mirror of
https://github.com/ggerganov/llama.cpp.git
synced 2025-01-11 21:10:24 +01:00
Allow "quantizing" to f16 and f32 (#1787)
* Allow "quantizing" to f16 and f32 Fix an issue where quantizing didn't respect LLAMA_NO_K_QUANTS Add brief help to the list of quantization types in the quantize tool Ignore case for quantization type arguments in the quantize tool
This commit is contained in:
parent
74a6d922f1
commit
74d4cfa343
1
Makefile
1
Makefile
@ -127,6 +127,7 @@ endif
|
|||||||
|
|
||||||
ifndef LLAMA_NO_K_QUANTS
|
ifndef LLAMA_NO_K_QUANTS
|
||||||
CFLAGS += -DGGML_USE_K_QUANTS
|
CFLAGS += -DGGML_USE_K_QUANTS
|
||||||
|
CXXFLAGS += -DGGML_USE_K_QUANTS
|
||||||
OBJS += k_quants.o
|
OBJS += k_quants.o
|
||||||
endif
|
endif
|
||||||
|
|
||||||
|
@ -4,43 +4,135 @@
|
|||||||
|
|
||||||
#include <cstdio>
|
#include <cstdio>
|
||||||
#include <cstring>
|
#include <cstring>
|
||||||
#include <map>
|
#include <vector>
|
||||||
#include <string>
|
#include <string>
|
||||||
|
|
||||||
static const std::map<std::string, llama_ftype> LLAMA_FTYPE_MAP = {
|
struct quant_option {
|
||||||
{"q4_0", LLAMA_FTYPE_MOSTLY_Q4_0},
|
std::string name;
|
||||||
{"q4_1", LLAMA_FTYPE_MOSTLY_Q4_1},
|
llama_ftype ftype;
|
||||||
{"q5_0", LLAMA_FTYPE_MOSTLY_Q5_0},
|
std::string desc;
|
||||||
{"q5_1", LLAMA_FTYPE_MOSTLY_Q5_1},
|
|
||||||
{"q8_0", LLAMA_FTYPE_MOSTLY_Q8_0},
|
|
||||||
{"q2_K", LLAMA_FTYPE_MOSTLY_Q2_K},
|
|
||||||
{"q3_K", LLAMA_FTYPE_MOSTLY_Q3_K_M},
|
|
||||||
{"q3_K_S", LLAMA_FTYPE_MOSTLY_Q3_K_S},
|
|
||||||
{"q3_K_M", LLAMA_FTYPE_MOSTLY_Q3_K_M},
|
|
||||||
{"q3_K_L", LLAMA_FTYPE_MOSTLY_Q3_K_L},
|
|
||||||
{"q4_K", LLAMA_FTYPE_MOSTLY_Q4_K_M},
|
|
||||||
{"q4_K_S", LLAMA_FTYPE_MOSTLY_Q4_K_S},
|
|
||||||
{"q4_K_M", LLAMA_FTYPE_MOSTLY_Q4_K_M},
|
|
||||||
{"q5_K", LLAMA_FTYPE_MOSTLY_Q5_K_M},
|
|
||||||
{"q5_K_S", LLAMA_FTYPE_MOSTLY_Q5_K_S},
|
|
||||||
{"q5_K_M", LLAMA_FTYPE_MOSTLY_Q5_K_M},
|
|
||||||
{"q6_K", LLAMA_FTYPE_MOSTLY_Q6_K},
|
|
||||||
};
|
};
|
||||||
|
|
||||||
bool try_parse_ftype(const std::string & ftype_str, llama_ftype & ftype, std::string & ftype_str_out) {
|
static const std::vector<struct quant_option> QUANT_OPTIONS = {
|
||||||
auto it = LLAMA_FTYPE_MAP.find(ftype_str);
|
{
|
||||||
if (it != LLAMA_FTYPE_MAP.end()) {
|
"Q4_0",
|
||||||
ftype = it->second;
|
LLAMA_FTYPE_MOSTLY_Q4_0,
|
||||||
ftype_str_out = it->first;
|
" 3.50G, +0.2499 ppl @ 7B - small, very high quality loss - legacy, prefer using Q3_K_M",
|
||||||
return true;
|
},
|
||||||
|
{
|
||||||
|
"Q4_1",
|
||||||
|
LLAMA_FTYPE_MOSTLY_Q4_1,
|
||||||
|
" 3.90G, +0.1846 ppl @ 7B - small, substantial quality loss - legacy, prefer using Q3_K_L",
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"Q5_0",
|
||||||
|
LLAMA_FTYPE_MOSTLY_Q5_0,
|
||||||
|
" 4.30G, +0.0796 ppl @ 7B - medium, balanced quality - legacy, prefer using Q4_K_M",
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"Q5_1",
|
||||||
|
LLAMA_FTYPE_MOSTLY_Q5_1,
|
||||||
|
" 4.70G, +0.0415 ppl @ 7B - medium, low quality loss - legacy, prefer using Q5_K_M",
|
||||||
|
},
|
||||||
|
#ifdef GGML_USE_K_QUANTS
|
||||||
|
{
|
||||||
|
"Q2_K",
|
||||||
|
LLAMA_FTYPE_MOSTLY_Q2_K,
|
||||||
|
" 2.67G, +0.8698 ppl @ 7B - smallest, extreme quality loss - not recommended",
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"Q3_K",
|
||||||
|
LLAMA_FTYPE_MOSTLY_Q3_K_M,
|
||||||
|
"alias for Q3_K_M"
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"Q3_K_S",
|
||||||
|
LLAMA_FTYPE_MOSTLY_Q3_K_S,
|
||||||
|
" 2.75G, +0.5505 ppl @ 7B - very small, very high quality loss",
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"Q3_K_M",
|
||||||
|
LLAMA_FTYPE_MOSTLY_Q3_K_M,
|
||||||
|
" 3.06G, +0.2437 ppl @ 7B - very small, very high quality loss",
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"Q3_K_L",
|
||||||
|
LLAMA_FTYPE_MOSTLY_Q3_K_L,
|
||||||
|
" 3.35G, +0.1803 ppl @ 7B - small, substantial quality loss",
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"Q4_K",
|
||||||
|
LLAMA_FTYPE_MOSTLY_Q4_K_M,
|
||||||
|
"alias for Q4_K_M",
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"Q4_K_S",
|
||||||
|
LLAMA_FTYPE_MOSTLY_Q4_K_S,
|
||||||
|
" 3.56G, +0.1149 ppl @ 7B - small, significant quality loss",
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"Q4_K_M",
|
||||||
|
LLAMA_FTYPE_MOSTLY_Q4_K_M,
|
||||||
|
" 3.80G, +0.0535 ppl @ 7B - medium, balanced quality - *recommended*",
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"Q5_K",
|
||||||
|
LLAMA_FTYPE_MOSTLY_Q5_K_M,
|
||||||
|
"alias for Q5_K_M",
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"Q5_K_S",
|
||||||
|
LLAMA_FTYPE_MOSTLY_Q5_K_S,
|
||||||
|
" 4.33G, +0.0353 ppl @ 7B - large, low quality loss - *recommended*",
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"Q5_K_M",
|
||||||
|
LLAMA_FTYPE_MOSTLY_Q5_K_M,
|
||||||
|
" 4.45G, +0.0142 ppl @ 7B - large, very low quality loss - *recommended*",
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"Q6_K",
|
||||||
|
LLAMA_FTYPE_MOSTLY_Q6_K,
|
||||||
|
" 5.15G, +0.0044 ppl @ 7B - very large, extremely low quality loss",
|
||||||
|
},
|
||||||
|
#endif
|
||||||
|
{
|
||||||
|
"Q8_0",
|
||||||
|
LLAMA_FTYPE_MOSTLY_Q8_0,
|
||||||
|
" 6.70G, +0.0004 ppl @ 7B - very large, extremely low quality loss - not recommended",
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"F16",
|
||||||
|
LLAMA_FTYPE_MOSTLY_F16,
|
||||||
|
"13.00G @ 7B - extremely large, virtually no quality loss - not recommended",
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"F32",
|
||||||
|
LLAMA_FTYPE_ALL_F32,
|
||||||
|
"26.00G @ 7B - absolutely huge, lossless - not recommended",
|
||||||
|
},
|
||||||
|
};
|
||||||
|
|
||||||
|
|
||||||
|
bool try_parse_ftype(const std::string & ftype_str_in, llama_ftype & ftype, std::string & ftype_str_out) {
|
||||||
|
std::string ftype_str;
|
||||||
|
|
||||||
|
for (auto ch : ftype_str_in) {
|
||||||
|
ftype_str.push_back(std::toupper(ch));
|
||||||
|
}
|
||||||
|
for (auto & it : QUANT_OPTIONS) {
|
||||||
|
if (it.name == ftype_str) {
|
||||||
|
ftype = it.ftype;
|
||||||
|
ftype_str_out = it.name;
|
||||||
|
return true;
|
||||||
|
}
|
||||||
}
|
}
|
||||||
// try to parse as an integer
|
|
||||||
try {
|
try {
|
||||||
int ftype_int = std::stoi(ftype_str);
|
int ftype_int = std::stoi(ftype_str);
|
||||||
for (auto it = LLAMA_FTYPE_MAP.begin(); it != LLAMA_FTYPE_MAP.end(); it++) {
|
for (auto & it : QUANT_OPTIONS) {
|
||||||
if (it->second == ftype_int) {
|
if (it.ftype == ftype_int) {
|
||||||
ftype = it->second;
|
ftype = it.ftype;
|
||||||
ftype_str_out = it->first;
|
ftype_str_out = it.name;
|
||||||
return true;
|
return true;
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
@ -52,15 +144,15 @@ bool try_parse_ftype(const std::string & ftype_str, llama_ftype & ftype, std::st
|
|||||||
}
|
}
|
||||||
|
|
||||||
// usage:
|
// usage:
|
||||||
// ./quantize models/llama/ggml-model.bin [models/llama/ggml-model-quant.bin] type [nthreads]
|
// ./quantize [--allow-requantize] [--leave-output-tensor] models/llama/ggml-model.bin [models/llama/ggml-model-quant.bin] type [nthreads]
|
||||||
//
|
//
|
||||||
void usage(const char * executable) {
|
void usage(const char * executable) {
|
||||||
fprintf(stderr, "usage: %s [--help] [--allow-requantize] [--leave-output-tensor] model-f32.bin [model-quant.bin] type [nthreads]\n", executable);
|
fprintf(stderr, "usage: %s [--help] [--allow-requantize] [--leave-output-tensor] model-f32.bin [model-quant.bin] type [nthreads]\n\n", executable);
|
||||||
fprintf(stderr, " --allow-requantize: Allows requantizing tensors that have already been quantized. Warning: This can severely reduce quality compared to quantizing from 16bit or 32bit\n");
|
fprintf(stderr, " --allow-requantize: Allows requantizing tensors that have already been quantized. Warning: This can severely reduce quality compared to quantizing from 16bit or 32bit\n");
|
||||||
fprintf(stderr, " --leave-output-tensor: Will leave output.weight un(re)quantized. Increases model size but may also increase quality, especially when requantizing\n");
|
fprintf(stderr, " --leave-output-tensor: Will leave output.weight un(re)quantized. Increases model size but may also increase quality, especially when requantizing\n");
|
||||||
fprintf(stderr, "Allowed quantization types:\n");
|
fprintf(stderr, "\nAllowed quantization types:\n");
|
||||||
for (auto it = LLAMA_FTYPE_MAP.begin(); it != LLAMA_FTYPE_MAP.end(); it++) {
|
for (auto & it : QUANT_OPTIONS) {
|
||||||
fprintf(stderr, " type = \"%s\" or %d\n", it->first.c_str(), it->second);
|
printf(" %2d or %-6s : %s\n", it.ftype, it.name.c_str(), it.desc.c_str());
|
||||||
}
|
}
|
||||||
exit(1);
|
exit(1);
|
||||||
}
|
}
|
||||||
|
12
ggml.c
12
ggml.c
@ -16301,6 +16301,18 @@ size_t ggml_quantize_chunk(enum ggml_type type, const float * src, void * dst, i
|
|||||||
result = ggml_quantize_q6_K(src + start, block, n, n, hist);
|
result = ggml_quantize_q6_K(src + start, block, n, n, hist);
|
||||||
} break;
|
} break;
|
||||||
#endif
|
#endif
|
||||||
|
case GGML_TYPE_F16:
|
||||||
|
{
|
||||||
|
int elemsize = sizeof(ggml_fp16_t);
|
||||||
|
ggml_fp32_to_fp16_row(src + start, (ggml_fp16_t *)dst + start, n);
|
||||||
|
result = n * elemsize;
|
||||||
|
} break;
|
||||||
|
case GGML_TYPE_F32:
|
||||||
|
{
|
||||||
|
int elemsize = sizeof(float);
|
||||||
|
result = n * elemsize;
|
||||||
|
memcpy((uint8_t *)dst + start * elemsize, src + start, result);
|
||||||
|
} break;
|
||||||
default:
|
default:
|
||||||
assert(false);
|
assert(false);
|
||||||
}
|
}
|
||||||
|
27
llama.cpp
27
llama.cpp
@ -2298,7 +2298,10 @@ static void llama_model_quantize_internal(const std::string & fname_inp, const s
|
|||||||
case LLAMA_FTYPE_MOSTLY_Q5_0: quantized_type = GGML_TYPE_Q5_0; break;
|
case LLAMA_FTYPE_MOSTLY_Q5_0: quantized_type = GGML_TYPE_Q5_0; break;
|
||||||
case LLAMA_FTYPE_MOSTLY_Q5_1: quantized_type = GGML_TYPE_Q5_1; break;
|
case LLAMA_FTYPE_MOSTLY_Q5_1: quantized_type = GGML_TYPE_Q5_1; break;
|
||||||
case LLAMA_FTYPE_MOSTLY_Q8_0: quantized_type = GGML_TYPE_Q8_0; break;
|
case LLAMA_FTYPE_MOSTLY_Q8_0: quantized_type = GGML_TYPE_Q8_0; break;
|
||||||
|
case LLAMA_FTYPE_MOSTLY_F16: quantized_type = GGML_TYPE_F16; break;
|
||||||
|
case LLAMA_FTYPE_ALL_F32: quantized_type = GGML_TYPE_F32; break;
|
||||||
|
|
||||||
|
#ifdef GGML_USE_K_QUANTS
|
||||||
// K-quants
|
// K-quants
|
||||||
case LLAMA_FTYPE_MOSTLY_Q2_K: quantized_type = GGML_TYPE_Q2_K; break;
|
case LLAMA_FTYPE_MOSTLY_Q2_K: quantized_type = GGML_TYPE_Q2_K; break;
|
||||||
case LLAMA_FTYPE_MOSTLY_Q3_K_S:
|
case LLAMA_FTYPE_MOSTLY_Q3_K_S:
|
||||||
@ -2309,6 +2312,7 @@ static void llama_model_quantize_internal(const std::string & fname_inp, const s
|
|||||||
case LLAMA_FTYPE_MOSTLY_Q5_K_S:
|
case LLAMA_FTYPE_MOSTLY_Q5_K_S:
|
||||||
case LLAMA_FTYPE_MOSTLY_Q5_K_M: quantized_type = GGML_TYPE_Q5_K; break;
|
case LLAMA_FTYPE_MOSTLY_Q5_K_M: quantized_type = GGML_TYPE_Q5_K; break;
|
||||||
case LLAMA_FTYPE_MOSTLY_Q6_K: quantized_type = GGML_TYPE_Q6_K; break;
|
case LLAMA_FTYPE_MOSTLY_Q6_K: quantized_type = GGML_TYPE_Q6_K; break;
|
||||||
|
#endif
|
||||||
default: throw std::runtime_error(format("invalid output file type %d\n", ftype));
|
default: throw std::runtime_error(format("invalid output file type %d\n", ftype));
|
||||||
}
|
}
|
||||||
|
|
||||||
@ -2320,6 +2324,7 @@ static void llama_model_quantize_internal(const std::string & fname_inp, const s
|
|||||||
/*vocab_only*/ false));
|
/*vocab_only*/ false));
|
||||||
llama_file_saver file_saver(fname_out.c_str(), model_loader->file_loaders.at(0).get(), params->ftype);
|
llama_file_saver file_saver(fname_out.c_str(), model_loader->file_loaders.at(0).get(), params->ftype);
|
||||||
|
|
||||||
|
#ifdef GGML_USE_K_QUANTS
|
||||||
int n_attention_wv = 0;
|
int n_attention_wv = 0;
|
||||||
int n_feed_forward_w2 = 0;
|
int n_feed_forward_w2 = 0;
|
||||||
for (auto& tensor : model_loader->tensors_map.tensors) {
|
for (auto& tensor : model_loader->tensors_map.tensors) {
|
||||||
@ -2333,6 +2338,7 @@ static void llama_model_quantize_internal(const std::string & fname_inp, const s
|
|||||||
|
|
||||||
int i_attention_wv = 0;
|
int i_attention_wv = 0;
|
||||||
int i_feed_forward_w2 = 0;
|
int i_feed_forward_w2 = 0;
|
||||||
|
#endif
|
||||||
|
|
||||||
size_t total_size_org = 0;
|
size_t total_size_org = 0;
|
||||||
size_t total_size_new = 0;
|
size_t total_size_new = 0;
|
||||||
@ -2358,12 +2364,8 @@ static void llama_model_quantize_internal(const std::string & fname_inp, const s
|
|||||||
|
|
||||||
// quantize only 2D tensors
|
// quantize only 2D tensors
|
||||||
quantize &= (tensor.ne.size() == 2);
|
quantize &= (tensor.ne.size() == 2);
|
||||||
|
quantize &= params->quantize_output_tensor || tensor.name != "output.weight";
|
||||||
// uncomment this to keep the output layer in FP16
|
quantize &= quantized_type != tensor.type;
|
||||||
if (!params->quantize_output_tensor && tensor.name == "output.weight") {
|
|
||||||
quantize = false;
|
|
||||||
}
|
|
||||||
quantize = quantize && quantized_type != tensor.type;
|
|
||||||
|
|
||||||
enum ggml_type new_type;
|
enum ggml_type new_type;
|
||||||
void * new_data;
|
void * new_data;
|
||||||
@ -2377,29 +2379,28 @@ static void llama_model_quantize_internal(const std::string & fname_inp, const s
|
|||||||
printf("size = %8.3f MB\n", tensor.size/1024.0/1024.0);
|
printf("size = %8.3f MB\n", tensor.size/1024.0/1024.0);
|
||||||
} else {
|
} else {
|
||||||
new_type = quantized_type;
|
new_type = quantized_type;
|
||||||
|
#ifdef GGML_USE_K_QUANTS
|
||||||
if (tensor.name == "output.weight") {
|
if (tensor.name == "output.weight") {
|
||||||
new_type = GGML_TYPE_Q6_K;
|
new_type = GGML_TYPE_Q6_K;
|
||||||
}
|
} else if (tensor.name.find("attention.wv.weight") != std::string::npos) {
|
||||||
else if (tensor.name.find("attention.wv.weight") != std::string::npos) {
|
|
||||||
if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_M || ftype == LLAMA_FTYPE_MOSTLY_Q2_K) new_type = GGML_TYPE_Q4_K;
|
if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_M || ftype == LLAMA_FTYPE_MOSTLY_Q2_K) new_type = GGML_TYPE_Q4_K;
|
||||||
else if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_L) new_type = GGML_TYPE_Q5_K;
|
else if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_L) new_type = GGML_TYPE_Q5_K;
|
||||||
else if ((ftype == LLAMA_FTYPE_MOSTLY_Q4_K_M || ftype == LLAMA_FTYPE_MOSTLY_Q5_K_M) &&
|
else if ((ftype == LLAMA_FTYPE_MOSTLY_Q4_K_M || ftype == LLAMA_FTYPE_MOSTLY_Q5_K_M) &&
|
||||||
(i_attention_wv < n_attention_wv/8 || i_attention_wv >= 7*n_attention_wv/8 ||
|
(i_attention_wv < n_attention_wv/8 || i_attention_wv >= 7*n_attention_wv/8 ||
|
||||||
(i_attention_wv - n_attention_wv/8)%3 == 2)) new_type = GGML_TYPE_Q6_K;
|
(i_attention_wv - n_attention_wv/8)%3 == 2)) new_type = GGML_TYPE_Q6_K;
|
||||||
++i_attention_wv;
|
++i_attention_wv;
|
||||||
}
|
} else if (tensor.name.find("feed_forward.w2.weight") != std::string::npos) {
|
||||||
if (tensor.name.find("feed_forward.w2.weight") != std::string::npos) {
|
|
||||||
if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_M || ftype == LLAMA_FTYPE_MOSTLY_Q2_K) new_type = GGML_TYPE_Q4_K;
|
if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_M || ftype == LLAMA_FTYPE_MOSTLY_Q2_K) new_type = GGML_TYPE_Q4_K;
|
||||||
else if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_L) new_type = GGML_TYPE_Q5_K;
|
else if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_L) new_type = GGML_TYPE_Q5_K;
|
||||||
else if ((ftype == LLAMA_FTYPE_MOSTLY_Q4_K_M || ftype == LLAMA_FTYPE_MOSTLY_Q5_K_M) &&
|
else if ((ftype == LLAMA_FTYPE_MOSTLY_Q4_K_M || ftype == LLAMA_FTYPE_MOSTLY_Q5_K_M) &&
|
||||||
(i_feed_forward_w2 < n_feed_forward_w2/8 || i_feed_forward_w2 >= 7*n_feed_forward_w2/8 ||
|
(i_feed_forward_w2 < n_feed_forward_w2/8 || i_feed_forward_w2 >= 7*n_feed_forward_w2/8 ||
|
||||||
(i_feed_forward_w2 - n_feed_forward_w2/8)%3 == 2)) new_type = GGML_TYPE_Q6_K;
|
(i_feed_forward_w2 - n_feed_forward_w2/8)%3 == 2)) new_type = GGML_TYPE_Q6_K;
|
||||||
++i_feed_forward_w2;
|
++i_feed_forward_w2;
|
||||||
}
|
} else if (tensor.name.find("attention.wo.weight") != std::string::npos) {
|
||||||
if (tensor.name.find("attention.wo.weight") != std::string::npos) {
|
|
||||||
if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_M || ftype == LLAMA_FTYPE_MOSTLY_Q2_K) new_type = GGML_TYPE_Q4_K;
|
if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_M || ftype == LLAMA_FTYPE_MOSTLY_Q2_K) new_type = GGML_TYPE_Q4_K;
|
||||||
else if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_L) new_type = GGML_TYPE_Q5_K;
|
else if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_L) new_type = GGML_TYPE_Q5_K;
|
||||||
}
|
}
|
||||||
|
#endif
|
||||||
|
|
||||||
float * f32_data;
|
float * f32_data;
|
||||||
size_t nelements = tensor.ne.at(0) * tensor.ne.at(1);
|
size_t nelements = tensor.ne.at(0) * tensor.ne.at(1);
|
||||||
|
Loading…
x
Reference in New Issue
Block a user