mirror of
https://github.com/ggerganov/llama.cpp.git
synced 2025-02-03 15:23:02 +01:00
convert-lora : make --base
optional (#10110)
* convert-lora : make `--base` optional * lint * handle case where base_model_name_or_path is invalid * do not include metadata from base model * clarify unspecified --base * add small comment [no ci] * trigger ci
This commit is contained in:
parent
a6744e43e8
commit
7554aa4655
@ -72,7 +72,8 @@ class Model:
|
|||||||
def __init__(self, dir_model: Path, ftype: gguf.LlamaFileType, fname_out: Path, is_big_endian: bool = False,
|
def __init__(self, dir_model: Path, ftype: gguf.LlamaFileType, fname_out: Path, is_big_endian: bool = False,
|
||||||
use_temp_file: bool = False, eager: bool = False,
|
use_temp_file: bool = False, eager: bool = False,
|
||||||
metadata_override: Path | None = None, model_name: str | None = None,
|
metadata_override: Path | None = None, model_name: str | None = None,
|
||||||
split_max_tensors: int = 0, split_max_size: int = 0, dry_run: bool = False, small_first_shard: bool = False):
|
split_max_tensors: int = 0, split_max_size: int = 0, dry_run: bool = False,
|
||||||
|
small_first_shard: bool = False, hparams: dict[str, Any] | None = None):
|
||||||
if type(self) is Model:
|
if type(self) is Model:
|
||||||
raise TypeError(f"{type(self).__name__!r} should not be directly instantiated")
|
raise TypeError(f"{type(self).__name__!r} should not be directly instantiated")
|
||||||
|
|
||||||
@ -87,7 +88,7 @@ class Model:
|
|||||||
self.is_safetensors = len(self.part_names) > 0
|
self.is_safetensors = len(self.part_names) > 0
|
||||||
if not self.is_safetensors:
|
if not self.is_safetensors:
|
||||||
self.part_names = Model.get_model_part_names(self.dir_model, "pytorch_model", ".bin")
|
self.part_names = Model.get_model_part_names(self.dir_model, "pytorch_model", ".bin")
|
||||||
self.hparams = Model.load_hparams(self.dir_model)
|
self.hparams = Model.load_hparams(self.dir_model) if hparams is None else hparams
|
||||||
self.block_count = self.find_hparam(["n_layers", "num_hidden_layers", "n_layer", "num_layers"])
|
self.block_count = self.find_hparam(["n_layers", "num_hidden_layers", "n_layer", "num_layers"])
|
||||||
self.tensor_map = gguf.get_tensor_name_map(self.model_arch, self.block_count)
|
self.tensor_map = gguf.get_tensor_name_map(self.model_arch, self.block_count)
|
||||||
self.tensor_names = None
|
self.tensor_names = None
|
||||||
@ -1541,6 +1542,17 @@ class LlamaModel(Model):
|
|||||||
special_vocab._set_special_token("eot", 32010)
|
special_vocab._set_special_token("eot", 32010)
|
||||||
special_vocab.add_to_gguf(self.gguf_writer)
|
special_vocab.add_to_gguf(self.gguf_writer)
|
||||||
|
|
||||||
|
tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
|
||||||
|
if tokenizer_config_file.is_file():
|
||||||
|
with open(tokenizer_config_file, "r", encoding="utf-8") as f:
|
||||||
|
tokenizer_config_json = json.load(f)
|
||||||
|
if "add_prefix_space" in tokenizer_config_json:
|
||||||
|
self.gguf_writer.add_add_space_prefix(tokenizer_config_json["add_prefix_space"])
|
||||||
|
|
||||||
|
# Apply to granite small models only
|
||||||
|
if self.hparams.get("vocab_size", 32000) == 49152:
|
||||||
|
self.gguf_writer.add_add_bos_token(False)
|
||||||
|
|
||||||
def set_gguf_parameters(self):
|
def set_gguf_parameters(self):
|
||||||
super().set_gguf_parameters()
|
super().set_gguf_parameters()
|
||||||
hparams = self.hparams
|
hparams = self.hparams
|
||||||
@ -1557,17 +1569,6 @@ class LlamaModel(Model):
|
|||||||
self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
|
self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
|
||||||
self.gguf_writer.add_rope_scaling_factor(self.hparams["rope_scaling"]["factor"])
|
self.gguf_writer.add_rope_scaling_factor(self.hparams["rope_scaling"]["factor"])
|
||||||
|
|
||||||
tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
|
|
||||||
if tokenizer_config_file.is_file():
|
|
||||||
with open(tokenizer_config_file, "r", encoding="utf-8") as f:
|
|
||||||
tokenizer_config_json = json.load(f)
|
|
||||||
if "add_prefix_space" in tokenizer_config_json:
|
|
||||||
self.gguf_writer.add_add_space_prefix(tokenizer_config_json["add_prefix_space"])
|
|
||||||
|
|
||||||
# Apply to granite small models only
|
|
||||||
if self.hparams.get("vocab_size", 32000) == 49152:
|
|
||||||
self.gguf_writer.add_add_bos_token(False)
|
|
||||||
|
|
||||||
@staticmethod
|
@staticmethod
|
||||||
def permute(weights: Tensor, n_head: int, n_head_kv: int | None):
|
def permute(weights: Tensor, n_head: int, n_head_kv: int | None):
|
||||||
if n_head_kv is not None and n_head != n_head_kv:
|
if n_head_kv is not None and n_head != n_head_kv:
|
||||||
|
@ -12,6 +12,7 @@ import json
|
|||||||
from math import prod
|
from math import prod
|
||||||
from pathlib import Path
|
from pathlib import Path
|
||||||
from typing import TYPE_CHECKING, Any, Callable, Iterable, Iterator, Sequence, SupportsIndex, cast
|
from typing import TYPE_CHECKING, Any, Callable, Iterable, Iterator, Sequence, SupportsIndex, cast
|
||||||
|
from transformers import AutoConfig
|
||||||
|
|
||||||
import torch
|
import torch
|
||||||
|
|
||||||
@ -256,8 +257,8 @@ def parse_args() -> argparse.Namespace:
|
|||||||
help="only print out what will be done, without writing any new files",
|
help="only print out what will be done, without writing any new files",
|
||||||
)
|
)
|
||||||
parser.add_argument(
|
parser.add_argument(
|
||||||
"--base", type=Path, required=True,
|
"--base", type=Path,
|
||||||
help="directory containing Hugging Face model config files (config.json, tokenizer.json) for the base model that the adapter is based on - only config is needed, actual model weights are not required",
|
help="directory containing Hugging Face model config files (config.json, tokenizer.json) for the base model that the adapter is based on - only config is needed, actual model weights are not required. If base model is unspecified, it will be loaded from Hugging Face hub based on the adapter config",
|
||||||
)
|
)
|
||||||
parser.add_argument(
|
parser.add_argument(
|
||||||
"lora_path", type=Path,
|
"lora_path", type=Path,
|
||||||
@ -267,6 +268,12 @@ def parse_args() -> argparse.Namespace:
|
|||||||
return parser.parse_args()
|
return parser.parse_args()
|
||||||
|
|
||||||
|
|
||||||
|
def load_hparams_from_hf(hf_model_id: str) -> dict[str, Any]:
|
||||||
|
# normally, adapter does not come with base model config, we need to load it from AutoConfig
|
||||||
|
config = AutoConfig.from_pretrained(hf_model_id)
|
||||||
|
return config.to_dict()
|
||||||
|
|
||||||
|
|
||||||
if __name__ == '__main__':
|
if __name__ == '__main__':
|
||||||
args = parse_args()
|
args = parse_args()
|
||||||
logging.basicConfig(level=logging.DEBUG if args.verbose else logging.INFO)
|
logging.basicConfig(level=logging.DEBUG if args.verbose else logging.INFO)
|
||||||
@ -281,7 +288,7 @@ if __name__ == '__main__':
|
|||||||
|
|
||||||
ftype = ftype_map[args.outtype]
|
ftype = ftype_map[args.outtype]
|
||||||
|
|
||||||
dir_base_model: Path = args.base
|
dir_base_model: Path | None = args.base
|
||||||
dir_lora: Path = args.lora_path
|
dir_lora: Path = args.lora_path
|
||||||
lora_config = dir_lora / "adapter_config.json"
|
lora_config = dir_lora / "adapter_config.json"
|
||||||
input_model = dir_lora / "adapter_model.safetensors"
|
input_model = dir_lora / "adapter_model.safetensors"
|
||||||
@ -301,9 +308,29 @@ if __name__ == '__main__':
|
|||||||
input_model = os.path.join(dir_lora, "adapter_model.bin")
|
input_model = os.path.join(dir_lora, "adapter_model.bin")
|
||||||
lora_model = torch.load(input_model, map_location="cpu", weights_only=True)
|
lora_model = torch.load(input_model, map_location="cpu", weights_only=True)
|
||||||
|
|
||||||
|
# load LoRA config
|
||||||
|
with open(lora_config, "r") as f:
|
||||||
|
lparams: dict[str, Any] = json.load(f)
|
||||||
|
|
||||||
# load base model
|
# load base model
|
||||||
|
if dir_base_model is None:
|
||||||
|
if "base_model_name_or_path" in lparams:
|
||||||
|
model_id = lparams["base_model_name_or_path"]
|
||||||
|
logger.info(f"Loading base model from Hugging Face: {model_id}")
|
||||||
|
try:
|
||||||
|
hparams = load_hparams_from_hf(model_id)
|
||||||
|
except OSError as e:
|
||||||
|
logger.error(f"Failed to load base model config: {e}")
|
||||||
|
logger.error("Please try downloading the base model and add its path to --base")
|
||||||
|
sys.exit(1)
|
||||||
|
else:
|
||||||
|
logger.error("'base_model_name_or_path' is not found in adapter_config.json")
|
||||||
|
logger.error("Base model config is required. Please download the base model and add its path to --base")
|
||||||
|
sys.exit(1)
|
||||||
|
else:
|
||||||
logger.info(f"Loading base model: {dir_base_model.name}")
|
logger.info(f"Loading base model: {dir_base_model.name}")
|
||||||
hparams = Model.load_hparams(dir_base_model)
|
hparams = Model.load_hparams(dir_base_model)
|
||||||
|
|
||||||
with torch.inference_mode():
|
with torch.inference_mode():
|
||||||
try:
|
try:
|
||||||
model_class = Model.from_model_architecture(hparams["architectures"][0])
|
model_class = Model.from_model_architecture(hparams["architectures"][0])
|
||||||
@ -323,13 +350,15 @@ if __name__ == '__main__':
|
|||||||
self.dir_model_card = dir_lora_model
|
self.dir_model_card = dir_lora_model
|
||||||
self.lora_alpha = float(lora_alpha)
|
self.lora_alpha = float(lora_alpha)
|
||||||
|
|
||||||
|
def set_vocab(self):
|
||||||
|
pass
|
||||||
|
|
||||||
def set_type(self):
|
def set_type(self):
|
||||||
self.gguf_writer.add_type(gguf.GGUFType.ADAPTER)
|
self.gguf_writer.add_type(gguf.GGUFType.ADAPTER)
|
||||||
self.gguf_writer.add_string(gguf.Keys.Adapter.TYPE, "lora")
|
self.gguf_writer.add_string(gguf.Keys.Adapter.TYPE, "lora")
|
||||||
|
|
||||||
def set_gguf_parameters(self):
|
def set_gguf_parameters(self):
|
||||||
self.gguf_writer.add_float32(gguf.Keys.Adapter.LORA_ALPHA, self.lora_alpha)
|
self.gguf_writer.add_float32(gguf.Keys.Adapter.LORA_ALPHA, self.lora_alpha)
|
||||||
super().set_gguf_parameters()
|
|
||||||
|
|
||||||
def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
|
def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
|
||||||
# Never add extra tensors (e.g. rope_freqs) for LoRA adapters
|
# Never add extra tensors (e.g. rope_freqs) for LoRA adapters
|
||||||
@ -350,7 +379,7 @@ if __name__ == '__main__':
|
|||||||
logger.error(f"Unexpected name '{name}': Not a lora_A or lora_B tensor")
|
logger.error(f"Unexpected name '{name}': Not a lora_A or lora_B tensor")
|
||||||
if ".embed_tokens.weight" in name or ".lm_head.weight" in name:
|
if ".embed_tokens.weight" in name or ".lm_head.weight" in name:
|
||||||
logger.error("Embeddings is present in the adapter. This can be due to new tokens added during fine tuning")
|
logger.error("Embeddings is present in the adapter. This can be due to new tokens added during fine tuning")
|
||||||
logger.error("Hint: if you are using TRL, make sure not to call setup_chat_format()")
|
logger.error("Please refer to https://github.com/ggerganov/llama.cpp/pull/9948")
|
||||||
sys.exit(1)
|
sys.exit(1)
|
||||||
|
|
||||||
if base_name in tensor_map:
|
if base_name in tensor_map:
|
||||||
@ -384,9 +413,6 @@ if __name__ == '__main__':
|
|||||||
yield (dest_name + ".lora_a", lora_a)
|
yield (dest_name + ".lora_a", lora_a)
|
||||||
yield (dest_name + ".lora_b", lora_b)
|
yield (dest_name + ".lora_b", lora_b)
|
||||||
|
|
||||||
with open(lora_config, "r") as f:
|
|
||||||
lparams: dict[str, Any] = json.load(f)
|
|
||||||
|
|
||||||
alpha: float = lparams["lora_alpha"]
|
alpha: float = lparams["lora_alpha"]
|
||||||
|
|
||||||
model_instance = LoraModel(
|
model_instance = LoraModel(
|
||||||
@ -399,6 +425,7 @@ if __name__ == '__main__':
|
|||||||
dry_run=args.dry_run,
|
dry_run=args.dry_run,
|
||||||
dir_lora_model=dir_lora,
|
dir_lora_model=dir_lora,
|
||||||
lora_alpha=alpha,
|
lora_alpha=alpha,
|
||||||
|
hparams=hparams,
|
||||||
)
|
)
|
||||||
|
|
||||||
logger.info("Exporting model...")
|
logger.info("Exporting model...")
|
||||||
|
Loading…
Reference in New Issue
Block a user