq}, 1, true);
|
||||
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f32_f32[GGML_TYPE_Q5_0], "mul_mat_vec_q5_0_f32_f32", mul_mat_vec_q5_0_f32_f32_len, mul_mat_vec_q5_0_f32_f32_data, "main", 3, sizeof(vk_mat_vec_push_constants), {2*rm_stdq, 1, 1}, {device->subgroup_size, 2*rm_stdq}, 1, true);
|
||||
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f32_f32[GGML_TYPE_Q5_1], "mul_mat_vec_q5_1_f32_f32", mul_mat_vec_q5_1_f32_f32_len, mul_mat_vec_q5_1_f32_f32_data, "main", 3, sizeof(vk_mat_vec_push_constants), {2*rm_stdq, 1, 1}, {device->subgroup_size, 2*rm_stdq}, 1, true);
|
||||
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f32_f32[GGML_TYPE_Q8_0], "mul_mat_vec_q8_0_f32_f32", mul_mat_vec_q8_0_f32_f32_len, mul_mat_vec_q8_0_f32_f32_data, "main", 3, sizeof(vk_mat_vec_push_constants), {1*rm_stdq, 1, 1}, {device->subgroup_size, 1*rm_stdq}, 1, true);
|
||||
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f32_f32[GGML_TYPE_Q2_K], "mul_mat_vec_q2_k_f32_f32", mul_mat_vec_q2_k_f32_f32_len, mul_mat_vec_q2_k_f32_f32_data, "main", 3, sizeof(vk_mat_vec_push_constants), {rm_kq, 1, 1}, {subgroup_size_16, rm_kq}, 1, true);
|
||||
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f32_f32[GGML_TYPE_Q3_K], "mul_mat_vec_q3_k_f32_f32", mul_mat_vec_q3_k_f32_f32_len, mul_mat_vec_q3_k_f32_f32_data, "main", 3, sizeof(vk_mat_vec_push_constants), {rm_kq, 1, 1}, {subgroup_size_16, rm_kq}, 1, true);
|
||||
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f32_f32[GGML_TYPE_Q4_K], "mul_mat_vec_q4_k_f32_f32", mul_mat_vec_q4_k_f32_f32_len, mul_mat_vec_q4_k_f32_f32_data, "main", 3, sizeof(vk_mat_vec_push_constants), {rm_kq, 1, 1}, {subgroup_size_16, rm_kq}, 1, true);
|
||||
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f32_f32[GGML_TYPE_Q5_K], "mul_mat_vec_q5_k_f32_f32", mul_mat_vec_q5_k_f32_f32_len, mul_mat_vec_q5_k_f32_f32_data, "main", 3, sizeof(vk_mat_vec_push_constants), {rm_kq, 1, 1}, {subgroup_size_16, rm_kq}, 1, true);
|
||||
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f32_f32[GGML_TYPE_Q6_K], "mul_mat_vec_q6_k_f32_f32", mul_mat_vec_q6_k_f32_f32_len, mul_mat_vec_q6_k_f32_f32_data, "main", 3, sizeof(vk_mat_vec_push_constants), {rm_kq, 1, 1}, {subgroup_size_16, rm_kq}, 1, true);
|
||||
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f32_f32[GGML_TYPE_IQ4_NL], "mul_mat_vec_iq4_nl_f32_f32", mul_mat_vec_iq4_nl_f32_f32_len, mul_mat_vec_iq4_nl_f32_f32_data, "main", 3, sizeof(vk_mat_vec_push_constants), {2*rm_stdq, 1, 1}, {subgroup_size_16, 2*rm_stdq}, 1, true);
|
||||
for (uint32_t i = 0; i < mul_mat_vec_max_cols; ++i) {
|
||||
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f32_f32[GGML_TYPE_F32 ][i], "mul_mat_vec_f32_f32_f32_"+std::to_string(i+1), mul_mat_vec_f32_f32_f32_len, mul_mat_vec_f32_f32_f32_data, "main", 3, sizeof(vk_mat_vec_push_constants), {2, 1, 1}, {device->subgroup_size, 2, i+1}, 1);
|
||||
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f32_f32[GGML_TYPE_F16 ][i], "mul_mat_vec_f16_f32_f32_"+std::to_string(i+1), mul_mat_vec_f16_f32_f32_len, mul_mat_vec_f16_f32_f32_data, "main", 3, sizeof(vk_mat_vec_push_constants), {2, 1, 1}, {device->subgroup_size, 2, i+1}, 1);
|
||||
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f32_f32[GGML_TYPE_Q4_0][i], "mul_mat_vec_q4_0_f32_f32_"+std::to_string(i+1), mul_mat_vec_q4_0_f32_f32_len, mul_mat_vec_q4_0_f32_f32_data, "main", 3, sizeof(vk_mat_vec_push_constants), {2*rm_stdq, 1, 1}, {device->subgroup_size, 2*rm_stdq, i+1}, 1, true);
|
||||
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f32_f32[GGML_TYPE_Q4_1][i], "mul_mat_vec_q4_1_f32_f32_"+std::to_string(i+1), mul_mat_vec_q4_1_f32_f32_len, mul_mat_vec_q4_1_f32_f32_data, "main", 3, sizeof(vk_mat_vec_push_constants), {2*rm_stdq, 1, 1}, {device->subgroup_size, 2*rm_stdq, i+1}, 1, true);
|
||||
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f32_f32[GGML_TYPE_Q5_0][i], "mul_mat_vec_q5_0_f32_f32_"+std::to_string(i+1), mul_mat_vec_q5_0_f32_f32_len, mul_mat_vec_q5_0_f32_f32_data, "main", 3, sizeof(vk_mat_vec_push_constants), {2*rm_stdq, 1, 1}, {device->subgroup_size, 2*rm_stdq, i+1}, 1, true);
|
||||
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f32_f32[GGML_TYPE_Q5_1][i], "mul_mat_vec_q5_1_f32_f32_"+std::to_string(i+1), mul_mat_vec_q5_1_f32_f32_len, mul_mat_vec_q5_1_f32_f32_data, "main", 3, sizeof(vk_mat_vec_push_constants), {2*rm_stdq, 1, 1}, {device->subgroup_size, 2*rm_stdq, i+1}, 1, true);
|
||||
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f32_f32[GGML_TYPE_Q8_0][i], "mul_mat_vec_q8_0_f32_f32_"+std::to_string(i+1), mul_mat_vec_q8_0_f32_f32_len, mul_mat_vec_q8_0_f32_f32_data, "main", 3, sizeof(vk_mat_vec_push_constants), {1*rm_stdq, 1, 1}, {device->subgroup_size, 1*rm_stdq, i+1}, 1, true);
|
||||
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f32_f32[GGML_TYPE_Q2_K][i], "mul_mat_vec_q2_k_f32_f32_"+std::to_string(i+1), mul_mat_vec_q2_k_f32_f32_len, mul_mat_vec_q2_k_f32_f32_data, "main", 3, sizeof(vk_mat_vec_push_constants), {rm_kq, 1, 1}, {subgroup_size_16, rm_kq, i+1}, 1, true);
|
||||
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f32_f32[GGML_TYPE_Q3_K][i], "mul_mat_vec_q3_k_f32_f32_"+std::to_string(i+1), mul_mat_vec_q3_k_f32_f32_len, mul_mat_vec_q3_k_f32_f32_data, "main", 3, sizeof(vk_mat_vec_push_constants), {rm_kq, 1, 1}, {subgroup_size_16, rm_kq, i+1}, 1, true);
|
||||
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f32_f32[GGML_TYPE_Q4_K][i], "mul_mat_vec_q4_k_f32_f32_"+std::to_string(i+1), mul_mat_vec_q4_k_f32_f32_len, mul_mat_vec_q4_k_f32_f32_data, "main", 3, sizeof(vk_mat_vec_push_constants), {rm_kq, 1, 1}, {subgroup_size_16, rm_kq, i+1}, 1, true);
|
||||
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f32_f32[GGML_TYPE_Q5_K][i], "mul_mat_vec_q5_k_f32_f32_"+std::to_string(i+1), mul_mat_vec_q5_k_f32_f32_len, mul_mat_vec_q5_k_f32_f32_data, "main", 3, sizeof(vk_mat_vec_push_constants), {rm_kq, 1, 1}, {subgroup_size_16, rm_kq, i+1}, 1, true);
|
||||
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f32_f32[GGML_TYPE_Q6_K][i], "mul_mat_vec_q6_k_f32_f32_"+std::to_string(i+1), mul_mat_vec_q6_k_f32_f32_len, mul_mat_vec_q6_k_f32_f32_data, "main", 3, sizeof(vk_mat_vec_push_constants), {rm_kq, 1, 1}, {subgroup_size_16, rm_kq, i+1}, 1, true);
|
||||
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f32_f32[GGML_TYPE_IQ4_NL][i], "mul_mat_vec_iq4_nl_f32_f32_"+std::to_string(i+1), mul_mat_vec_iq4_nl_f32_f32_len, mul_mat_vec_iq4_nl_f32_f32_data, "main", 3, sizeof(vk_mat_vec_push_constants), {2*rm_stdq, 1, 1}, {subgroup_size_16, 2*rm_stdq, i+1}, 1, true);
|
||||
|
||||
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f16_f32[GGML_TYPE_F32 ], "mul_mat_vec_f32_f16_f32", mul_mat_vec_f32_f16_f32_len, mul_mat_vec_f32_f16_f32_data, "main", 3, sizeof(vk_mat_vec_push_constants), {2, 1, 1}, {device->subgroup_size, 2}, 1);
|
||||
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f16_f32[GGML_TYPE_F16 ], "mul_mat_vec_f16_f16_f32", mul_mat_vec_f16_f16_f32_len, mul_mat_vec_f16_f16_f32_data, "main", 3, sizeof(vk_mat_vec_push_constants), {2, 1, 1}, {device->subgroup_size, 2}, 1);
|
||||
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f16_f32[GGML_TYPE_Q4_0], "mul_mat_vec_q4_0_f16_f32", mul_mat_vec_q4_0_f16_f32_len, mul_mat_vec_q4_0_f16_f32_data, "main", 3, sizeof(vk_mat_vec_push_constants), {2*rm_stdq, 1, 1}, {device->subgroup_size, 2*rm_stdq}, 1, true);
|
||||
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f16_f32[GGML_TYPE_Q4_1], "mul_mat_vec_q4_1_f16_f32", mul_mat_vec_q4_1_f16_f32_len, mul_mat_vec_q4_1_f16_f32_data, "main", 3, sizeof(vk_mat_vec_push_constants), {2*rm_stdq, 1, 1}, {device->subgroup_size, 2*rm_stdq}, 1, true);
|
||||
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f16_f32[GGML_TYPE_Q5_0], "mul_mat_vec_q5_0_f16_f32", mul_mat_vec_q5_0_f16_f32_len, mul_mat_vec_q5_0_f16_f32_data, "main", 3, sizeof(vk_mat_vec_push_constants), {2*rm_stdq, 1, 1}, {device->subgroup_size, 2*rm_stdq}, 1, true);
|
||||
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f16_f32[GGML_TYPE_Q5_1], "mul_mat_vec_q5_1_f16_f32", mul_mat_vec_q5_1_f16_f32_len, mul_mat_vec_q5_1_f16_f32_data, "main", 3, sizeof(vk_mat_vec_push_constants), {2*rm_stdq, 1, 1}, {device->subgroup_size, 2*rm_stdq}, 1, true);
|
||||
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f16_f32[GGML_TYPE_Q8_0], "mul_mat_vec_q8_0_f16_f32", mul_mat_vec_q8_0_f16_f32_len, mul_mat_vec_q8_0_f16_f32_data, "main", 3, sizeof(vk_mat_vec_push_constants), {1*rm_stdq, 1, 1}, {device->subgroup_size, 1*rm_stdq}, 1, true);
|
||||
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f16_f32[GGML_TYPE_Q2_K], "mul_mat_vec_q2_k_f16_f32", mul_mat_vec_q2_k_f16_f32_len, mul_mat_vec_q2_k_f16_f32_data, "main", 3, sizeof(vk_mat_vec_push_constants), {rm_kq, 1, 1}, {subgroup_size_16, rm_kq}, 1, true);
|
||||
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f16_f32[GGML_TYPE_Q3_K], "mul_mat_vec_q3_k_f16_f32", mul_mat_vec_q3_k_f16_f32_len, mul_mat_vec_q3_k_f16_f32_data, "main", 3, sizeof(vk_mat_vec_push_constants), {rm_kq, 1, 1}, {subgroup_size_16, rm_kq}, 1, true);
|
||||
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f16_f32[GGML_TYPE_Q4_K], "mul_mat_vec_q4_k_f16_f32", mul_mat_vec_q4_k_f16_f32_len, mul_mat_vec_q4_k_f16_f32_data, "main", 3, sizeof(vk_mat_vec_push_constants), {rm_kq, 1, 1}, {subgroup_size_16, rm_kq}, 1, true);
|
||||
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f16_f32[GGML_TYPE_Q5_K], "mul_mat_vec_q5_k_f16_f32", mul_mat_vec_q5_k_f16_f32_len, mul_mat_vec_q5_k_f16_f32_data, "main", 3, sizeof(vk_mat_vec_push_constants), {rm_kq, 1, 1}, {subgroup_size_16, rm_kq}, 1, true);
|
||||
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f16_f32[GGML_TYPE_Q6_K], "mul_mat_vec_q6_k_f16_f32", mul_mat_vec_q6_k_f16_f32_len, mul_mat_vec_q6_k_f16_f32_data, "main", 3, sizeof(vk_mat_vec_push_constants), {rm_kq, 1, 1}, {subgroup_size_16, rm_kq}, 1, true);
|
||||
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f16_f32[GGML_TYPE_IQ4_NL], "mul_mat_vec_iq4_nl_f16_f32", mul_mat_vec_iq4_nl_f16_f32_len, mul_mat_vec_iq4_nl_f16_f32_data, "main", 3, sizeof(vk_mat_vec_push_constants), {2*rm_stdq, 1, 1}, {subgroup_size_16, 2*rm_stdq}, 1, true);
|
||||
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f16_f32[GGML_TYPE_F32 ][i], "mul_mat_vec_f32_f16_f32_"+std::to_string(i+1), mul_mat_vec_f32_f16_f32_len, mul_mat_vec_f32_f16_f32_data, "main", 3, sizeof(vk_mat_vec_push_constants), {2, 1, 1}, {device->subgroup_size, 2, i+1}, 1);
|
||||
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f16_f32[GGML_TYPE_F16 ][i], "mul_mat_vec_f16_f16_f32_"+std::to_string(i+1), mul_mat_vec_f16_f16_f32_len, mul_mat_vec_f16_f16_f32_data, "main", 3, sizeof(vk_mat_vec_push_constants), {2, 1, 1}, {device->subgroup_size, 2, i+1}, 1);
|
||||
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f16_f32[GGML_TYPE_Q4_0][i], "mul_mat_vec_q4_0_f16_f32_"+std::to_string(i+1), mul_mat_vec_q4_0_f16_f32_len, mul_mat_vec_q4_0_f16_f32_data, "main", 3, sizeof(vk_mat_vec_push_constants), {2*rm_stdq, 1, 1}, {device->subgroup_size, 2*rm_stdq, i+1}, 1, true);
|
||||
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f16_f32[GGML_TYPE_Q4_1][i], "mul_mat_vec_q4_1_f16_f32_"+std::to_string(i+1), mul_mat_vec_q4_1_f16_f32_len, mul_mat_vec_q4_1_f16_f32_data, "main", 3, sizeof(vk_mat_vec_push_constants), {2*rm_stdq, 1, 1}, {device->subgroup_size, 2*rm_stdq, i+1}, 1, true);
|
||||
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f16_f32[GGML_TYPE_Q5_0][i], "mul_mat_vec_q5_0_f16_f32_"+std::to_string(i+1), mul_mat_vec_q5_0_f16_f32_len, mul_mat_vec_q5_0_f16_f32_data, "main", 3, sizeof(vk_mat_vec_push_constants), {2*rm_stdq, 1, 1}, {device->subgroup_size, 2*rm_stdq, i+1}, 1, true);
|
||||
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f16_f32[GGML_TYPE_Q5_1][i], "mul_mat_vec_q5_1_f16_f32_"+std::to_string(i+1), mul_mat_vec_q5_1_f16_f32_len, mul_mat_vec_q5_1_f16_f32_data, "main", 3, sizeof(vk_mat_vec_push_constants), {2*rm_stdq, 1, 1}, {device->subgroup_size, 2*rm_stdq, i+1}, 1, true);
|
||||
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f16_f32[GGML_TYPE_Q8_0][i], "mul_mat_vec_q8_0_f16_f32_"+std::to_string(i+1), mul_mat_vec_q8_0_f16_f32_len, mul_mat_vec_q8_0_f16_f32_data, "main", 3, sizeof(vk_mat_vec_push_constants), {1*rm_stdq, 1, 1}, {device->subgroup_size, 1*rm_stdq, i+1}, 1, true);
|
||||
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f16_f32[GGML_TYPE_Q2_K][i], "mul_mat_vec_q2_k_f16_f32_"+std::to_string(i+1), mul_mat_vec_q2_k_f16_f32_len, mul_mat_vec_q2_k_f16_f32_data, "main", 3, sizeof(vk_mat_vec_push_constants), {rm_kq, 1, 1}, {subgroup_size_16, rm_kq, i+1}, 1, true);
|
||||
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f16_f32[GGML_TYPE_Q3_K][i], "mul_mat_vec_q3_k_f16_f32_"+std::to_string(i+1), mul_mat_vec_q3_k_f16_f32_len, mul_mat_vec_q3_k_f16_f32_data, "main", 3, sizeof(vk_mat_vec_push_constants), {rm_kq, 1, 1}, {subgroup_size_16, rm_kq, i+1}, 1, true);
|
||||
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f16_f32[GGML_TYPE_Q4_K][i], "mul_mat_vec_q4_k_f16_f32_"+std::to_string(i+1), mul_mat_vec_q4_k_f16_f32_len, mul_mat_vec_q4_k_f16_f32_data, "main", 3, sizeof(vk_mat_vec_push_constants), {rm_kq, 1, 1}, {subgroup_size_16, rm_kq, i+1}, 1, true);
|
||||
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f16_f32[GGML_TYPE_Q5_K][i], "mul_mat_vec_q5_k_f16_f32_"+std::to_string(i+1), mul_mat_vec_q5_k_f16_f32_len, mul_mat_vec_q5_k_f16_f32_data, "main", 3, sizeof(vk_mat_vec_push_constants), {rm_kq, 1, 1}, {subgroup_size_16, rm_kq, i+1}, 1, true);
|
||||
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f16_f32[GGML_TYPE_Q6_K][i], "mul_mat_vec_q6_k_f16_f32_"+std::to_string(i+1), mul_mat_vec_q6_k_f16_f32_len, mul_mat_vec_q6_k_f16_f32_data, "main", 3, sizeof(vk_mat_vec_push_constants), {rm_kq, 1, 1}, {subgroup_size_16, rm_kq, i+1}, 1, true);
|
||||
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f16_f32[GGML_TYPE_IQ4_NL][i], "mul_mat_vec_iq4_nl_f16_f32_"+std::to_string(i+1), mul_mat_vec_iq4_nl_f16_f32_len, mul_mat_vec_iq4_nl_f16_f32_data, "main", 3, sizeof(vk_mat_vec_push_constants), {2*rm_stdq, 1, 1}, {subgroup_size_16, 2*rm_stdq, i+1}, 1, true);
|
||||
}
|
||||
|
||||
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_id_f32[GGML_TYPE_F32 ], "mul_mat_vec_id_f32_f32", mul_mat_vec_id_f32_f32_len, mul_mat_vec_id_f32_f32_data, "main", 4, sizeof(vk_mat_vec_id_push_constants), {2, 1, 1}, {device->subgroup_size, 2}, 1);
|
||||
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_id_f32[GGML_TYPE_F16 ], "mul_mat_vec_id_f16_f32", mul_mat_vec_id_f16_f32_len, mul_mat_vec_id_f16_f32_data, "main", 4, sizeof(vk_mat_vec_id_push_constants), {2, 1, 1}, {device->subgroup_size, 2}, 1);
|
||||
@ -2892,9 +2896,10 @@ static vk_matmul_pipeline ggml_vk_get_mul_mat_mat_pipeline(ggml_backend_vk_conte
|
||||
return ctx->device->fp16 ? ctx->device->pipeline_dequant_mul_mat_mat[src0_type].f16acc : ctx->device->pipeline_dequant_mul_mat_mat[src0_type].f32acc;
|
||||
}
|
||||
|
||||
static vk_pipeline ggml_vk_get_dequantize_mul_mat_vec(ggml_backend_vk_context * ctx, ggml_type a_type, ggml_type b_type) {
|
||||
static vk_pipeline ggml_vk_get_dequantize_mul_mat_vec(ggml_backend_vk_context * ctx, ggml_type a_type, ggml_type b_type, uint32_t num_cols) {
|
||||
VK_LOG_DEBUG("ggml_vk_get_dequantize_mul_mat_vec()");
|
||||
GGML_ASSERT(b_type == GGML_TYPE_F32 || b_type == GGML_TYPE_F16);
|
||||
GGML_ASSERT(num_cols >= 1 && num_cols <= mul_mat_vec_max_cols);
|
||||
|
||||
switch (a_type) {
|
||||
case GGML_TYPE_F32:
|
||||
@ -2915,7 +2920,7 @@ static vk_pipeline ggml_vk_get_dequantize_mul_mat_vec(ggml_backend_vk_context *
|
||||
return nullptr;
|
||||
}
|
||||
|
||||
return b_type == GGML_TYPE_F32 ? ctx->device->pipeline_dequant_mul_mat_vec_f32_f32[a_type] : ctx->device->pipeline_dequant_mul_mat_vec_f16_f32[a_type];
|
||||
return b_type == GGML_TYPE_F32 ? ctx->device->pipeline_dequant_mul_mat_vec_f32_f32[a_type][num_cols-1] : ctx->device->pipeline_dequant_mul_mat_vec_f16_f32[a_type][num_cols-1];
|
||||
}
|
||||
|
||||
static vk_matmul_pipeline ggml_vk_get_mul_mat_mat_id_pipeline(ggml_backend_vk_context * ctx, ggml_type src0_type, ggml_type src1_type, ggml_prec prec) {
|
||||
@ -3925,8 +3930,6 @@ static void ggml_vk_mul_mat_vec_q_f16(ggml_backend_vk_context * ctx, vk_context&
|
||||
const uint64_t ne12 = src1->ne[2];
|
||||
const uint64_t ne13 = src1->ne[3];
|
||||
|
||||
GGML_ASSERT(ne11 == 1);
|
||||
|
||||
const uint64_t ne20 = dst->ne[0];
|
||||
const uint64_t ne21 = dst->ne[1];
|
||||
const uint64_t ne22 = dst->ne[2];
|
||||
@ -3935,6 +3938,11 @@ static void ggml_vk_mul_mat_vec_q_f16(ggml_backend_vk_context * ctx, vk_context&
|
||||
const uint64_t r2 = ne12 / ne02;
|
||||
const uint64_t r3 = ne13 / ne03;
|
||||
|
||||
// batch_n indicates that we need to compute a few vector results, and this assumes
|
||||
// ne12 and ne13 are 1. It overloads the batch_strides to hold the row strides.
|
||||
GGML_ASSERT(ne11 == 1 || ne12 * ne13 == 1);
|
||||
bool batch_n = ne11 > 1;
|
||||
|
||||
ggml_backend_vk_buffer_context * dst_buf_ctx = (ggml_backend_vk_buffer_context *)dst->buffer->context;
|
||||
ggml_backend_vk_buffer_context * src0_buf_ctx = (ggml_backend_vk_buffer_context *)src0->buffer->context;
|
||||
ggml_backend_vk_buffer_context * src1_buf_ctx = (ggml_backend_vk_buffer_context *)src1->buffer->context;
|
||||
@ -3985,7 +3993,7 @@ static void ggml_vk_mul_mat_vec_q_f16(ggml_backend_vk_context * ctx, vk_context&
|
||||
} else {
|
||||
to_fp16_vk_1 = ggml_vk_get_to_fp16(ctx, src1->type);
|
||||
}
|
||||
vk_pipeline dmmv = ggml_vk_get_dequantize_mul_mat_vec(ctx, src0->type, src1->type);
|
||||
vk_pipeline dmmv = ggml_vk_get_dequantize_mul_mat_vec(ctx, src0->type, src1->type, ne11);
|
||||
GGML_ASSERT(!qx_needs_dequant || to_fp16_vk_0 != nullptr); // NOLINT
|
||||
GGML_ASSERT(!qy_needs_dequant || to_fp16_vk_1 != nullptr); // NOLINT
|
||||
GGML_ASSERT(dmmv != nullptr);
|
||||
@ -4057,8 +4065,10 @@ static void ggml_vk_mul_mat_vec_q_f16(ggml_backend_vk_context * ctx, vk_context&
|
||||
ggml_vk_cpy_to_contiguous(ctx, subctx, to_fp16_vk_1, src1, { d_Qy, qy_buf_offset, VK_WHOLE_SIZE }, { d_Y, 0, VK_WHOLE_SIZE });
|
||||
}
|
||||
|
||||
uint32_t stride_batch_x = ne00*ne01;
|
||||
uint32_t stride_batch_y = ne10*ne11;
|
||||
// For batch_n, the A matrix is the same for each batch, and B/D use the row stride as the batch stride
|
||||
uint32_t stride_batch_x = batch_n ? 0 : ne00*ne01;
|
||||
uint32_t stride_batch_y = batch_n ? ne10 : (ne10*ne11);
|
||||
uint32_t stride_batch_d = batch_n ? ne20 : (ne20*ne21);
|
||||
|
||||
if (!ggml_vk_dim01_contiguous(src0) && !qx_needs_dequant) {
|
||||
stride_batch_x = src0->nb[0] / ggml_type_size(src0->type);
|
||||
@ -4081,7 +4091,7 @@ static void ggml_vk_mul_mat_vec_q_f16(ggml_backend_vk_context * ctx, vk_context&
|
||||
// compute
|
||||
const vk_mat_vec_push_constants pc = {
|
||||
(uint32_t)ne00, (uint32_t)ne10, (uint32_t)ne10, (uint32_t)ne01,
|
||||
stride_batch_x, stride_batch_y, (uint32_t)(ne20*ne21),
|
||||
stride_batch_x, stride_batch_y, stride_batch_d,
|
||||
(uint32_t)ne02, (uint32_t)ne12, (uint32_t)r2, (uint32_t)r3,
|
||||
};
|
||||
ggml_vk_sync_buffers(subctx);
|
||||
@ -4261,7 +4271,10 @@ static void ggml_vk_mul_mat(ggml_backend_vk_context * ctx, vk_context& subctx, c
|
||||
} else if (src0->type == GGML_TYPE_F16 && !ggml_is_contiguous(src0) && !ggml_is_transposed(src1) && dst->ne[1] == 1 &&
|
||||
!ggml_is_permuted(src0) && !ggml_is_permuted(src1)) {
|
||||
ggml_vk_mul_mat_vec_nc_f16_f32(ctx, subctx, src0, src1, dst, dryrun);
|
||||
} else if (dst->ne[1] == 1 && (src0->type == GGML_TYPE_F32 || src0->type == GGML_TYPE_F16 || ggml_is_quantized(src0->type))) {
|
||||
// mul_mat_vec supports batching ne12*ne13 when ne11==1, or treating ne11 as the batch size (up to four)
|
||||
// when ne12 and ne13 are one.
|
||||
} else if ((dst->ne[1] == 1 || (dst->ne[1] <= mul_mat_vec_max_cols && src1->ne[2] * src1->ne[3] == 1)) &&
|
||||
(src0->type == GGML_TYPE_F32 || src0->type == GGML_TYPE_F16 || ggml_is_quantized(src0->type))) {
|
||||
ggml_vk_mul_mat_vec_q_f16(ctx, subctx, src0, src1, dst, dryrun);
|
||||
} else {
|
||||
ggml_vk_mul_mat_q_f16(ctx, subctx, src0, src1, dst, dryrun);
|
||||
|
@ -9,9 +9,6 @@
|
||||
|
||||
layout(local_size_x_id = 0, local_size_y = 1, local_size_z = 1) in;
|
||||
|
||||
layout (constant_id = 0) const uint BLOCK_SIZE = 32;
|
||||
layout (constant_id = 1) const uint NUM_ROWS = 1;
|
||||
|
||||
#if !defined(DATA_A_F32) && !defined(DATA_A_F16)
|
||||
#define K_PER_ITER 8
|
||||
#else
|
||||
@ -21,70 +18,70 @@ layout (constant_id = 1) const uint NUM_ROWS = 1;
|
||||
|
||||
uint a_offset, b_offset, d_offset, y_offset;
|
||||
|
||||
shared FLOAT_TYPE tmpsh[NUM_ROWS][BLOCK_SIZE];
|
||||
|
||||
void iter(inout FLOAT_TYPE temp[NUM_ROWS], const uint first_row, const uint num_rows, const uint tid, const uint i, bool lastiter)
|
||||
void iter(inout FLOAT_TYPE temp[NUM_COLS][NUM_ROWS], const uint first_row, const uint num_rows, const uint tid, const uint i, bool lastiter)
|
||||
{
|
||||
const uint col = i*BLOCK_SIZE + K_PER_ITER*tid;
|
||||
const uint iqs = (col%QUANT_K)/QUANT_R; // quant index
|
||||
const uint iybs = col - col%QUANT_K; // y block start index
|
||||
[[unroll]] for (uint j = 0; j < NUM_COLS; ++j) {
|
||||
const uint col = i*BLOCK_SIZE + K_PER_ITER*tid;
|
||||
const uint iqs = (col%QUANT_K)/QUANT_R; // quant index
|
||||
const uint iybs = col - col%QUANT_K; // y block start index
|
||||
|
||||
#if K_PER_ITER == 8
|
||||
#if QUANT_R == 2
|
||||
const B_TYPE_VEC4 bv02 = data_b_v4[(b_offset + iybs + iqs) / 4];
|
||||
const B_TYPE_VEC4 bv13 = data_b_v4[(b_offset + iybs + iqs + y_offset) / 4];
|
||||
const vec4 bv0 = vec4(bv02.x, bv13.x, bv02.y, bv13.y);
|
||||
const vec4 bv1 = vec4(bv02.z, bv13.z, bv02.w, bv13.w);
|
||||
const B_TYPE_VEC4 bv02 = data_b_v4[(j*p.batch_stride_b + b_offset + iybs + iqs) / 4];
|
||||
const B_TYPE_VEC4 bv13 = data_b_v4[(j*p.batch_stride_b + b_offset + iybs + iqs + y_offset) / 4];
|
||||
const vec4 bv0 = vec4(bv02.x, bv13.x, bv02.y, bv13.y);
|
||||
const vec4 bv1 = vec4(bv02.z, bv13.z, bv02.w, bv13.w);
|
||||
#else
|
||||
const vec4 bv0 = vec4(data_b_v4[(b_offset + iybs + iqs) / 4]);
|
||||
const vec4 bv1 = vec4(data_b_v4[(b_offset + iybs + iqs) / 4 + 1]);
|
||||
const vec4 bv0 = vec4(data_b_v4[(j*p.batch_stride_b + b_offset + iybs + iqs) / 4]);
|
||||
const vec4 bv1 = vec4(data_b_v4[(j*p.batch_stride_b + b_offset + iybs + iqs) / 4 + 1]);
|
||||
#endif
|
||||
#else
|
||||
// Check if the second of the pair of elements is OOB, and don't fetch B or
|
||||
// accumulate it. We still fetch a pair of elements for A, which is fine for
|
||||
// quantized formats since they'll be within the same block. We should
|
||||
// probably skip fetching the second element for F16/F32, but as of now we
|
||||
// still do.
|
||||
const bool OOB = lastiter && (iybs + iqs + y_offset >= p.ncols);
|
||||
// Check if the second of the pair of elements is OOB, and don't fetch B or
|
||||
// accumulate it. We still fetch a pair of elements for A, which is fine for
|
||||
// quantized formats since they'll be within the same block. We should
|
||||
// probably skip fetching the second element for F16/F32, but as of now we
|
||||
// still do.
|
||||
const bool OOB = lastiter && (iybs + iqs + y_offset >= p.ncols);
|
||||
|
||||
FLOAT_TYPE b0 = 0, b1 = 0;
|
||||
b0 = FLOAT_TYPE(data_b[b_offset + iybs + iqs]);
|
||||
if (!OOB) {
|
||||
b1 = FLOAT_TYPE(data_b[b_offset + iybs + iqs + y_offset]);
|
||||
}
|
||||
FLOAT_TYPE b0 = 0, b1 = 0;
|
||||
b0 = FLOAT_TYPE(data_b[j*p.batch_stride_b + b_offset + iybs + iqs]);
|
||||
if (!OOB) {
|
||||
b1 = FLOAT_TYPE(data_b[j*p.batch_stride_b + b_offset + iybs + iqs + y_offset]);
|
||||
}
|
||||
#endif
|
||||
uint ibi = first_row*p.ncols;
|
||||
[[unroll]] for (uint n = 0; n < num_rows; ++n) {
|
||||
const uint ib = (ibi + col)/QUANT_K; // block index
|
||||
ibi += p.ncols;
|
||||
uint ibi = first_row*p.ncols;
|
||||
[[unroll]] for (uint n = 0; n < num_rows; ++n) {
|
||||
const uint ib = (ibi + col)/QUANT_K; // block index
|
||||
ibi += p.ncols;
|
||||
|
||||
#if K_PER_ITER == 8
|
||||
vec4 v = dequantize4(ib, iqs, a_offset);
|
||||
vec4 v2 = dequantize4(ib, iqs+(4/QUANT_R), a_offset);
|
||||
vec4 v = dequantize4(ib, iqs, a_offset);
|
||||
vec4 v2 = dequantize4(ib, iqs+(4/QUANT_R), a_offset);
|
||||
|
||||
const vec2 dm = get_dm(ib, a_offset);
|
||||
if (dm.y != 0) { // quant has min component
|
||||
v = v * dm.x + dm.y;
|
||||
v2 = v2 * dm.x + dm.y;
|
||||
}
|
||||
const vec2 dm = get_dm(ib, a_offset);
|
||||
if (dm.y != 0) { // quant has min component
|
||||
v = v * dm.x + dm.y;
|
||||
v2 = v2 * dm.x + dm.y;
|
||||
}
|
||||
|
||||
// matrix multiplication
|
||||
FLOAT_TYPE rowtmp = dot(bv0, v);
|
||||
rowtmp += dot(bv1, v2);
|
||||
// matrix multiplication
|
||||
FLOAT_TYPE rowtmp = dot(bv0, v);
|
||||
rowtmp += dot(bv1, v2);
|
||||
|
||||
if (dm.y == 0)
|
||||
rowtmp *= dm.x;
|
||||
if (dm.y == 0)
|
||||
rowtmp *= dm.x;
|
||||
|
||||
temp[n] += rowtmp;
|
||||
temp[j][n] += rowtmp;
|
||||
#else
|
||||
const vec2 v = dequantize(ib, iqs, a_offset);
|
||||
const vec2 v = dequantize(ib, iqs, a_offset);
|
||||
|
||||
// matrix multiplication
|
||||
temp[n] = fma(FLOAT_TYPE(v.x), b0, temp[n]);
|
||||
if (!OOB) {
|
||||
temp[n] = fma(FLOAT_TYPE(v.y), b1, temp[n]);
|
||||
}
|
||||
// matrix multiplication
|
||||
temp[j][n] = fma(FLOAT_TYPE(v.x), b0, temp[j][n]);
|
||||
if (!OOB) {
|
||||
temp[j][n] = fma(FLOAT_TYPE(v.y), b1, temp[j][n]);
|
||||
}
|
||||
#endif
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
@ -96,10 +93,12 @@ void compute_outputs(const uint32_t first_row, const uint32_t num_rows) {
|
||||
|
||||
y_offset = QUANT_R == 1 ? 1 : QUANT_K/2;
|
||||
|
||||
FLOAT_TYPE temp[NUM_ROWS];
|
||||
FLOAT_TYPE temp[NUM_COLS][NUM_ROWS];
|
||||
|
||||
for (uint i = 0; i < NUM_ROWS; ++i) {
|
||||
temp[i] = FLOAT_TYPE(0);
|
||||
[[unroll]] for (uint j = 0; j < NUM_COLS; ++j) {
|
||||
[[unroll]] for (uint i = 0; i < NUM_ROWS; ++i) {
|
||||
temp[j][i] = FLOAT_TYPE(0);
|
||||
}
|
||||
}
|
||||
|
||||
uint num_iters = p.ncols / (K_PER_ITER * BLOCK_SIZE);
|
||||
@ -131,24 +130,7 @@ void compute_outputs(const uint32_t first_row, const uint32_t num_rows) {
|
||||
i++;
|
||||
}
|
||||
|
||||
// sum up partial sums and write back result
|
||||
[[unroll]] for (uint n = 0; n < num_rows; ++n) {
|
||||
tmpsh[n][tid] = temp[n];
|
||||
}
|
||||
barrier();
|
||||
[[unroll]] for (uint s = BLOCK_SIZE/2; s > 0; s >>= 1) {
|
||||
if (tid < s) {
|
||||
[[unroll]] for (uint n = 0; n < num_rows; ++n) {
|
||||
tmpsh[n][tid] += tmpsh[n][tid + s];
|
||||
}
|
||||
}
|
||||
barrier();
|
||||
}
|
||||
if (tid == 0) {
|
||||
[[unroll]] for (uint n = 0; n < num_rows; ++n) {
|
||||
data_d[d_offset + first_row + n] = D_TYPE(tmpsh[n][0]);
|
||||
}
|
||||
}
|
||||
reduce_result(temp, d_offset, first_row, num_rows, tid);
|
||||
}
|
||||
|
||||
void main() {
|
||||
|
@ -83,3 +83,36 @@ void get_offsets(out uint a_offset, out uint b_offset, out uint d_offset) {
|
||||
batch_idx * p.batch_stride_d;
|
||||
#endif
|
||||
}
|
||||
|
||||
layout (constant_id = 0) const uint BLOCK_SIZE = 32;
|
||||
layout (constant_id = 1) const uint NUM_ROWS = 1;
|
||||
layout (constant_id = 2) const uint NUM_COLS = 1;
|
||||
|
||||
shared FLOAT_TYPE tmpsh[NUM_COLS][NUM_ROWS][BLOCK_SIZE];
|
||||
|
||||
void reduce_result(const in FLOAT_TYPE temp[NUM_COLS][NUM_ROWS], const in uint32_t d_offset, const in uint32_t first_row, const in uint32_t num_rows, const in uint32_t tid) {
|
||||
// sum up partial sums and write back result
|
||||
[[unroll]] for (uint j = 0; j < NUM_COLS; ++j) {
|
||||
[[unroll]] for (uint n = 0; n < num_rows; ++n) {
|
||||
tmpsh[j][n][tid] = temp[j][n];
|
||||
}
|
||||
}
|
||||
barrier();
|
||||
[[unroll]] for (uint s = BLOCK_SIZE/2; s > 0; s >>= 1) {
|
||||
if (tid < s) {
|
||||
[[unroll]] for (uint j = 0; j < NUM_COLS; ++j) {
|
||||
[[unroll]] for (uint n = 0; n < num_rows; ++n) {
|
||||
tmpsh[j][n][tid] += tmpsh[j][n][tid + s];
|
||||
}
|
||||
}
|
||||
}
|
||||
barrier();
|
||||
}
|
||||
if (tid == 0) {
|
||||
[[unroll]] for (uint j = 0; j < NUM_COLS; ++j) {
|
||||
[[unroll]] for (uint n = 0; n < num_rows; ++n) {
|
||||
data_d[j*p.batch_stride_d + d_offset + first_row + n] = D_TYPE(tmpsh[j][n][0]);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
@ -5,11 +5,6 @@
|
||||
|
||||
layout(local_size_x_id = 0, local_size_y = 1, local_size_z = 1) in;
|
||||
|
||||
layout (constant_id = 0) const uint BLOCK_SIZE = 32;
|
||||
layout (constant_id = 1) const uint NUM_ROWS = 1;
|
||||
|
||||
shared FLOAT_TYPE tmpsh[NUM_ROWS][BLOCK_SIZE];
|
||||
|
||||
void compute_outputs(const uint32_t first_row, const uint32_t num_rows) {
|
||||
uint a_offset, b_offset, d_offset;
|
||||
get_offsets(a_offset, b_offset, d_offset);
|
||||
@ -32,24 +27,17 @@ void compute_outputs(const uint32_t first_row, const uint32_t num_rows) {
|
||||
const uint s_offset = 8*v_im;
|
||||
const uint y_offset = 128*v_im + l0;
|
||||
|
||||
FLOAT_TYPE temp[NUM_ROWS];
|
||||
FLOAT_TYPE temp[NUM_COLS][NUM_ROWS];
|
||||
|
||||
[[unroll]] for (uint i = 0; i < NUM_ROWS; ++i) {
|
||||
temp[i] = FLOAT_TYPE(0);
|
||||
[[unroll]] for (uint j = 0; j < NUM_COLS; ++j) {
|
||||
[[unroll]] for (uint i = 0; i < NUM_ROWS; ++i) {
|
||||
temp[j][i] = FLOAT_TYPE(0);
|
||||
}
|
||||
}
|
||||
|
||||
[[unroll]] for (uint i = ix; i < num_blocks_per_row; i += it_size) {
|
||||
const uint y_idx = i * QUANT_K + y_offset;
|
||||
|
||||
B_TYPE_VEC2 b0 = data_b_v2[(b_offset + y_idx) / 2 + 0];
|
||||
B_TYPE_VEC2 b16 = data_b_v2[(b_offset + y_idx) / 2 + 8];
|
||||
B_TYPE_VEC2 b32 = data_b_v2[(b_offset + y_idx) / 2 + 16];
|
||||
B_TYPE_VEC2 b48 = data_b_v2[(b_offset + y_idx) / 2 + 24];
|
||||
B_TYPE_VEC2 b64 = data_b_v2[(b_offset + y_idx) / 2 + 32];
|
||||
B_TYPE_VEC2 b80 = data_b_v2[(b_offset + y_idx) / 2 + 40];
|
||||
B_TYPE_VEC2 b96 = data_b_v2[(b_offset + y_idx) / 2 + 48];
|
||||
B_TYPE_VEC2 b112 = data_b_v2[(b_offset + y_idx) / 2 + 56];
|
||||
|
||||
[[unroll]] for (uint n = 0; n < num_rows; ++n) {
|
||||
const uint ib0 = a_offset / QUANT_K + (first_row+n)*num_blocks_per_row;
|
||||
f16vec2 d = data_a[ib0 + i].d;
|
||||
@ -74,48 +62,42 @@ void compute_outputs(const uint32_t first_row, const uint32_t num_rows) {
|
||||
uvec2 qs0 = uvec2(unpack8(qs0_u16));
|
||||
uvec2 qs16 = uvec2(unpack8(qs16_u16));
|
||||
|
||||
FLOAT_TYPE sum1 = FLOAT_TYPE(0.0);
|
||||
FLOAT_TYPE sum2 = FLOAT_TYPE(0.0);
|
||||
[[unroll]] for (int l = 0; l < 2; ++l) {
|
||||
sum1 = fma(FLOAT_TYPE(b0[l]), FLOAT_TYPE(s0_lo4[0]) * FLOAT_TYPE((qs0[l] >> 0) & 3),
|
||||
fma(FLOAT_TYPE(b16[l]), FLOAT_TYPE(s0_lo4[1]) * FLOAT_TYPE((qs16[l] >> 0) & 3),
|
||||
fma(FLOAT_TYPE(b32[l]), FLOAT_TYPE(s0_lo4[2]) * FLOAT_TYPE((qs0[l] >> 2) & 3),
|
||||
fma(FLOAT_TYPE(b48[l]), FLOAT_TYPE(s0_lo4[3]) * FLOAT_TYPE((qs16[l] >> 2) & 3),
|
||||
fma(FLOAT_TYPE(b64[l]), FLOAT_TYPE(s4_lo4[0]) * FLOAT_TYPE((qs0[l] >> 4) & 3),
|
||||
fma(FLOAT_TYPE(b80[l]), FLOAT_TYPE(s4_lo4[1]) * FLOAT_TYPE((qs16[l] >> 4) & 3),
|
||||
fma(FLOAT_TYPE(b96[l]), FLOAT_TYPE(s4_lo4[2]) * FLOAT_TYPE((qs0[l] >> 6) & 3),
|
||||
fma(FLOAT_TYPE(b112[l]), FLOAT_TYPE(s4_lo4[3]) * FLOAT_TYPE((qs16[l] >> 6) & 3), sum1))))))));
|
||||
sum2 = fma(FLOAT_TYPE(b0[l]), FLOAT_TYPE(s0_hi4[0]),
|
||||
fma(FLOAT_TYPE(b16[l]), FLOAT_TYPE(s0_hi4[1]),
|
||||
fma(FLOAT_TYPE(b32[l]), FLOAT_TYPE(s0_hi4[2]),
|
||||
fma(FLOAT_TYPE(b48[l]), FLOAT_TYPE(s0_hi4[3]),
|
||||
fma(FLOAT_TYPE(b64[l]), FLOAT_TYPE(s4_hi4[0]),
|
||||
fma(FLOAT_TYPE(b80[l]), FLOAT_TYPE(s4_hi4[1]),
|
||||
fma(FLOAT_TYPE(b96[l]), FLOAT_TYPE(s4_hi4[2]),
|
||||
fma(FLOAT_TYPE(b112[l]), FLOAT_TYPE(s4_hi4[3]), sum2))))))));
|
||||
[[unroll]] for (uint j = 0; j < NUM_COLS; ++j) {
|
||||
B_TYPE_VEC2 b0 = data_b_v2[(j*p.batch_stride_b + b_offset + y_idx) / 2 + 0];
|
||||
B_TYPE_VEC2 b16 = data_b_v2[(j*p.batch_stride_b + b_offset + y_idx) / 2 + 8];
|
||||
B_TYPE_VEC2 b32 = data_b_v2[(j*p.batch_stride_b + b_offset + y_idx) / 2 + 16];
|
||||
B_TYPE_VEC2 b48 = data_b_v2[(j*p.batch_stride_b + b_offset + y_idx) / 2 + 24];
|
||||
B_TYPE_VEC2 b64 = data_b_v2[(j*p.batch_stride_b + b_offset + y_idx) / 2 + 32];
|
||||
B_TYPE_VEC2 b80 = data_b_v2[(j*p.batch_stride_b + b_offset + y_idx) / 2 + 40];
|
||||
B_TYPE_VEC2 b96 = data_b_v2[(j*p.batch_stride_b + b_offset + y_idx) / 2 + 48];
|
||||
B_TYPE_VEC2 b112 = data_b_v2[(j*p.batch_stride_b + b_offset + y_idx) / 2 + 56];
|
||||
|
||||
FLOAT_TYPE sum1 = FLOAT_TYPE(0.0);
|
||||
FLOAT_TYPE sum2 = FLOAT_TYPE(0.0);
|
||||
[[unroll]] for (int l = 0; l < 2; ++l) {
|
||||
sum1 = fma(FLOAT_TYPE(b0[l]), FLOAT_TYPE(s0_lo4[0]) * FLOAT_TYPE((qs0[l] >> 0) & 3),
|
||||
fma(FLOAT_TYPE(b16[l]), FLOAT_TYPE(s0_lo4[1]) * FLOAT_TYPE((qs16[l] >> 0) & 3),
|
||||
fma(FLOAT_TYPE(b32[l]), FLOAT_TYPE(s0_lo4[2]) * FLOAT_TYPE((qs0[l] >> 2) & 3),
|
||||
fma(FLOAT_TYPE(b48[l]), FLOAT_TYPE(s0_lo4[3]) * FLOAT_TYPE((qs16[l] >> 2) & 3),
|
||||
fma(FLOAT_TYPE(b64[l]), FLOAT_TYPE(s4_lo4[0]) * FLOAT_TYPE((qs0[l] >> 4) & 3),
|
||||
fma(FLOAT_TYPE(b80[l]), FLOAT_TYPE(s4_lo4[1]) * FLOAT_TYPE((qs16[l] >> 4) & 3),
|
||||
fma(FLOAT_TYPE(b96[l]), FLOAT_TYPE(s4_lo4[2]) * FLOAT_TYPE((qs0[l] >> 6) & 3),
|
||||
fma(FLOAT_TYPE(b112[l]), FLOAT_TYPE(s4_lo4[3]) * FLOAT_TYPE((qs16[l] >> 6) & 3), sum1))))))));
|
||||
sum2 = fma(FLOAT_TYPE(b0[l]), FLOAT_TYPE(s0_hi4[0]),
|
||||
fma(FLOAT_TYPE(b16[l]), FLOAT_TYPE(s0_hi4[1]),
|
||||
fma(FLOAT_TYPE(b32[l]), FLOAT_TYPE(s0_hi4[2]),
|
||||
fma(FLOAT_TYPE(b48[l]), FLOAT_TYPE(s0_hi4[3]),
|
||||
fma(FLOAT_TYPE(b64[l]), FLOAT_TYPE(s4_hi4[0]),
|
||||
fma(FLOAT_TYPE(b80[l]), FLOAT_TYPE(s4_hi4[1]),
|
||||
fma(FLOAT_TYPE(b96[l]), FLOAT_TYPE(s4_hi4[2]),
|
||||
fma(FLOAT_TYPE(b112[l]), FLOAT_TYPE(s4_hi4[3]), sum2))))))));
|
||||
}
|
||||
temp[j][n] = fma(dall, sum1, fma(-dmin, sum2, temp[j][n]));
|
||||
}
|
||||
temp[n] = fma(dall, sum1, fma(-dmin, sum2, temp[n]));
|
||||
}
|
||||
}
|
||||
|
||||
// sum up partial sums and write back result
|
||||
[[unroll]] for (uint n = 0; n < num_rows; ++n) {
|
||||
tmpsh[n][tid] = temp[n];
|
||||
}
|
||||
barrier();
|
||||
[[unroll]] for (uint s = BLOCK_SIZE/2; s > 0; s >>= 1) {
|
||||
if (tid < s) {
|
||||
[[unroll]] for (uint n = 0; n < num_rows; ++n) {
|
||||
tmpsh[n][tid] += tmpsh[n][tid + s];
|
||||
}
|
||||
}
|
||||
barrier();
|
||||
}
|
||||
if (tid == 0) {
|
||||
[[unroll]] for (uint n = 0; n < num_rows; ++n) {
|
||||
data_d[d_offset + first_row + n] = D_TYPE(tmpsh[n][0]);
|
||||
}
|
||||
}
|
||||
reduce_result(temp, d_offset, first_row, num_rows, tid);
|
||||
}
|
||||
|
||||
void main() {
|
||||
|
@ -5,11 +5,6 @@
|
||||
|
||||
layout(local_size_x_id = 0, local_size_y = 1, local_size_z = 1) in;
|
||||
|
||||
layout (constant_id = 0) const uint BLOCK_SIZE = 32;
|
||||
layout (constant_id = 1) const uint NUM_ROWS = 1;
|
||||
|
||||
shared FLOAT_TYPE tmpsh[NUM_ROWS][BLOCK_SIZE];
|
||||
|
||||
void compute_outputs(const uint32_t first_row, const uint32_t num_rows) {
|
||||
uint a_offset, b_offset, d_offset;
|
||||
get_offsets(a_offset, b_offset, d_offset);
|
||||
@ -33,10 +28,12 @@ void compute_outputs(const uint32_t first_row, const uint32_t num_rows) {
|
||||
const uint q_offset = 32*v_im + l0;
|
||||
const uint y_offset = 128*v_im + l0;
|
||||
|
||||
FLOAT_TYPE temp[NUM_ROWS];
|
||||
FLOAT_TYPE temp[NUM_COLS][NUM_ROWS];
|
||||
|
||||
[[unroll]] for (uint i = 0; i < NUM_ROWS; ++i) {
|
||||
temp[i] = FLOAT_TYPE(0);
|
||||
[[unroll]] for (uint j = 0; j < NUM_COLS; ++j) {
|
||||
[[unroll]] for (uint i = 0; i < NUM_ROWS; ++i) {
|
||||
temp[j][i] = FLOAT_TYPE(0);
|
||||
}
|
||||
}
|
||||
|
||||
const uint s_shift = 4 * v_im;
|
||||
@ -44,15 +41,6 @@ void compute_outputs(const uint32_t first_row, const uint32_t num_rows) {
|
||||
[[unroll]] for (uint i = ix; i < num_blocks_per_row; i += it_size) {
|
||||
const uint y_idx = i * QUANT_K + y_offset;
|
||||
|
||||
B_TYPE_VEC2 b0 = data_b_v2[(b_offset + y_idx) / 2 + 0];
|
||||
B_TYPE_VEC2 b16 = data_b_v2[(b_offset + y_idx) / 2 + 8];
|
||||
B_TYPE_VEC2 b32 = data_b_v2[(b_offset + y_idx) / 2 + 16];
|
||||
B_TYPE_VEC2 b48 = data_b_v2[(b_offset + y_idx) / 2 + 24];
|
||||
B_TYPE_VEC2 b64 = data_b_v2[(b_offset + y_idx) / 2 + 32];
|
||||
B_TYPE_VEC2 b80 = data_b_v2[(b_offset + y_idx) / 2 + 40];
|
||||
B_TYPE_VEC2 b96 = data_b_v2[(b_offset + y_idx) / 2 + 48];
|
||||
B_TYPE_VEC2 b112 = data_b_v2[(b_offset + y_idx) / 2 + 56];
|
||||
|
||||
[[unroll]] for (uint n = 0; n < num_rows; ++n) {
|
||||
const uint ib0 = a_offset / QUANT_K + (first_row+n)*num_blocks_per_row;
|
||||
const FLOAT_TYPE d = FLOAT_TYPE(data_a[ib0 + i].d);
|
||||
@ -70,39 +58,34 @@ void compute_outputs(const uint32_t first_row, const uint32_t num_rows) {
|
||||
u8vec2 s8 = unpack8(s8_16);
|
||||
u8vec2 s10 = unpack8(s10_16);
|
||||
|
||||
FLOAT_TYPE sum = FLOAT_TYPE(0.0);
|
||||
[[unroll]] for (int l = 0; l < 2; ++l) {
|
||||
sum = fma(FLOAT_TYPE(b0[l]) * FLOAT_TYPE(int8_t(((s0[0] >> s_shift) & 0xF) | ((s8[0] >> (s_shift + 0) & 0x3) << 4)) - 32), FLOAT_TYPE(((data_a[ib0 + i].qs[q_offset + l ] ) & 3) - (((data_a[ib0 + i].hmask[l0 + l ] & (m << 0)) != 0) ? 0 : 4)),
|
||||
fma(FLOAT_TYPE(b32[l]) * FLOAT_TYPE(int8_t(((s2[0] >> s_shift) & 0xF) | ((s10[0] >> (s_shift + 0) & 0x3) << 4)) - 32), FLOAT_TYPE(((data_a[ib0 + i].qs[q_offset + l ] >> 2) & 3) - (((data_a[ib0 + i].hmask[l0 + l ] & (m << 1)) != 0) ? 0 : 4)),
|
||||
fma(FLOAT_TYPE(b64[l]) * FLOAT_TYPE(int8_t(((s4[0] >> s_shift) & 0xF) | ((s8[0] >> (s_shift + 2) & 0x3) << 4)) - 32), FLOAT_TYPE(((data_a[ib0 + i].qs[q_offset + l ] >> 4) & 3) - (((data_a[ib0 + i].hmask[l0 + l ] & (m << 2)) != 0) ? 0 : 4)),
|
||||
fma(FLOAT_TYPE(b96[l]) * FLOAT_TYPE(int8_t(((s6[0] >> s_shift) & 0xF) | ((s10[0] >> (s_shift + 2) & 0x3) << 4)) - 32), FLOAT_TYPE(((data_a[ib0 + i].qs[q_offset + l ] >> 6) & 3) - (((data_a[ib0 + i].hmask[l0 + l ] & (m << 3)) != 0) ? 0 : 4)),
|
||||
fma(FLOAT_TYPE(b16[l]) * FLOAT_TYPE(int8_t(((s0[1] >> s_shift) & 0xF) | ((s8[1] >> (s_shift + 0) & 0x3) << 4)) - 32), FLOAT_TYPE(((data_a[ib0 + i].qs[q_offset + l+16] ) & 3) - (((data_a[ib0 + i].hmask[l0 + l+16] & (m << 0)) != 0) ? 0 : 4)),
|
||||
fma(FLOAT_TYPE(b48[l]) * FLOAT_TYPE(int8_t(((s2[1] >> s_shift) & 0xF) | ((s10[1] >> (s_shift + 0) & 0x3) << 4)) - 32), FLOAT_TYPE(((data_a[ib0 + i].qs[q_offset + l+16] >> 2) & 3) - (((data_a[ib0 + i].hmask[l0 + l+16] & (m << 1)) != 0) ? 0 : 4)),
|
||||
fma(FLOAT_TYPE(b80[l]) * FLOAT_TYPE(int8_t(((s4[1] >> s_shift) & 0xF) | ((s8[1] >> (s_shift + 2) & 0x3) << 4)) - 32), FLOAT_TYPE(((data_a[ib0 + i].qs[q_offset + l+16] >> 4) & 3) - (((data_a[ib0 + i].hmask[l0 + l+16] & (m << 2)) != 0) ? 0 : 4)),
|
||||
fma(FLOAT_TYPE(b112[l]) * FLOAT_TYPE(int8_t(((s6[1] >> s_shift) & 0xF) | ((s10[1] >> (s_shift + 2) & 0x3) << 4)) - 32), FLOAT_TYPE(((data_a[ib0 + i].qs[q_offset + l+16] >> 6) & 3) - (((data_a[ib0 + i].hmask[l0 + l+16] & (m << 3)) != 0) ? 0 : 4)), sum))))))));
|
||||
[[unroll]] for (uint j = 0; j < NUM_COLS; ++j) {
|
||||
|
||||
B_TYPE_VEC2 b0 = data_b_v2[(j*p.batch_stride_b + b_offset + y_idx) / 2 + 0];
|
||||
B_TYPE_VEC2 b16 = data_b_v2[(j*p.batch_stride_b + b_offset + y_idx) / 2 + 8];
|
||||
B_TYPE_VEC2 b32 = data_b_v2[(j*p.batch_stride_b + b_offset + y_idx) / 2 + 16];
|
||||
B_TYPE_VEC2 b48 = data_b_v2[(j*p.batch_stride_b + b_offset + y_idx) / 2 + 24];
|
||||
B_TYPE_VEC2 b64 = data_b_v2[(j*p.batch_stride_b + b_offset + y_idx) / 2 + 32];
|
||||
B_TYPE_VEC2 b80 = data_b_v2[(j*p.batch_stride_b + b_offset + y_idx) / 2 + 40];
|
||||
B_TYPE_VEC2 b96 = data_b_v2[(j*p.batch_stride_b + b_offset + y_idx) / 2 + 48];
|
||||
B_TYPE_VEC2 b112 = data_b_v2[(j*p.batch_stride_b + b_offset + y_idx) / 2 + 56];
|
||||
|
||||
FLOAT_TYPE sum = FLOAT_TYPE(0.0);
|
||||
[[unroll]] for (int l = 0; l < 2; ++l) {
|
||||
sum = fma(FLOAT_TYPE(b0[l]) * FLOAT_TYPE(int8_t(((s0[0] >> s_shift) & 0xF) | ((s8[0] >> (s_shift + 0) & 0x3) << 4)) - 32), FLOAT_TYPE(((data_a[ib0 + i].qs[q_offset + l ] ) & 3) - (((data_a[ib0 + i].hmask[l0 + l ] & (m << 0)) != 0) ? 0 : 4)),
|
||||
fma(FLOAT_TYPE(b32[l]) * FLOAT_TYPE(int8_t(((s2[0] >> s_shift) & 0xF) | ((s10[0] >> (s_shift + 0) & 0x3) << 4)) - 32), FLOAT_TYPE(((data_a[ib0 + i].qs[q_offset + l ] >> 2) & 3) - (((data_a[ib0 + i].hmask[l0 + l ] & (m << 1)) != 0) ? 0 : 4)),
|
||||
fma(FLOAT_TYPE(b64[l]) * FLOAT_TYPE(int8_t(((s4[0] >> s_shift) & 0xF) | ((s8[0] >> (s_shift + 2) & 0x3) << 4)) - 32), FLOAT_TYPE(((data_a[ib0 + i].qs[q_offset + l ] >> 4) & 3) - (((data_a[ib0 + i].hmask[l0 + l ] & (m << 2)) != 0) ? 0 : 4)),
|
||||
fma(FLOAT_TYPE(b96[l]) * FLOAT_TYPE(int8_t(((s6[0] >> s_shift) & 0xF) | ((s10[0] >> (s_shift + 2) & 0x3) << 4)) - 32), FLOAT_TYPE(((data_a[ib0 + i].qs[q_offset + l ] >> 6) & 3) - (((data_a[ib0 + i].hmask[l0 + l ] & (m << 3)) != 0) ? 0 : 4)),
|
||||
fma(FLOAT_TYPE(b16[l]) * FLOAT_TYPE(int8_t(((s0[1] >> s_shift) & 0xF) | ((s8[1] >> (s_shift + 0) & 0x3) << 4)) - 32), FLOAT_TYPE(((data_a[ib0 + i].qs[q_offset + l+16] ) & 3) - (((data_a[ib0 + i].hmask[l0 + l+16] & (m << 0)) != 0) ? 0 : 4)),
|
||||
fma(FLOAT_TYPE(b48[l]) * FLOAT_TYPE(int8_t(((s2[1] >> s_shift) & 0xF) | ((s10[1] >> (s_shift + 0) & 0x3) << 4)) - 32), FLOAT_TYPE(((data_a[ib0 + i].qs[q_offset + l+16] >> 2) & 3) - (((data_a[ib0 + i].hmask[l0 + l+16] & (m << 1)) != 0) ? 0 : 4)),
|
||||
fma(FLOAT_TYPE(b80[l]) * FLOAT_TYPE(int8_t(((s4[1] >> s_shift) & 0xF) | ((s8[1] >> (s_shift + 2) & 0x3) << 4)) - 32), FLOAT_TYPE(((data_a[ib0 + i].qs[q_offset + l+16] >> 4) & 3) - (((data_a[ib0 + i].hmask[l0 + l+16] & (m << 2)) != 0) ? 0 : 4)),
|
||||
fma(FLOAT_TYPE(b112[l]) * FLOAT_TYPE(int8_t(((s6[1] >> s_shift) & 0xF) | ((s10[1] >> (s_shift + 2) & 0x3) << 4)) - 32), FLOAT_TYPE(((data_a[ib0 + i].qs[q_offset + l+16] >> 6) & 3) - (((data_a[ib0 + i].hmask[l0 + l+16] & (m << 3)) != 0) ? 0 : 4)), sum))))))));
|
||||
}
|
||||
temp[j][n] = fma(d, sum, temp[j][n]);
|
||||
}
|
||||
temp[n] = fma(d, sum, temp[n]);
|
||||
}
|
||||
}
|
||||
|
||||
// sum up partial sums and write back result
|
||||
[[unroll]] for (uint n = 0; n < num_rows; ++n) {
|
||||
tmpsh[n][tid] = temp[n];
|
||||
}
|
||||
barrier();
|
||||
[[unroll]] for (uint s = BLOCK_SIZE/2; s > 0; s >>= 1) {
|
||||
if (tid < s) {
|
||||
[[unroll]] for (uint n = 0; n < num_rows; ++n) {
|
||||
tmpsh[n][tid] += tmpsh[n][tid + s];
|
||||
}
|
||||
}
|
||||
barrier();
|
||||
}
|
||||
if (tid == 0) {
|
||||
[[unroll]] for (uint n = 0; n < num_rows; ++n) {
|
||||
data_d[d_offset + first_row + n] = D_TYPE(tmpsh[n][0]);
|
||||
}
|
||||
}
|
||||
reduce_result(temp, d_offset, first_row, num_rows, tid);
|
||||
}
|
||||
|
||||
void main() {
|
||||
|
@ -6,11 +6,6 @@
|
||||
|
||||
layout(local_size_x_id = 0, local_size_y = 1, local_size_z = 1) in;
|
||||
|
||||
layout (constant_id = 0) const uint BLOCK_SIZE = 32;
|
||||
layout (constant_id = 1) const uint NUM_ROWS = 1;
|
||||
|
||||
shared FLOAT_TYPE tmpsh[NUM_ROWS][BLOCK_SIZE];
|
||||
|
||||
void compute_outputs(const uint32_t first_row, const uint32_t num_rows) {
|
||||
uint a_offset, b_offset, d_offset;
|
||||
get_offsets(a_offset, b_offset, d_offset);
|
||||
@ -36,21 +31,18 @@ void compute_outputs(const uint32_t first_row, const uint32_t num_rows) {
|
||||
const uint q_offset = 32*v_im + l0;
|
||||
const uint y_offset = 64*v_im + l0;
|
||||
|
||||
FLOAT_TYPE temp[NUM_ROWS];
|
||||
FLOAT_TYPE temp[NUM_COLS][NUM_ROWS];
|
||||
|
||||
[[unroll]] for (uint i = 0; i < NUM_ROWS; ++i) {
|
||||
temp[i] = FLOAT_TYPE(0);
|
||||
[[unroll]] for (uint j = 0; j < NUM_COLS; ++j) {
|
||||
[[unroll]] for (uint i = 0; i < NUM_ROWS; ++i) {
|
||||
temp[j][i] = FLOAT_TYPE(0);
|
||||
}
|
||||
}
|
||||
|
||||
[[unroll]] for (uint i = ix; i < num_blocks_per_row; i += it_size) {
|
||||
const uint y1_idx = i * QUANT_K + y_offset;
|
||||
const uint y2_idx = y1_idx + 128;
|
||||
|
||||
B_TYPE_VEC4 by10 = data_b_v4[(b_offset + y1_idx) / 4];
|
||||
B_TYPE_VEC4 by132 = data_b_v4[(b_offset + y1_idx) / 4 + 8];
|
||||
B_TYPE_VEC4 by20 = data_b_v4[(b_offset + y2_idx) / 4];
|
||||
B_TYPE_VEC4 by232 = data_b_v4[(b_offset + y2_idx) / 4 + 8];
|
||||
|
||||
[[unroll]] for (uint n = 0; n < num_rows; ++n) {
|
||||
const uint ib0 = a_offset / QUANT_K + (first_row+n)*num_blocks_per_row;
|
||||
f16vec2 d = data_a[ib0 + i].d;
|
||||
@ -103,37 +95,27 @@ void compute_outputs(const uint32_t first_row, const uint32_t num_rows) {
|
||||
const uint32_t q4_14 = qs64_hi4.z;
|
||||
const uint32_t q4_15 = qs64_hi4.w;
|
||||
|
||||
const FLOAT_TYPE sx = fma(FLOAT_TYPE(by10.x), q4_0, fma(FLOAT_TYPE(by10.y), q4_1, fma(FLOAT_TYPE(by10.z), q4_2, FLOAT_TYPE(by10.w) * q4_3)));
|
||||
const FLOAT_TYPE sy = fma(FLOAT_TYPE(by132.x), q4_4, fma(FLOAT_TYPE(by132.y), q4_5, fma(FLOAT_TYPE(by132.z), q4_6, FLOAT_TYPE(by132.w) * q4_7)));
|
||||
const FLOAT_TYPE sz = fma(FLOAT_TYPE(by20.x), q4_8, fma(FLOAT_TYPE(by20.y), q4_9, fma(FLOAT_TYPE(by20.z), q4_10, FLOAT_TYPE(by20.w) * q4_11)));
|
||||
const FLOAT_TYPE sw = fma(FLOAT_TYPE(by232.x), q4_12, fma(FLOAT_TYPE(by232.y), q4_13, fma(FLOAT_TYPE(by232.z), q4_14, FLOAT_TYPE(by232.w) * q4_15)));
|
||||
const FLOAT_TYPE smin =
|
||||
fma(FLOAT_TYPE(by10.x), sc2, fma(FLOAT_TYPE(by132.x), sc3, fma(FLOAT_TYPE(by20.x), sc6, fma(FLOAT_TYPE(by232.x), sc7,
|
||||
fma(FLOAT_TYPE(by10.y), sc2, fma(FLOAT_TYPE(by132.y), sc3, fma(FLOAT_TYPE(by20.y), sc6, fma(FLOAT_TYPE(by232.y), sc7,
|
||||
fma(FLOAT_TYPE(by10.z), sc2, fma(FLOAT_TYPE(by132.z), sc3, fma(FLOAT_TYPE(by20.z), sc6, fma(FLOAT_TYPE(by232.z), sc7,
|
||||
fma(FLOAT_TYPE(by10.w), sc2, fma(FLOAT_TYPE(by132.w), sc3, fma(FLOAT_TYPE(by20.w), sc6, FLOAT_TYPE(by232.w) * sc7)))))))))))))));
|
||||
temp[n] = fma(dall, fma(sx, sc0, fma(sy, sc1, fma(sz, sc4, sw * sc5))), fma(-dmin, smin, temp[n]));
|
||||
[[unroll]] for (uint j = 0; j < NUM_COLS; ++j) {
|
||||
B_TYPE_VEC4 by10 = data_b_v4[(j*p.batch_stride_b + b_offset + y1_idx) / 4];
|
||||
B_TYPE_VEC4 by132 = data_b_v4[(j*p.batch_stride_b + b_offset + y1_idx) / 4 + 8];
|
||||
B_TYPE_VEC4 by20 = data_b_v4[(j*p.batch_stride_b + b_offset + y2_idx) / 4];
|
||||
B_TYPE_VEC4 by232 = data_b_v4[(j*p.batch_stride_b + b_offset + y2_idx) / 4 + 8];
|
||||
|
||||
const FLOAT_TYPE sx = fma(FLOAT_TYPE(by10.x), q4_0, fma(FLOAT_TYPE(by10.y), q4_1, fma(FLOAT_TYPE(by10.z), q4_2, FLOAT_TYPE(by10.w) * q4_3)));
|
||||
const FLOAT_TYPE sy = fma(FLOAT_TYPE(by132.x), q4_4, fma(FLOAT_TYPE(by132.y), q4_5, fma(FLOAT_TYPE(by132.z), q4_6, FLOAT_TYPE(by132.w) * q4_7)));
|
||||
const FLOAT_TYPE sz = fma(FLOAT_TYPE(by20.x), q4_8, fma(FLOAT_TYPE(by20.y), q4_9, fma(FLOAT_TYPE(by20.z), q4_10, FLOAT_TYPE(by20.w) * q4_11)));
|
||||
const FLOAT_TYPE sw = fma(FLOAT_TYPE(by232.x), q4_12, fma(FLOAT_TYPE(by232.y), q4_13, fma(FLOAT_TYPE(by232.z), q4_14, FLOAT_TYPE(by232.w) * q4_15)));
|
||||
const FLOAT_TYPE smin =
|
||||
fma(FLOAT_TYPE(by10.x), sc2, fma(FLOAT_TYPE(by132.x), sc3, fma(FLOAT_TYPE(by20.x), sc6, fma(FLOAT_TYPE(by232.x), sc7,
|
||||
fma(FLOAT_TYPE(by10.y), sc2, fma(FLOAT_TYPE(by132.y), sc3, fma(FLOAT_TYPE(by20.y), sc6, fma(FLOAT_TYPE(by232.y), sc7,
|
||||
fma(FLOAT_TYPE(by10.z), sc2, fma(FLOAT_TYPE(by132.z), sc3, fma(FLOAT_TYPE(by20.z), sc6, fma(FLOAT_TYPE(by232.z), sc7,
|
||||
fma(FLOAT_TYPE(by10.w), sc2, fma(FLOAT_TYPE(by132.w), sc3, fma(FLOAT_TYPE(by20.w), sc6, FLOAT_TYPE(by232.w) * sc7)))))))))))))));
|
||||
temp[j][n] = fma(dall, fma(sx, sc0, fma(sy, sc1, fma(sz, sc4, sw * sc5))), fma(-dmin, smin, temp[j][n]));
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// sum up partial sums and write back result
|
||||
[[unroll]] for (uint n = 0; n < num_rows; ++n) {
|
||||
tmpsh[n][tid] = temp[n];
|
||||
}
|
||||
barrier();
|
||||
[[unroll]] for (uint s = BLOCK_SIZE/2; s > 0; s >>= 1) {
|
||||
if (tid < s) {
|
||||
[[unroll]] for (uint n = 0; n < num_rows; ++n) {
|
||||
tmpsh[n][tid] += tmpsh[n][tid + s];
|
||||
}
|
||||
}
|
||||
barrier();
|
||||
}
|
||||
if (tid == 0) {
|
||||
[[unroll]] for (uint n = 0; n < num_rows; ++n) {
|
||||
data_d[d_offset + first_row + n] = D_TYPE(tmpsh[n][0]);
|
||||
}
|
||||
}
|
||||
reduce_result(temp, d_offset, first_row, num_rows, tid);
|
||||
}
|
||||
|
||||
void main() {
|
||||
|
@ -6,11 +6,6 @@
|
||||
|
||||
layout(local_size_x_id = 0, local_size_y = 1, local_size_z = 1) in;
|
||||
|
||||
layout (constant_id = 0) const uint BLOCK_SIZE = 32;
|
||||
layout (constant_id = 1) const uint NUM_ROWS = 1;
|
||||
|
||||
shared FLOAT_TYPE tmpsh[NUM_ROWS][BLOCK_SIZE];
|
||||
|
||||
void compute_outputs(const uint32_t first_row, const uint32_t num_rows) {
|
||||
uint a_offset, b_offset, d_offset;
|
||||
get_offsets(a_offset, b_offset, d_offset);
|
||||
@ -33,25 +28,18 @@ void compute_outputs(const uint32_t first_row, const uint32_t num_rows) {
|
||||
const uint q_offset = 32*v_im + l0;
|
||||
const uint y_offset = 64*v_im + l0;
|
||||
|
||||
FLOAT_TYPE temp[NUM_ROWS];
|
||||
FLOAT_TYPE temp[NUM_COLS][NUM_ROWS];
|
||||
|
||||
[[unroll]] for (uint i = 0; i < NUM_ROWS; ++i) {
|
||||
temp[i] = FLOAT_TYPE(0);
|
||||
[[unroll]] for (uint j = 0; j < NUM_COLS; ++j) {
|
||||
[[unroll]] for (uint i = 0; i < NUM_ROWS; ++i) {
|
||||
temp[j][i] = FLOAT_TYPE(0);
|
||||
}
|
||||
}
|
||||
|
||||
[[unroll]] for (uint i = ix; i < num_blocks_per_row; i += it_size) {
|
||||
const uint y1_idx = i * QUANT_K + y_offset;
|
||||
const uint y2_idx = y1_idx + 128;
|
||||
|
||||
B_TYPE_VEC2 by10 = data_b_v2[(b_offset + y1_idx) / 2];
|
||||
B_TYPE_VEC2 by116 = data_b_v2[(b_offset + y1_idx) / 2 + 8];
|
||||
B_TYPE_VEC2 by132 = data_b_v2[(b_offset + y1_idx) / 2 + 16];
|
||||
B_TYPE_VEC2 by148 = data_b_v2[(b_offset + y1_idx) / 2 + 24];
|
||||
B_TYPE_VEC2 by20 = data_b_v2[(b_offset + y2_idx) / 2];
|
||||
B_TYPE_VEC2 by216 = data_b_v2[(b_offset + y2_idx) / 2 + 8];
|
||||
B_TYPE_VEC2 by232 = data_b_v2[(b_offset + y2_idx) / 2 + 16];
|
||||
B_TYPE_VEC2 by248 = data_b_v2[(b_offset + y2_idx) / 2 + 24];
|
||||
|
||||
[[unroll]] for (uint n = 0; n < num_rows; ++n) {
|
||||
const uint ib0 = a_offset / QUANT_K + (first_row+n)*num_blocks_per_row;
|
||||
f16vec2 d = data_a[ib0 + i].d;
|
||||
@ -116,53 +104,47 @@ void compute_outputs(const uint32_t first_row, const uint32_t num_rows) {
|
||||
const uint32_t q4_14 = qs64_80_hi4.z;
|
||||
const uint32_t q4_15 = qs64_80_hi4.w;
|
||||
|
||||
const FLOAT_TYPE sx =
|
||||
fma(FLOAT_TYPE(by10.x), q4_0,
|
||||
fma(FLOAT_TYPE(by10.y), q4_1,
|
||||
fma(FLOAT_TYPE(by116.x), q4_2,
|
||||
FLOAT_TYPE(by116.y) * q4_3)));
|
||||
const FLOAT_TYPE sy =
|
||||
fma(FLOAT_TYPE(by132.x), q4_4,
|
||||
fma(FLOAT_TYPE(by132.y), q4_5,
|
||||
fma(FLOAT_TYPE(by148.x), q4_6,
|
||||
FLOAT_TYPE(by148.y) * q4_7)));
|
||||
const FLOAT_TYPE sz =
|
||||
fma(FLOAT_TYPE(by20.x), q4_8,
|
||||
fma(FLOAT_TYPE(by20.y), q4_9,
|
||||
fma(FLOAT_TYPE(by216.x), q4_10,
|
||||
FLOAT_TYPE(by216.y) * q4_11)));
|
||||
const FLOAT_TYPE sw =
|
||||
fma(FLOAT_TYPE(by232.x), q4_12,
|
||||
fma(FLOAT_TYPE(by232.y), q4_13,
|
||||
fma(FLOAT_TYPE(by248.x), q4_14,
|
||||
FLOAT_TYPE(by248.y) * q4_15)));
|
||||
const FLOAT_TYPE smin =
|
||||
fma(FLOAT_TYPE(by10.x) + FLOAT_TYPE(by10.y) + FLOAT_TYPE(by116.x) + FLOAT_TYPE(by116.y), sc2,
|
||||
fma(FLOAT_TYPE(by132.x) + FLOAT_TYPE(by132.y) + FLOAT_TYPE(by148.x) + FLOAT_TYPE(by148.y), sc3,
|
||||
fma(FLOAT_TYPE(by20.x) + FLOAT_TYPE(by20.y) + FLOAT_TYPE(by216.x) + FLOAT_TYPE(by216.y), sc6,
|
||||
(FLOAT_TYPE(by232.x) + FLOAT_TYPE(by232.y) + FLOAT_TYPE(by248.x) + FLOAT_TYPE(by248.y)) * sc7)));
|
||||
temp[n] = fma(dall, fma(sx, sc0, fma(sy, sc1, fma(sz, sc4, sw * sc5))), fma(-dmin, smin, temp[n]));
|
||||
[[unroll]] for (uint j = 0; j < NUM_COLS; ++j) {
|
||||
B_TYPE_VEC2 by10 = data_b_v2[(j*p.batch_stride_b + b_offset + y1_idx) / 2];
|
||||
B_TYPE_VEC2 by116 = data_b_v2[(j*p.batch_stride_b + b_offset + y1_idx) / 2 + 8];
|
||||
B_TYPE_VEC2 by132 = data_b_v2[(j*p.batch_stride_b + b_offset + y1_idx) / 2 + 16];
|
||||
B_TYPE_VEC2 by148 = data_b_v2[(j*p.batch_stride_b + b_offset + y1_idx) / 2 + 24];
|
||||
B_TYPE_VEC2 by20 = data_b_v2[(j*p.batch_stride_b + b_offset + y2_idx) / 2];
|
||||
B_TYPE_VEC2 by216 = data_b_v2[(j*p.batch_stride_b + b_offset + y2_idx) / 2 + 8];
|
||||
B_TYPE_VEC2 by232 = data_b_v2[(j*p.batch_stride_b + b_offset + y2_idx) / 2 + 16];
|
||||
B_TYPE_VEC2 by248 = data_b_v2[(j*p.batch_stride_b + b_offset + y2_idx) / 2 + 24];
|
||||
|
||||
const FLOAT_TYPE sx =
|
||||
fma(FLOAT_TYPE(by10.x), q4_0,
|
||||
fma(FLOAT_TYPE(by10.y), q4_1,
|
||||
fma(FLOAT_TYPE(by116.x), q4_2,
|
||||
FLOAT_TYPE(by116.y) * q4_3)));
|
||||
const FLOAT_TYPE sy =
|
||||
fma(FLOAT_TYPE(by132.x), q4_4,
|
||||
fma(FLOAT_TYPE(by132.y), q4_5,
|
||||
fma(FLOAT_TYPE(by148.x), q4_6,
|
||||
FLOAT_TYPE(by148.y) * q4_7)));
|
||||
const FLOAT_TYPE sz =
|
||||
fma(FLOAT_TYPE(by20.x), q4_8,
|
||||
fma(FLOAT_TYPE(by20.y), q4_9,
|
||||
fma(FLOAT_TYPE(by216.x), q4_10,
|
||||
FLOAT_TYPE(by216.y) * q4_11)));
|
||||
const FLOAT_TYPE sw =
|
||||
fma(FLOAT_TYPE(by232.x), q4_12,
|
||||
fma(FLOAT_TYPE(by232.y), q4_13,
|
||||
fma(FLOAT_TYPE(by248.x), q4_14,
|
||||
FLOAT_TYPE(by248.y) * q4_15)));
|
||||
const FLOAT_TYPE smin =
|
||||
fma(FLOAT_TYPE(by10.x) + FLOAT_TYPE(by10.y) + FLOAT_TYPE(by116.x) + FLOAT_TYPE(by116.y), sc2,
|
||||
fma(FLOAT_TYPE(by132.x) + FLOAT_TYPE(by132.y) + FLOAT_TYPE(by148.x) + FLOAT_TYPE(by148.y), sc3,
|
||||
fma(FLOAT_TYPE(by20.x) + FLOAT_TYPE(by20.y) + FLOAT_TYPE(by216.x) + FLOAT_TYPE(by216.y), sc6,
|
||||
(FLOAT_TYPE(by232.x) + FLOAT_TYPE(by232.y) + FLOAT_TYPE(by248.x) + FLOAT_TYPE(by248.y)) * sc7)));
|
||||
temp[j][n] = fma(dall, fma(sx, sc0, fma(sy, sc1, fma(sz, sc4, sw * sc5))), fma(-dmin, smin, temp[j][n]));
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// sum up partial sums and write back result
|
||||
[[unroll]] for (uint n = 0; n < num_rows; ++n) {
|
||||
tmpsh[n][tid] = temp[n];
|
||||
}
|
||||
barrier();
|
||||
[[unroll]] for (uint s = BLOCK_SIZE/2; s > 0; s >>= 1) {
|
||||
if (tid < s) {
|
||||
[[unroll]] for (uint n = 0; n < num_rows; ++n) {
|
||||
tmpsh[n][tid] += tmpsh[n][tid + s];
|
||||
}
|
||||
}
|
||||
barrier();
|
||||
}
|
||||
if (tid == 0) {
|
||||
[[unroll]] for (uint n = 0; n < num_rows; ++n) {
|
||||
data_d[d_offset + first_row + n] = D_TYPE(tmpsh[n][0]);
|
||||
}
|
||||
}
|
||||
reduce_result(temp, d_offset, first_row, num_rows, tid);
|
||||
}
|
||||
|
||||
void main() {
|
||||
|
@ -6,11 +6,6 @@
|
||||
|
||||
layout(local_size_x_id = 0, local_size_y = 1, local_size_z = 1) in;
|
||||
|
||||
layout (constant_id = 0) const uint BLOCK_SIZE = 32;
|
||||
layout (constant_id = 1) const uint NUM_ROWS = 1;
|
||||
|
||||
shared FLOAT_TYPE tmpsh[NUM_ROWS][BLOCK_SIZE];
|
||||
|
||||
void compute_outputs(const uint32_t first_row, const uint32_t num_rows) {
|
||||
uint a_offset, b_offset, d_offset;
|
||||
get_offsets(a_offset, b_offset, d_offset);
|
||||
@ -36,20 +31,17 @@ void compute_outputs(const uint32_t first_row, const uint32_t num_rows) {
|
||||
const uint s_offset = 8*v_im + is;
|
||||
const uint y_offset = 128*v_im + l0;
|
||||
|
||||
FLOAT_TYPE temp[NUM_ROWS];
|
||||
FLOAT_TYPE temp[NUM_COLS][NUM_ROWS];
|
||||
|
||||
[[unroll]] for (uint i = 0; i < NUM_ROWS; ++i) {
|
||||
temp[i] = FLOAT_TYPE(0);
|
||||
[[unroll]] for (uint j = 0; j < NUM_COLS; ++j) {
|
||||
[[unroll]] for (uint i = 0; i < NUM_ROWS; ++i) {
|
||||
temp[j][i] = FLOAT_TYPE(0);
|
||||
}
|
||||
}
|
||||
|
||||
[[unroll]] for (uint i = ix; i < num_blocks_per_row; i += it_size) {
|
||||
const uint y_idx = i * QUANT_K + y_offset;
|
||||
|
||||
B_TYPE_VEC4 by0 = data_b_v4[(b_offset + y_idx) / 4];
|
||||
B_TYPE_VEC4 by32 = data_b_v4[(b_offset + y_idx) / 4 + 8];
|
||||
B_TYPE_VEC4 by64 = data_b_v4[(b_offset + y_idx) / 4 + 16];
|
||||
B_TYPE_VEC4 by96 = data_b_v4[(b_offset + y_idx) / 4 + 24];
|
||||
|
||||
[[unroll]] for (uint n = 0; n < num_rows; ++n) {
|
||||
const uint ib0 = a_offset / QUANT_K + (first_row+n)*num_blocks_per_row;
|
||||
const FLOAT_TYPE d = FLOAT_TYPE(data_a[ib0 + i].d);
|
||||
@ -84,35 +76,25 @@ void compute_outputs(const uint32_t first_row, const uint32_t num_rows) {
|
||||
uvec4 q2 = uvec4(unpack8(q2_u32));
|
||||
uvec4 q3 = uvec4(unpack8(q3_u32));
|
||||
|
||||
FLOAT_TYPE sum = FLOAT_TYPE(0.0);
|
||||
[[unroll]] for (int l = 0; l < 4; ++l) {
|
||||
sum = fma(FLOAT_TYPE(by0[l]) * scales[0], FLOAT_TYPE(int8_t(q0[l]) - 32),
|
||||
fma(FLOAT_TYPE(by32[l]) * scales[1], FLOAT_TYPE(int8_t(q1[l]) - 32),
|
||||
fma(FLOAT_TYPE(by64[l]) * scales[2], FLOAT_TYPE(int8_t(q2[l]) - 32),
|
||||
fma(FLOAT_TYPE(by96[l]) * scales[3], FLOAT_TYPE(int8_t(q3[l]) - 32), sum))));
|
||||
[[unroll]] for (uint j = 0; j < NUM_COLS; ++j) {
|
||||
B_TYPE_VEC4 by0 = data_b_v4[(j*p.batch_stride_b + b_offset + y_idx) / 4];
|
||||
B_TYPE_VEC4 by32 = data_b_v4[(j*p.batch_stride_b + b_offset + y_idx) / 4 + 8];
|
||||
B_TYPE_VEC4 by64 = data_b_v4[(j*p.batch_stride_b + b_offset + y_idx) / 4 + 16];
|
||||
B_TYPE_VEC4 by96 = data_b_v4[(j*p.batch_stride_b + b_offset + y_idx) / 4 + 24];
|
||||
|
||||
FLOAT_TYPE sum = FLOAT_TYPE(0.0);
|
||||
[[unroll]] for (int l = 0; l < 4; ++l) {
|
||||
sum = fma(FLOAT_TYPE(by0[l]) * scales[0], FLOAT_TYPE(int8_t(q0[l]) - 32),
|
||||
fma(FLOAT_TYPE(by32[l]) * scales[1], FLOAT_TYPE(int8_t(q1[l]) - 32),
|
||||
fma(FLOAT_TYPE(by64[l]) * scales[2], FLOAT_TYPE(int8_t(q2[l]) - 32),
|
||||
fma(FLOAT_TYPE(by96[l]) * scales[3], FLOAT_TYPE(int8_t(q3[l]) - 32), sum))));
|
||||
}
|
||||
temp[j][n] += sum * d;
|
||||
}
|
||||
temp[n] += sum * d;
|
||||
}
|
||||
}
|
||||
|
||||
// sum up partial sums and write back result
|
||||
[[unroll]] for (uint n = 0; n < num_rows; ++n) {
|
||||
tmpsh[n][tid] = temp[n];
|
||||
}
|
||||
barrier();
|
||||
[[unroll]] for (uint s = BLOCK_SIZE/2; s > 0; s >>= 1) {
|
||||
if (tid < s) {
|
||||
[[unroll]] for (uint n = 0; n < num_rows; ++n) {
|
||||
tmpsh[n][tid] += tmpsh[n][tid + s];
|
||||
}
|
||||
}
|
||||
barrier();
|
||||
}
|
||||
if (tid == 0) {
|
||||
[[unroll]] for (uint n = 0; n < num_rows; ++n) {
|
||||
data_d[d_offset + first_row + n] = D_TYPE(tmpsh[n][0]);
|
||||
}
|
||||
}
|
||||
reduce_result(temp, d_offset, first_row, num_rows, tid);
|
||||
}
|
||||
|
||||
void main() {
|
||||
|
@ -3937,7 +3937,7 @@ static std::vector<std::unique_ptr<test_case>> make_test_cases_perf() {
|
||||
test_cases.emplace_back(new test_argmax(GGML_TYPE_F32, {1024, 10, 1, 1}));
|
||||
test_cases.emplace_back(new test_argmax(GGML_TYPE_F32, {32000, 512, 1, 1}));
|
||||
|
||||
for (int bs : {1, 512}) {
|
||||
for (int bs : {1, 2, 3, 4, 5, 8, 512}) {
|
||||
for (ggml_type type_a : all_types) {
|
||||
for (ggml_type type_b : {GGML_TYPE_F32}) {
|
||||
test_cases.emplace_back(new test_mul_mat(type_a, type_b, 4096, bs, 14336, {1, 1}, {1, 1}));
|
||||
|
Loading…
Reference in New Issue
Block a user