mirror of
https://github.com/ggerganov/llama.cpp.git
synced 2025-01-11 21:10:24 +01:00
rework convert.py to read hyper-parameters from config.json (#1958)
* Read hyper-parameters from HuggingFace-transformer config.json, if they exist, and fall back to guessing, like before otherwise. This allows converting open_llama 3B and other non-standard model designs.
This commit is contained in:
parent
bbca06e269
commit
7487137227
91
convert.py
91
convert.py
@ -130,6 +130,14 @@ TENSORS_LIST = make_tensors_list()
|
|||||||
TENSORS_SET = set(TENSORS_LIST)
|
TENSORS_SET = set(TENSORS_LIST)
|
||||||
|
|
||||||
|
|
||||||
|
def find_n_mult(n_ff: int, n_embd: int) -> int:
|
||||||
|
# hardcoded magic range
|
||||||
|
for n_mult in range(256, 1, -1):
|
||||||
|
calc_ff = (((8*n_embd) // 3 + n_mult - 1) // n_mult)*n_mult
|
||||||
|
if calc_ff == n_ff:
|
||||||
|
return n_mult
|
||||||
|
return 1
|
||||||
|
|
||||||
@dataclass
|
@dataclass
|
||||||
class Params:
|
class Params:
|
||||||
n_vocab: int
|
n_vocab: int
|
||||||
@ -137,21 +145,61 @@ class Params:
|
|||||||
n_mult: int
|
n_mult: int
|
||||||
n_head: int
|
n_head: int
|
||||||
n_layer: int
|
n_layer: int
|
||||||
file_type: GGMLFileType
|
|
||||||
|
|
||||||
@staticmethod
|
@staticmethod
|
||||||
def guessed(model: 'LazyModel', file_type: GGMLFileType) -> 'Params':
|
def guessed(model: 'LazyModel') -> 'Params':
|
||||||
n_vocab, n_embd = model["tok_embeddings.weight"].shape
|
# try transformer naming first
|
||||||
|
n_vocab, n_embd = model["model.embed_tokens.weight"].shape if "model.embed_tokens.weight" in model else model["tok_embeddings.weight"].shape
|
||||||
|
|
||||||
|
# try transformer naming first
|
||||||
|
if "model.layers.0.self_attn.q_proj.weight" in model:
|
||||||
|
n_layer=next(i for i in itertools.count() if f"model.layers.{i}.self_attn.q_proj.weight" not in model)
|
||||||
|
else:
|
||||||
|
n_layer=next(i for i in itertools.count() if f"layers.{i}.attention.wq.weight" not in model)
|
||||||
|
|
||||||
|
n_head=n_embd // 128 # guessed
|
||||||
|
|
||||||
return Params(
|
return Params(
|
||||||
n_vocab=n_vocab,
|
n_vocab=n_vocab,
|
||||||
n_embd=n_embd,
|
n_embd=n_embd,
|
||||||
n_mult=256,
|
n_mult=256,
|
||||||
n_head=n_embd // 128,
|
n_head=n_head,
|
||||||
n_layer=next(i for i in itertools.count() if f"layers.{i}.attention.wq.weight" not in model),
|
n_layer=n_layer,
|
||||||
file_type=file_type,
|
|
||||||
)
|
)
|
||||||
|
|
||||||
|
@staticmethod
|
||||||
|
def loadHFTransformerJson(model: 'LazyModel', config_path: 'Path') -> 'Params':
|
||||||
|
config = json.load(open(config_path))
|
||||||
|
|
||||||
|
n_vocab = config["vocab_size"];
|
||||||
|
n_embd = config["hidden_size"];
|
||||||
|
n_head = config["num_attention_heads"];
|
||||||
|
n_layer = config["num_hidden_layers"];
|
||||||
|
n_ff = config["intermediate_size"];
|
||||||
|
|
||||||
|
n_mult = find_n_mult(n_ff, n_embd);
|
||||||
|
|
||||||
|
return Params(
|
||||||
|
n_vocab=n_vocab,
|
||||||
|
n_embd=n_embd,
|
||||||
|
n_mult=n_mult,
|
||||||
|
n_head=n_head,
|
||||||
|
n_layer=n_layer,
|
||||||
|
)
|
||||||
|
|
||||||
|
@staticmethod
|
||||||
|
def load(model_plus: 'ModelPlus') -> 'Params':
|
||||||
|
orig_config_path = model_plus.paths[0].parent / "params.json"
|
||||||
|
hf_transformer_config_path = model_plus.paths[0].parent / "config.json"
|
||||||
|
|
||||||
|
if hf_transformer_config_path.exists():
|
||||||
|
params = Params.loadHFTransformerJson(model_plus.model, hf_transformer_config_path)
|
||||||
|
else:
|
||||||
|
params = Params.guessed(model_plus.model)
|
||||||
|
|
||||||
|
print(f'params: n_vocab:{params.n_vocab} n_embd:{params.n_embd} n_mult:{params.n_mult} n_head:{params.n_head} n_layer:{params.n_layer}')
|
||||||
|
return params
|
||||||
|
|
||||||
|
|
||||||
class SentencePieceVocab:
|
class SentencePieceVocab:
|
||||||
def __init__(self, fname_tokenizer: Path, fname_added_tokens: Optional[Path]) -> None:
|
def __init__(self, fname_tokenizer: Path, fname_added_tokens: Optional[Path]) -> None:
|
||||||
@ -595,18 +643,17 @@ def permute_lazy(lazy_tensor: LazyTensor, n_head: int) -> LazyTensor:
|
|||||||
return LazyTensor(load, lazy_tensor.shape, lazy_tensor.data_type, f'permute({n_head}) ' + lazy_tensor.description)
|
return LazyTensor(load, lazy_tensor.shape, lazy_tensor.data_type, f'permute({n_head}) ' + lazy_tensor.description)
|
||||||
|
|
||||||
|
|
||||||
def convert_transformers_to_orig(model: LazyModel) -> LazyModel:
|
def convert_transformers_to_orig(model: LazyModel, params: Params) -> LazyModel:
|
||||||
out: LazyModel = {}
|
out: LazyModel = {}
|
||||||
out["tok_embeddings.weight"] = model["model.embed_tokens.weight"]
|
out["tok_embeddings.weight"] = model["model.embed_tokens.weight"]
|
||||||
out["norm.weight"] = model["model.norm.weight"]
|
out["norm.weight"] = model["model.norm.weight"]
|
||||||
out["output.weight"] = model["lm_head.weight"]
|
out["output.weight"] = model["lm_head.weight"]
|
||||||
|
|
||||||
n_head = model["model.layers.0.self_attn.q_proj.weight"].shape[1] // 128
|
|
||||||
for i in itertools.count():
|
for i in itertools.count():
|
||||||
if f"model.layers.{i}.self_attn.q_proj.weight" not in model:
|
if f"model.layers.{i}.self_attn.q_proj.weight" not in model:
|
||||||
break
|
break
|
||||||
out[f"layers.{i}.attention.wq.weight"] = permute_lazy(model[f"model.layers.{i}.self_attn.q_proj.weight"], n_head)
|
out[f"layers.{i}.attention.wq.weight"] = permute_lazy(model[f"model.layers.{i}.self_attn.q_proj.weight"], params.n_head)
|
||||||
out[f"layers.{i}.attention.wk.weight"] = permute_lazy(model[f"model.layers.{i}.self_attn.k_proj.weight"], n_head)
|
out[f"layers.{i}.attention.wk.weight"] = permute_lazy(model[f"model.layers.{i}.self_attn.k_proj.weight"], params.n_head)
|
||||||
out[f"layers.{i}.attention.wv.weight"] = model[f"model.layers.{i}.self_attn.v_proj.weight"]
|
out[f"layers.{i}.attention.wv.weight"] = model[f"model.layers.{i}.self_attn.v_proj.weight"]
|
||||||
out[f"layers.{i}.attention.wo.weight"] = model[f"model.layers.{i}.self_attn.o_proj.weight"]
|
out[f"layers.{i}.attention.wo.weight"] = model[f"model.layers.{i}.self_attn.o_proj.weight"]
|
||||||
|
|
||||||
@ -920,7 +967,7 @@ class OutputFile:
|
|||||||
def __init__(self, fname_out: Path) -> None:
|
def __init__(self, fname_out: Path) -> None:
|
||||||
self.fout = open(fname_out, "wb")
|
self.fout = open(fname_out, "wb")
|
||||||
|
|
||||||
def write_file_header(self, params: Params) -> None:
|
def write_file_header(self, params: Params, file_type: GGMLFileType) -> None:
|
||||||
self.fout.write(b"ggjt"[::-1]) # magic
|
self.fout.write(b"ggjt"[::-1]) # magic
|
||||||
values = [
|
values = [
|
||||||
1, # file version
|
1, # file version
|
||||||
@ -930,7 +977,7 @@ class OutputFile:
|
|||||||
params.n_head,
|
params.n_head,
|
||||||
params.n_layer,
|
params.n_layer,
|
||||||
params.n_embd // params.n_head, # rot (obsolete)
|
params.n_embd // params.n_head, # rot (obsolete)
|
||||||
params.file_type.value,
|
file_type.value,
|
||||||
]
|
]
|
||||||
self.fout.write(struct.pack("i" * len(values), *values))
|
self.fout.write(struct.pack("i" * len(values), *values))
|
||||||
|
|
||||||
@ -958,10 +1005,10 @@ class OutputFile:
|
|||||||
of.fout.close()
|
of.fout.close()
|
||||||
|
|
||||||
@staticmethod
|
@staticmethod
|
||||||
def write_all(fname_out: Path, params: Params, model: LazyModel, vocab: Vocab) -> None:
|
def write_all(fname_out: Path, params: Params, file_type: GGMLFileType, model: LazyModel, vocab: Vocab) -> None:
|
||||||
check_vocab_size(params, vocab)
|
check_vocab_size(params, vocab)
|
||||||
of = OutputFile(fname_out)
|
of = OutputFile(fname_out)
|
||||||
of.write_file_header(params)
|
of.write_file_header(params, file_type)
|
||||||
print("Writing vocab...")
|
print("Writing vocab...")
|
||||||
of.write_vocab(vocab)
|
of.write_vocab(vocab)
|
||||||
|
|
||||||
@ -997,11 +1044,11 @@ def pick_output_type(model: LazyModel, output_type_str: Optional[str]) -> GGMLFi
|
|||||||
raise Exception(f"Unexpected combination of types: {name_to_type}")
|
raise Exception(f"Unexpected combination of types: {name_to_type}")
|
||||||
|
|
||||||
|
|
||||||
def do_necessary_conversions(model: LazyModel) -> LazyModel:
|
def do_necessary_conversions(model: LazyModel, params: Params) -> LazyModel:
|
||||||
model = handle_quantization(model)
|
model = handle_quantization(model)
|
||||||
|
|
||||||
if "lm_head.weight" in model:
|
if "lm_head.weight" in model:
|
||||||
model = convert_transformers_to_orig(model)
|
model = convert_transformers_to_orig(model, params)
|
||||||
model = filter_and_sort_tensors(model)
|
model = filter_and_sort_tensors(model)
|
||||||
|
|
||||||
return model
|
return model
|
||||||
@ -1107,14 +1154,14 @@ def load_vocab(path: Path) -> SentencePieceVocab:
|
|||||||
return SentencePieceVocab(path, added_tokens_path if added_tokens_path.exists() else None)
|
return SentencePieceVocab(path, added_tokens_path if added_tokens_path.exists() else None)
|
||||||
|
|
||||||
|
|
||||||
def default_outfile(model_paths: List[Path], params: Params) -> Path:
|
def default_outfile(model_paths: List[Path], file_type: GGMLFileType) -> Path:
|
||||||
namestr = {
|
namestr = {
|
||||||
GGMLFileType.AllF32: "f32",
|
GGMLFileType.AllF32: "f32",
|
||||||
GGMLFileType.MostlyF16: "f16",
|
GGMLFileType.MostlyF16: "f16",
|
||||||
GGMLFileType.MostlyQ4_0: "q4_0",
|
GGMLFileType.MostlyQ4_0: "q4_0",
|
||||||
GGMLFileType.MostlyQ4_1: "q4_1",
|
GGMLFileType.MostlyQ4_1: "q4_1",
|
||||||
GGMLFileType.PerLayerIsQ4_1: "q4_1",
|
GGMLFileType.PerLayerIsQ4_1: "q4_1",
|
||||||
}[params.file_type]
|
}[file_type]
|
||||||
ret = model_paths[0].parent / f"ggml-model-{namestr}.bin"
|
ret = model_paths[0].parent / f"ggml-model-{namestr}.bin"
|
||||||
if ret in model_paths:
|
if ret in model_paths:
|
||||||
sys.stderr.write(
|
sys.stderr.write(
|
||||||
@ -1164,13 +1211,13 @@ def main(args_in: Optional[List[str]] = None) -> None:
|
|||||||
else:
|
else:
|
||||||
vocab_dir = args.vocab_dir if args.vocab_dir else model_plus.paths[0].parent
|
vocab_dir = args.vocab_dir if args.vocab_dir else model_plus.paths[0].parent
|
||||||
vocab = load_vocab(vocab_dir)
|
vocab = load_vocab(vocab_dir)
|
||||||
|
params = Params.load(model_plus)
|
||||||
model = model_plus.model
|
model = model_plus.model
|
||||||
model = do_necessary_conversions(model)
|
model = do_necessary_conversions(model, params)
|
||||||
output_type = pick_output_type(model, args.outtype)
|
output_type = pick_output_type(model, args.outtype)
|
||||||
model = convert_to_output_type(model, output_type)
|
model = convert_to_output_type(model, output_type)
|
||||||
params = Params.guessed(model, output_type)
|
outfile = args.outfile or default_outfile(model_plus.paths, output_type)
|
||||||
outfile = args.outfile or default_outfile(model_plus.paths, params)
|
OutputFile.write_all(outfile, params, output_type, model, vocab)
|
||||||
OutputFile.write_all(outfile, params, model, vocab)
|
|
||||||
print(f"Wrote {outfile}")
|
print(f"Wrote {outfile}")
|
||||||
|
|
||||||
|
|
||||||
|
Loading…
x
Reference in New Issue
Block a user