diff --git a/.github/workflows/build.yml b/.github/workflows/build.yml index e41be76db..5af497a3c 100644 --- a/.github/workflows/build.yml +++ b/.github/workflows/build.yml @@ -276,6 +276,11 @@ jobs: run: | xcodebuild -scheme llama -destination "${{ matrix.destination }}" + - name: Build Swift Example + id: make_build_swift_example + run: | + make swift + windows-latest-cmake: runs-on: windows-latest diff --git a/.github/workflows/zig-build.yml b/.github/workflows/zig-build.yml new file mode 100644 index 000000000..68a698ab9 --- /dev/null +++ b/.github/workflows/zig-build.yml @@ -0,0 +1,25 @@ +name: Zig CI + +on: + pull_request: + push: + branches: + - master + +jobs: + build: + strategy: + fail-fast: false + matrix: + runs-on: [ubuntu-latest, macos-latest, windows-latest] + runs-on: ${{ matrix.runs-on }} + steps: + - uses: actions/checkout@v3 + with: + submodules: recursive + fetch-depth: 0 + - uses: goto-bus-stop/setup-zig@v2 + with: + version: 0.11.0 + - name: Build Summary + run: zig build --summary all -freference-trace diff --git a/CMakeLists.txt b/CMakeLists.txt index 7c79ec486..9184eda8f 100644 --- a/CMakeLists.txt +++ b/CMakeLists.txt @@ -663,6 +663,8 @@ add_library(ggml OBJECT ggml.h ggml-alloc.c ggml-alloc.h + ggml-backend.c + ggml-backend.h ${GGML_SOURCES_CUDA} ${GGML_HEADERS_CUDA} ${GGML_SOURCES_OPENCL} ${GGML_HEADERS_OPENCL} ${GGML_SOURCES_METAL} ${GGML_HEADERS_METAL} diff --git a/Makefile b/Makefile index 39290ee3b..571ad3bbe 100644 --- a/Makefile +++ b/Makefile @@ -518,9 +518,12 @@ ggml.o: ggml.c ggml.h ggml-cuda.h ggml-alloc.o: ggml-alloc.c ggml.h ggml-alloc.h $(CC) $(CFLAGS) -c $< -o $@ -OBJS += ggml-alloc.o +ggml-backend.o: ggml-backend.c ggml.h ggml-backend.h + $(CC) $(CFLAGS) -c $< -o $@ -llama.o: llama.cpp ggml.h ggml-alloc.h ggml-cuda.h ggml-metal.h llama.h +OBJS += ggml-alloc.o ggml-backend.o + +llama.o: llama.cpp ggml.h ggml-alloc.h ggml-backend.h ggml-cuda.h ggml-metal.h llama.h $(CXX) $(CXXFLAGS) -c $< -o $@ common.o: common/common.cpp common/common.h build-info.h common/log.h @@ -623,6 +626,11 @@ metal: examples/metal/metal.cpp ggml.o $(OBJS) $(CXX) $(CXXFLAGS) $^ -o $@ $(LDFLAGS) endif +ifeq ($(UNAME_S),Darwin) +swift: examples/batched.swift + (cd examples/batched.swift; make build) +endif + build-info.h: $(wildcard .git/index) scripts/build-info.sh @sh scripts/build-info.sh $(CC) > $@.tmp @if ! cmp -s $@.tmp $@; then \ @@ -643,7 +651,7 @@ benchmark-matmult: examples/benchmark/benchmark-matmult.cpp build-info.h ggml.o run-benchmark-matmult: benchmark-matmult ./$@ -.PHONY: run-benchmark-matmult +.PHONY: run-benchmark-matmult swift vdot: pocs/vdot/vdot.cpp ggml.o $(OBJS) $(CXX) $(CXXFLAGS) $^ -o $@ $(LDFLAGS) diff --git a/Package.swift b/Package.swift index 1ea414cc1..4ab055b19 100644 --- a/Package.swift +++ b/Package.swift @@ -1,10 +1,10 @@ -// swift-tools-version:5.3 +// swift-tools-version:5.5 import PackageDescription #if arch(arm) || arch(arm64) let platforms: [SupportedPlatform]? = [ - .macOS(.v11), + .macOS(.v12), .iOS(.v14), .watchOS(.v4), .tvOS(.v14) @@ -41,12 +41,13 @@ let package = Package( "ggml.c", "llama.cpp", "ggml-alloc.c", + "ggml-backend.c", "k_quants.c", ] + additionalSources, resources: resources, publicHeadersPath: "spm-headers", cSettings: [ - .unsafeFlags(["-Wno-shorten-64-to-32"]), + .unsafeFlags(["-Wno-shorten-64-to-32", "-O3", "-DNDEBUG"]), .define("GGML_USE_K_QUANTS"), .define("GGML_USE_ACCELERATE") // NOTE: NEW_LAPACK will required iOS version 16.4+ diff --git a/README.md b/README.md index 056279562..0f1fd7565 100644 --- a/README.md +++ b/README.md @@ -96,6 +96,8 @@ as the main playground for developing new features for the [ggml](https://github - [X] [Starcoder models](https://github.com/ggerganov/llama.cpp/pull/3187) - [X] [Mistral AI v0.1](https://huggingface.co/mistralai/Mistral-7B-v0.1) - [X] [Refact](https://huggingface.co/smallcloudai/Refact-1_6B-fim) +- [X] [Bloom](https://github.com/ggerganov/llama.cpp/pull/3553) +- [X] [MPT](https://github.com/ggerganov/llama.cpp/pull/3417) **Bindings:** diff --git a/build.zig b/build.zig index b95491e03..fdc5bc084 100644 --- a/build.zig +++ b/build.zig @@ -36,14 +36,17 @@ const Maker = struct { } fn init(builder: *std.build.Builder) !Maker { - // const commit_hash = @embedFile(".git/refs/heads/master"); const target = builder.standardTargetOptions(.{}); + const zig_version = @import("builtin").zig_version_string; + const commit_hash = try std.ChildProcess.exec( + .{ .allocator = builder.allocator, .argv = &.{ "git", "rev-parse", "HEAD" } }, + ); const config_header = builder.addConfigHeader( .{ .style = .blank, .include_path = "build-info.h" }, .{ .BUILD_NUMBER = 0, - .BUILD_COMMIT = "12345", // omit newline - .BUILD_COMPILER = "Zig 0.11.0", + .BUILD_COMMIT = commit_hash.stdout[0 .. commit_hash.stdout.len - 1], // omit newline + .BUILD_COMPILER = builder.fmt("Zig {s}", .{zig_version}), .BUILD_TARGET = try target.allocDescription(builder.allocator), }, ); @@ -67,12 +70,20 @@ const Maker = struct { fn obj(m: *const Maker, name: []const u8, src: []const u8) *Compile { const o = m.builder.addObject(.{ .name = name, .target = m.target, .optimize = m.optimize }); + if (o.target.getAbi() != .msvc) + o.defineCMacro("_GNU_SOURCE", null); + o.addConfigHeader(m.config_header); if (std.mem.endsWith(u8, src, ".c")) { o.addCSourceFiles(&.{src}, m.cflags.items); o.linkLibC(); } else { o.addCSourceFiles(&.{src}, m.cxxflags.items); - o.linkLibCpp(); + if (o.target.getAbi() == .msvc) { + o.linkLibC(); // need winsdk + crt + } else { + // linkLibCpp already add (libc++ + libunwind + libc) + o.linkLibCpp(); + } } o.addConfigHeader(m.config_header); for (m.include_dirs.items) |i| o.addIncludePath(.{ .path = i }); @@ -86,8 +97,14 @@ const Maker = struct { for (deps) |d| e.addObject(d); for (m.objs.items) |o| e.addObject(o); for (m.include_dirs.items) |i| e.addIncludePath(.{ .path = i }); - e.linkLibC(); - e.linkLibCpp(); + + // https://github.com/ziglang/zig/issues/15448 + if (e.target.getAbi() == .msvc) { + e.linkLibC(); // need winsdk + crt + } else { + // linkLibCpp already add (libc++ + libunwind + libc) + e.linkLibCpp(); + } e.addConfigHeader(m.config_header); m.builder.installArtifact(e); e.want_lto = m.enable_lto; @@ -107,20 +124,21 @@ pub fn build(b: *std.build.Builder) !void { const ggml = make.obj("ggml", "ggml.c"); const ggml_alloc = make.obj("ggml-alloc", "ggml-alloc.c"); + const ggml_backend = make.obj("ggml-backend", "ggml-backend.c"); const llama = make.obj("llama", "llama.cpp"); const common = make.obj("common", "common/common.cpp"); - const console = make.obj("common", "common/console.cpp"); + const console = make.obj("console", "common/console.cpp"); const grammar_parser = make.obj("grammar-parser", "common/grammar-parser.cpp"); const train = make.obj("train", "common/train.cpp"); - _ = make.exe("main", "examples/main/main.cpp", &.{ ggml, ggml_alloc, llama, common, console, grammar_parser }); - _ = make.exe("quantize", "examples/quantize/quantize.cpp", &.{ ggml, ggml_alloc, llama, common }); - _ = make.exe("perplexity", "examples/perplexity/perplexity.cpp", &.{ ggml, ggml_alloc, llama, common }); - _ = make.exe("embedding", "examples/embedding/embedding.cpp", &.{ ggml, ggml_alloc, llama, common }); - _ = make.exe("finetune", "examples/finetune/finetune.cpp", &.{ ggml, ggml_alloc, llama, common, train }); - _ = make.exe("train-text-from-scratch", "examples/train-text-from-scratch/train-text-from-scratch.cpp", &.{ ggml, ggml_alloc, llama, common, train }); + _ = make.exe("main", "examples/main/main.cpp", &.{ ggml, ggml_alloc, ggml_backend, llama, common, console, grammar_parser }); + _ = make.exe("quantize", "examples/quantize/quantize.cpp", &.{ ggml, ggml_alloc, ggml_backend, llama, common }); + _ = make.exe("perplexity", "examples/perplexity/perplexity.cpp", &.{ ggml, ggml_alloc, ggml_backend, llama, common }); + _ = make.exe("embedding", "examples/embedding/embedding.cpp", &.{ ggml, ggml_alloc, ggml_backend, llama, common }); + _ = make.exe("finetune", "examples/finetune/finetune.cpp", &.{ ggml, ggml_alloc, ggml_backend, llama, common, train }); + _ = make.exe("train-text-from-scratch", "examples/train-text-from-scratch/train-text-from-scratch.cpp", &.{ ggml, ggml_alloc, ggml_backend, llama, common, train }); - const server = make.exe("server", "examples/server/server.cpp", &.{ ggml, ggml_alloc, llama, common, grammar_parser }); + const server = make.exe("server", "examples/server/server.cpp", &.{ ggml, ggml_alloc, ggml_backend, llama, common, grammar_parser }); if (server.target.isWindows()) { server.linkSystemLibrary("ws2_32"); } diff --git a/convert-bloom-hf-to-gguf.py b/convert-bloom-hf-to-gguf.py new file mode 100755 index 000000000..7bfc95ec1 --- /dev/null +++ b/convert-bloom-hf-to-gguf.py @@ -0,0 +1,238 @@ +#!/usr/bin/env python3 +# HF bloom --> gguf conversion + +from __future__ import annotations + +import argparse +import json +import os +import re +import struct +import sys +from pathlib import Path +from typing import Any + +import numpy as np +import torch +from transformers import AutoTokenizer # type: ignore[import] + +if 'NO_LOCAL_GGUF' not in os.environ: + sys.path.insert(1, str(Path(__file__).parent / 'gguf-py' / 'gguf')) +import gguf + + +def count_model_parts(dir_model: Path) -> int: + num_parts = 0 + for filename in os.listdir(dir_model): + if filename.startswith("pytorch_model-"): + num_parts += 1 + + if num_parts > 0: + print("gguf: found " + str(num_parts) + " model parts") + return num_parts + + +# Supported Models: +# https://huggingface.co/bigscience/bloom-1b7 +# https://huggingface.co/bigscience/bloom-3b +# https://huggingface.co/bigscience/bloom-7b1 +# https://huggingface.co/Langboat/bloom-1b4-zh +def parse_args() -> argparse.Namespace: + parser = argparse.ArgumentParser(description="Convert a Bloom model to a GGML compatible file") + parser.add_argument("--vocab-only", action="store_true", help="extract only the vocab") + parser.add_argument("--outfile", type=Path, help="path to write to; default: based on input") + parser.add_argument("model", type=Path, help="directory containing model file, or model file itself (*.bin)") + parser.add_argument("ftype", type=int, help="output format - use 0 for float32, 1 for float16", choices=[0, 1], default = 1) + return parser.parse_args() + +args = parse_args() + +dir_model = args.model +ftype = args.ftype +if not dir_model.is_dir(): + print(f'Error: {args.model} is not a directory', file = sys.stderr) + sys.exit(1) + +# possible tensor data types +# ftype == 0 -> float32 +# ftype == 1 -> float16 + +# map from ftype to string +ftype_str = ["f32", "f16"] + +if args.outfile is not None: + fname_out = args.outfile +else: + # output in the same directory as the model by default + fname_out = dir_model / f'ggml-model-{ftype_str[ftype]}.gguf' + +print("gguf: loading model "+dir_model.name) + +with open(dir_model / "config.json", "r", encoding="utf-8") as f: + hparams = json.load(f) + +if hparams["architectures"][0] != "BloomForCausalLM": + print("Model architecture not supported: " + hparams["architectures"][0]) + sys.exit(1) + +# get number of model parts +num_parts = count_model_parts(dir_model) + +ARCH=gguf.MODEL_ARCH.BLOOM +gguf_writer = gguf.GGUFWriter(fname_out, gguf.MODEL_ARCH_NAMES[ARCH]) + +print("gguf: get model metadata") + +block_count = hparams["n_layer"] + +gguf_writer.add_name("Bloom") +n_embed = hparams.get("hidden_size", hparams.get("n_embed")) +n_head = hparams.get("n_head", hparams.get("num_attention_heads")) +gguf_writer.add_context_length(hparams.get("seq_length", n_embed)) +gguf_writer.add_embedding_length(n_embed) +gguf_writer.add_feed_forward_length(4 * n_embed) +gguf_writer.add_block_count(block_count) +gguf_writer.add_head_count(n_head) +gguf_writer.add_head_count_kv(n_head) +gguf_writer.add_layer_norm_eps(hparams["layer_norm_epsilon"]) +gguf_writer.add_file_type(ftype) + +# TOKENIZATION + +print("gguf: get tokenizer metadata") + +tokens: list[bytearray] = [] +scores: list[float] = [] +toktypes: list[int] = [] + +# gpt2 tokenizer +gguf_writer.add_tokenizer_model("gpt2") + +print("gguf: get gpt2 tokenizer vocab") + +# ref: https://github.com/cmp-nct/ggllm.cpp/blob/master/falcon_convert.py +tokenizer = AutoTokenizer.from_pretrained(dir_model) + +# The number of tokens in tokenizer.json can differ from the expected vocab size. +# This causes downstream issues with mismatched tensor sizes when running the inference +vocab_size = hparams.get("vocab_size", len(tokenizer.vocab)) +assert max(tokenizer.vocab.values()) < vocab_size + +reverse_vocab = {id: encoded_tok for encoded_tok, id in tokenizer.vocab.items()} + +for i in range(vocab_size): + tokens.append(reverse_vocab[i] if i in reverse_vocab else f"[PAD{i}]") + scores.append(0.0) # dummy + toktypes.append(gguf.TokenType.NORMAL) + +gguf_writer.add_token_list(tokens) +gguf_writer.add_token_scores(scores) +gguf_writer.add_token_types(toktypes) + +special_vocab = gguf.SpecialVocab(dir_model, load_merges=True) +special_vocab.add_to_gguf(gguf_writer) + +# TENSORS + +tensor_map = gguf.get_tensor_name_map(ARCH, block_count) + +# params for qkv transform +n_head_kv = hparams.get("n_head_kv", n_head) +head_dim = n_embed // n_head + +# tensor info +print("gguf: get tensor metadata") + +if num_parts == 0: + part_names = iter(("pytorch_model.bin",)) +else: + part_names = ( + f"pytorch_model-{n:05}-of-{num_parts:05}.bin" for n in range(1, num_parts + 1) + ) + +for part_name in part_names: + if args.vocab_only: + break + print("gguf: loading model part '" + part_name + "'") + model_part = torch.load(dir_model / part_name, map_location="cpu") + + has_lm_head = True + if "lm_head.weight" not in model_part.keys() and "output.weight" not in model_part.keys(): + has_lm_head = False + + for original_name in model_part.keys(): + data = model_part[original_name] + name = re.sub(r'transformer\.', '', original_name) + + old_dtype = data.dtype + + # convert any unsupported data types to float32 + if data.dtype != torch.float16 and data.dtype != torch.float32: + data = data.to(torch.float32) + + data = data.squeeze().numpy() + + if re.match(r"h\.\d+\.self_attention\.query_key_value\.weight", name): + # Map bloom-style qkv_linear to gpt-style qkv_linear + # bloom: https://github.com/huggingface/transformers/blob/main/src/transformers/models/bloom/modeling_bloom.py#L238-L252 # noqa + # gpt-2: https://github.com/huggingface/transformers/blob/main/src/transformers/models/gpt2/modeling_gpt2.py#L312 # noqa + qkv_weights = data.reshape((n_head, 3, n_embed // n_head, n_embed)) + data = np.concatenate( + (qkv_weights[:, 0, :, :].reshape((-1, n_embed)), + qkv_weights[:, 1, :, :].reshape((-1, n_embed)), + qkv_weights[:, 2, :, :].reshape((-1, n_embed))), + axis=0 + ) + print("re-format attention.linear_qkv.weight") + elif re.match(r"h\.\d+\.self_attention\.query_key_value\.bias", name): + qkv_bias = data.reshape((n_head, 3, n_embed // n_head)) + data = np.concatenate( + (qkv_bias[:, 0, :].reshape((n_embed,)), + qkv_bias[:, 1, :].reshape((n_embed,)), + qkv_bias[:, 2, :].reshape((n_embed,))), + axis=0 + ) + print("re-format attention.linear_qkv.bias") + + # map tensor names + new_name = tensor_map.get_name(name, try_suffixes=(".weight", ".bias")) + if new_name is None: + print("Can not map tensor '" + name + "'") + sys.exit() + + n_dims = len(data.shape) + data_dtype = data.dtype + + # if f32 desired, convert any float16 to float32 + if ftype == 0 and data_dtype == np.float16: + data = data.astype(np.float32) + + # TODO: Why cant we use these float16 as-is? There should be not reason to store float16 as float32 + if ftype == 1 and data_dtype == np.float16 and n_dims == 1: + data = data.astype(np.float32) + + # if f16 desired, convert any float32 2-dim weight tensors to float16 + if ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and n_dims == 2: + data = data.astype(np.float16) + + print(name, "=>", new_name + ", shape = " + str(data.shape) + ", " + str(old_dtype) + " --> " + str(data.dtype)) + + gguf_writer.add_tensor(new_name, data) + + if not has_lm_head and name == "word_embeddings.weight": + gguf_writer.add_tensor("output.weight", data) + print(name, "=>", "output.weight" + ", shape = " + str(data.shape) + ", " + str(old_dtype) + " --> " + str(data.dtype)) # noqa + + +print("gguf: write header") +gguf_writer.write_header_to_file() +print("gguf: write metadata") +gguf_writer.write_kv_data_to_file() +if not args.vocab_only: + print("gguf: write tensors") + gguf_writer.write_tensors_to_file() + +gguf_writer.close() + +print(f"gguf: model successfully exported to '{fname_out}'") +print("") diff --git a/convert-mpt-hf-to-gguf.py b/convert-mpt-hf-to-gguf.py new file mode 100755 index 000000000..73a4932f7 --- /dev/null +++ b/convert-mpt-hf-to-gguf.py @@ -0,0 +1,216 @@ +#!/usr/bin/env python3 +# HF mpt--> gguf conversion + +from __future__ import annotations + +import argparse +import json +import os +import struct +import sys +from pathlib import Path +from typing import Any + +import numpy as np +import torch +from transformers import AutoTokenizer # type: ignore[import] + +if 'NO_LOCAL_GGUF' not in os.environ: + sys.path.insert(1, str(Path(__file__).parent / 'gguf-py' / 'gguf')) +import gguf + + +def count_model_parts(dir_model: Path) -> int: + num_parts = 0 + for filename in os.listdir(dir_model): + if filename.startswith("pytorch_model-"): + num_parts += 1 + + if num_parts > 0: + print("gguf: found " + str(num_parts) + " model parts") + return num_parts + + +def parse_args() -> argparse.Namespace: + parser = argparse.ArgumentParser(description="Convert an MPT model to a GGML compatible file") + parser.add_argument( + "--vocab-only", action="store_true", + help="extract only the vocab", + ) + parser.add_argument( + "--outfile", type=Path, + help="path to write to; default: based on input", + ) + parser.add_argument( + "model", type=Path, + help="directory containing model file, or model file itself (*.bin)", + ) + parser.add_argument( + "ftype", type=int, choices=[0, 1], default=1, nargs='?', + help="output format - use 0 for float32, 1 for float16", + ) + return parser.parse_args() + +args = parse_args() + +dir_model = args.model +ftype = args.ftype +if not dir_model.is_dir(): + print(f'Error: {args.model} is not a directory', file = sys.stderr) + sys.exit(1) + +# possible tensor data types +# ftype == 0 -> float32 +# ftype == 1 -> float16 + +# map from ftype to string +ftype_str = ["f32", "f16"] + +if args.outfile is not None: + fname_out = args.outfile +else: + # output in the same directory as the model by default + fname_out = dir_model / f'ggml-model-{ftype_str[ftype]}.gguf' + +print("gguf: loading model "+dir_model.name) + +with open(dir_model / "config.json", "r", encoding="utf-8") as f: + hparams = json.load(f) + +if hparams["architectures"][0] != "MPTForCausalLM": + print("Model architecture not supported: " + hparams["architectures"][0]) + + sys.exit() + +# get number of model parts +num_parts = count_model_parts(dir_model) + +ARCH=gguf.MODEL_ARCH.MPT +gguf_writer = gguf.GGUFWriter(fname_out, gguf.MODEL_ARCH_NAMES[ARCH]) + +print("gguf: get model metadata") + +block_count = hparams["n_layers"] + +gguf_writer.add_name(dir_model.name) +gguf_writer.add_context_length(hparams["max_seq_len"]) +gguf_writer.add_embedding_length(hparams["d_model"]) +gguf_writer.add_block_count(block_count) +gguf_writer.add_feed_forward_length(4 * hparams["d_model"]) +gguf_writer.add_head_count(hparams["n_heads"]) +gguf_writer.add_layer_norm_eps(1e-05) +if hparams["attn_config"]["clip_qkv"] is not None: + gguf_writer.add_clamp_kqv(hparams["attn_config"]["clip_qkv"]) +gguf_writer.add_max_alibi_bias(hparams["attn_config"]["alibi_bias_max"]) + +# TOKENIZATION + +print("gguf: get tokenizer metadata") + +tokens: list[bytearray] = [] +scores: list[float] = [] +toktypes: list[int] = [] + +# gpt2 tokenizer +gguf_writer.add_tokenizer_model("gpt2") + +print("gguf: get gpt2 tokenizer vocab") + +# MPT token embedding tensors have dimension 50432 (hparams["vocab_size"]), but +# there are only 50254 (len(tokenizer.vocab)) tokens in the vocab, presumably to +# accomodate some "reserved" tokens; this is causing problems down the line in +# llama.cpp, so we pad the vocab with dummy tokens: + +vocab_size = hparams["vocab_size"] + +# ref: https://github.com/cmp-nct/ggllm.cpp/blob/master/falcon_convert.py +tokenizer = AutoTokenizer.from_pretrained(dir_model) + +reverse_vocab = {id: encoded_tok for encoded_tok, id in tokenizer.vocab.items()} + +for i in range(vocab_size): + tokens.append(reverse_vocab[i] if i in reverse_vocab else f"[PAD{i}]") + scores.append(0.0) # dummy + toktypes.append(gguf.TokenType.NORMAL) + +gguf_writer.add_token_list(tokens) +gguf_writer.add_token_scores(scores) +gguf_writer.add_token_types(toktypes) + +special_vocab = gguf.SpecialVocab(dir_model, load_merges = True) +special_vocab.add_to_gguf(gguf_writer) + +# TENSORS + +tensor_map = gguf.get_tensor_name_map(ARCH,block_count) + +# tensor info +print("gguf: get tensor metadata") + +if num_parts == 0: + part_names = iter(("pytorch_model.bin",)) +else: + part_names = ( + f"pytorch_model-{n:05}-of-{num_parts:05}.bin" for n in range(1, num_parts + 1) + ) + +for part_name in part_names: + if args.vocab_only: + break + print("gguf: loading model part '" + part_name + "'") + model_part = torch.load(f"{dir_model}/{part_name}", map_location="cpu") + + for name in model_part.keys(): + data = model_part[name] + + old_dtype = data.dtype + + # convert any unsupported data types to float32 + if data.dtype != torch.float16 and data.dtype != torch.float32: + data = data.to(torch.float32) + + data = data.squeeze().numpy() + + # map tensor names + new_name = tensor_map.get_name(name, try_suffixes = (".weight", ".bias")) + if new_name is None: + print("Cannot map tensor '" + name + "'") + continue # for the sake of compatibility with some old published models, don't quit + sys.exit() + + n_dims = len(data.shape) + data_dtype = data.dtype + + # if f32 desired, convert any float16 to float32 + if ftype == 0 and data_dtype == np.float16: + data = data.astype(np.float32) + + # TODO: Why cant we use these float16 as-is? There should be not reason to store float16 as float32 + if ftype == 1 and data_dtype == np.float16 and n_dims == 1: + data = data.astype(np.float32) + + # if f16 desired, convert any float32 2-dim weight tensors to float16 + if ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and n_dims == 2: + data = data.astype(np.float16) + + print(new_name + ", n_dims = " + str(n_dims) + ", " + str(old_dtype) + " --> " + str(data.dtype)) + + gguf_writer.add_tensor(new_name, data) + + # note: MPT output is tied to (same as) wte in original model; + # for easier implementation in llama.cpp it's duplicated in GGUF, though :/ + if new_name == "token_embd.weight": + gguf_writer.add_tensor("output.weight", data) + +print("gguf: write header") +gguf_writer.write_header_to_file() +print("gguf: write metadata") +gguf_writer.write_kv_data_to_file() +if not args.vocab_only: + print("gguf: write tensors") + gguf_writer.write_tensors_to_file() + +gguf_writer.close() + +print(f"gguf: model successfully exported to '{fname_out}'") +print("") diff --git a/convert-refact-hf-to-gguf.py b/convert-refact-hf-to-gguf.py index e0cd417db..bfeabc082 100755 --- a/convert-refact-hf-to-gguf.py +++ b/convert-refact-hf-to-gguf.py @@ -17,33 +17,6 @@ if "NO_LOCAL_GGUF" not in os.environ: sys.path.insert(1, str(Path(__file__).parent / "gguf-py" / "gguf")) import gguf - -def bytes_to_unicode(): - # ref: https://github.com/openai/gpt-2/blob/master/src/encoder.py - """ - Returns list of utf-8 byte and a corresponding list of unicode strings. - The reversible bpe codes work on unicode strings. - This means you need a large # of unicode characters in your vocab if you want to avoid UNKs. - When you're at something like a 10B token dataset you end up needing around 5K for decent coverage. - This is a significant percentage of your normal, say, 32K bpe vocab. - To avoid that, we want lookup tables between utf-8 bytes and unicode strings. - And avoids mapping to whitespace/control characters the bpe code barfs on. - """ - bs = ( - list(range(ord("!"), ord("~") + 1)) - + list(range(ord("¡"), ord("¬") + 1)) - + list(range(ord("®"), ord("ÿ") + 1)) - ) - cs = bs[:] - n = 0 - for b in range(2**8): - if b not in bs: - bs.append(b) - cs.append(2**8 + n) - n += 1 - return dict(zip(bs, (chr(n) for n in cs))) - - def count_model_parts(dir_model: Path) -> int: num_parts = 0 for filename in os.listdir(dir_model): @@ -153,53 +126,25 @@ tokens: list[bytearray] = [] scores: list[float] = [] toktypes: list[int] = [] -tokenizer_json_file = dir_model / "tokenizer.json" -if not tokenizer_json_file.is_file(): - print(f"Error: Missing {tokenizer_json_file}", file=sys.stderr) - sys.exit(1) - # gpt2 tokenizer gguf_writer.add_tokenizer_model("gpt2") -with open(tokenizer_json_file, "r", encoding="utf-8") as f: - tokenizer_json = json.load(f) - print("gguf: get gpt2 tokenizer vocab") +# ref: https://github.com/cmp-nct/ggllm.cpp/blob/master/falcon_convert.py +tokenizer = AutoTokenizer.from_pretrained(dir_model) + # The number of tokens in tokenizer.json can differ from the expected vocab size. # This causes downstream issues with mismatched tensor sizes when running the inference -vocab_size = ( - hparams["vocab_size"] - if "vocab_size" in hparams - else len(tokenizer_json["model"]["vocab"]) -) - -tokenizer = AutoTokenizer.from_pretrained(dir_model, trust_remote_code=True) +vocab_size = hparams.get("vocab_size", len(tokenizer.vocab)) +assert max(tokenizer.vocab.values()) < vocab_size reverse_vocab = {id: encoded_tok for encoded_tok, id in tokenizer.vocab.items()} -byte_encoder = bytes_to_unicode() -byte_decoder = {v: k for k, v in byte_encoder.items()} for i in range(vocab_size): - if i in reverse_vocab: - text = reverse_vocab[i] - try: - text = bytearray([byte_decoder[c] for c in reverse_vocab[i]]) - except KeyError: - text = bytearray() - for c in reverse_vocab[i]: - if ord(c) < 256: # single byte character - text.append(byte_decoder[ord(c)]) - else: # multibyte special token character - text.extend(c.encode("utf-8")) - else: - print(f"Key {i} not in tokenizer vocabulary. Padding with an arbitrary token.") - pad_token = f"[PAD{i}]".encode("utf8") - text = bytearray(pad_token) - - tokens.append(text) - scores.append(0.0) # dymmy - toktypes.append(gguf.TokenType.NORMAL) # dummy + tokens.append(reverse_vocab[i] if i in reverse_vocab else f"[PAD{i}]") + scores.append(0.0) # dummy + toktypes.append(gguf.TokenType.NORMAL) gguf_writer.add_token_list(tokens) gguf_writer.add_token_scores(scores) diff --git a/examples/batched.swift/.gitignore b/examples/batched.swift/.gitignore new file mode 100644 index 000000000..e1e863bec --- /dev/null +++ b/examples/batched.swift/.gitignore @@ -0,0 +1,9 @@ +.DS_Store +/.build +/Packages +xcuserdata/ +DerivedData/ +.swiftpm/configuration/registries.json +.swiftpm/xcode/package.xcworkspace/contents.xcworkspacedata +.netrc +batched_swift diff --git a/examples/batched.swift/Makefile b/examples/batched.swift/Makefile new file mode 100755 index 000000000..2afb24fb8 --- /dev/null +++ b/examples/batched.swift/Makefile @@ -0,0 +1,6 @@ +.PHONY: build + +build: + xcodebuild -scheme batched_swift -destination "generic/platform=macOS" -derivedDataPath build + rm -f ./batched_swift + ln -s ./build/Build/Products/Debug/batched_swift ./batched_swift diff --git a/examples/batched.swift/Package.swift b/examples/batched.swift/Package.swift new file mode 100644 index 000000000..826491def --- /dev/null +++ b/examples/batched.swift/Package.swift @@ -0,0 +1,22 @@ +// swift-tools-version: 5.5 +// The swift-tools-version declares the minimum version of Swift required to build this package. + +import PackageDescription + +let package = Package( + name: "batched_swift", + platforms: [.macOS(.v12)], + dependencies: [ + .package(name: "llama", path: "../../"), + ], + targets: [ + // Targets are the basic building blocks of a package, defining a module or a test suite. + // Targets can depend on other targets in this package and products from dependencies. + .executableTarget( + name: "batched_swift", + dependencies: ["llama"], + path: "Sources", + linkerSettings: [.linkedFramework("Foundation"), .linkedFramework("AppKit")] + ), + ] +) diff --git a/examples/batched.swift/README.md b/examples/batched.swift/README.md new file mode 100644 index 000000000..464c9079c --- /dev/null +++ b/examples/batched.swift/README.md @@ -0,0 +1,4 @@ +This is a swift clone of `examples/batched`. + +$ `make` +$ `./swift MODEL_PATH [PROMPT] [PARALLEL]` diff --git a/examples/batched.swift/Sources/main.swift b/examples/batched.swift/Sources/main.swift new file mode 100644 index 000000000..938f30512 --- /dev/null +++ b/examples/batched.swift/Sources/main.swift @@ -0,0 +1,255 @@ +import Foundation +import llama + +let arguments = CommandLine.arguments + +// Check that we have at least one argument (the model path) +guard arguments.count > 1 else { + print("Usage: swift MODEL_PATH [PROMPT] [PARALLEL]") + exit(1) +} + +let modelPath: String = arguments[1] +let prompt: String = arguments.count > 2 ? arguments[2] : "Hello my name is" +let n_parallel: Int = arguments.count > 3 && Int(arguments[3]) != nil ? Int(arguments[3])! : 1 + +// total length of the sequences including the prompt +let n_len: Int = 32 + +// init LLM +llama_backend_init(false) +defer { + llama_backend_free() +} + +let model_params = llama_model_default_params() +guard let model = llama_load_model_from_file(modelPath.cString(using: .utf8), model_params) else { + print("Failed to load model") + exit(1) +} + +defer { + llama_free_model(model) +} + +var tokens = tokenize(text: prompt, add_bos: true) + +let n_kv_req = UInt32(tokens.count) + UInt32((n_len - Int(tokens.count)) * n_parallel) + +var context_params = llama_context_default_params() +context_params.seed = 1234 +context_params.n_ctx = n_kv_req +context_params.n_batch = UInt32(max(n_len, n_parallel)) +context_params.n_threads = 8 +context_params.n_threads_batch = 8 + +let context = llama_new_context_with_model(model, context_params) +guard context != nil else { + print("Failed to initialize context") + exit(1) +} + +defer { + llama_free(context) +} + +let n_ctx = llama_n_ctx(context) + +print("\nn_len = \(n_len), n_ctx = \(n_ctx), n_batch = \(context_params.n_batch), n_parallel = \(n_parallel), n_kv_req = \(n_kv_req)\n") + +if n_kv_req > n_ctx { + print("error: n_kv_req (%d) > n_ctx, the required KV cache size is not big enough\n", n_kv_req) + exit(1) +} + +var buffer: [CChar] = [] +for id: llama_token in tokens { + print(token_to_piece(token: id, buffer: &buffer) ?? "", terminator: "") +} + +print("\n") + +var batch = llama_batch_init(max(Int32(tokens.count), Int32(n_parallel)), 0) +defer { + llama_batch_free(batch) +} + +// evaluate the initial prompt +batch.n_tokens = Int32(tokens.count) + +for (i, token) in tokens.enumerated() { + batch.token[i] = token + batch.pos[i] = Int32(i) + batch.seq_id[i] = 0 + batch.logits[i] = 0 +} + +// llama_decode will output logits only for the last token of the prompt +batch.logits[Int(batch.n_tokens) - 1] = 1 + +if llama_decode(context, batch) != 0 { + print("llama_decode() failed") + exit(1) +} + +for i in 1 ..< n_parallel { + llama_kv_cache_seq_cp(context, 0, Int32(i), 0, batch.n_tokens) +} + +if n_parallel > 1 { + print("generating \(n_parallel) sequences ...\n") +} + +var streams: [String] = .init(repeating: "", count: n_parallel) +var streamBuffers: [[CChar]] = .init(repeating: [], count: n_parallel) +var i_batch = [Int32](repeating: batch.n_tokens - 1, count: n_parallel) + +var n_cur = batch.n_tokens +var n_decode = 0 + +let t_main_start = ggml_time_us() + +while n_cur <= n_len { + // prepare the next batch + batch.n_tokens = 0 + + // sample the next token for each parallel sequence / stream + for i in 0 ..< n_parallel { + if i_batch[i] < 0 { + // the stream has already finished + continue + } + + var n_vocab = llama_n_vocab(model) + var logits = llama_get_logits_ith(context, i_batch[i]) + + var candidates: [llama_token_data] = .init(repeating: llama_token_data(), count: Int(n_vocab)) + + for token_id in 0 ..< n_vocab { + candidates.append(llama_token_data(id: token_id, logit: logits![Int(token_id)], p: 0.0)) + } + + var candidates_p: llama_token_data_array = .init( + data: &candidates, + size: candidates.count, + sorted: false + ) + + let top_k: Int32 = 40 + let top_p: Float = 0.9 + let temp: Float = 0.4 + + llama_sample_top_k(context, &candidates_p, top_k, 1) + llama_sample_top_p(context, &candidates_p, top_p, 1) + llama_sample_temp(context, &candidates_p, temp) + + let new_token_id = llama_sample_token(context, &candidates_p) + + // const llama_token new_token_id = llama_sample_token_greedy(ctx, &candidates_p); + + // is it an end of stream? -> mark the stream as finished + if new_token_id == llama_token_eos(context) || n_cur == n_len { + i_batch[i] = -1 + // print("") + if n_parallel > 1 { + print("stream \(i) finished at n_cur = \(n_cur)") + } + + continue + } + + let nextStringPiece = token_to_piece(token: new_token_id, buffer: &streamBuffers[i]) ?? "" + + // if there is only one stream, we print immediately to stdout + if n_parallel == 1 { + print(nextStringPiece, terminator: "") + } + streams[i] += nextStringPiece + + // push this new token for next evaluation + batch.token[Int(batch.n_tokens)] = new_token_id + batch.pos[Int(batch.n_tokens)] = n_cur + batch.seq_id[Int(batch.n_tokens)] = Int32(i) + batch.logits[Int(batch.n_tokens)] = 1 + + i_batch[i] = batch.n_tokens + + batch.n_tokens += 1 + + n_decode += 1 + } + + // all streams are finished + if batch.n_tokens == 0 { + break + } + + n_cur += 1 + + // evaluate the current batch with the transformer model + if llama_decode(context, batch) != 0 { + print("llama_decode() failed") + exit(1) + } +} + +if n_parallel > 1 { + print("\n") + for (i, stream) in streams.enumerated() { + print("sequence \(i):\n\n\(prompt)\(stream)\n") + } +} + +let t_main_end = ggml_time_us() + +print("decoded \(n_decode) tokens in \(String(format: "%.2f", Double(t_main_end - t_main_start) / 1_000_000.0)) s, speed: \(String(format: "%.2f", Double(n_decode) / (Double(t_main_end - t_main_start) / 1_000_000.0))) t/s\n") + +llama_print_timings(context) + +private func tokenize(text: String, add_bos: Bool) -> [llama_token] { + let n_tokens = text.count + (add_bos ? 1 : 0) + let tokens = UnsafeMutablePointer.allocate(capacity: n_tokens) + let tokenCount = llama_tokenize(model, text, Int32(text.count), tokens, Int32(n_tokens), add_bos) + var swiftTokens: [llama_token] = [] + for i in 0 ..< tokenCount { + swiftTokens.append(tokens[Int(i)]) + } + tokens.deallocate() + return swiftTokens +} + +private func token_to_piece(token: llama_token, buffer: inout [CChar]) -> String? { + var result = [CChar](repeating: 0, count: 8) + let nTokens = llama_token_to_piece(model, token, &result, Int32(result.count)) + if nTokens < 0 { + if result.count >= -Int(nTokens) { + result.removeLast(-Int(nTokens)) + } else { + result.removeAll() + } + let check = llama_token_to_piece( + model, + token, + &result, + Int32(result.count) + ) + assert(check == nTokens) + } else { + result.removeLast(result.count - Int(nTokens)) + } + if buffer.isEmpty, let utfString = String(cString: result + [0], encoding: .utf8) { + return utfString + } else { + buffer.append(contentsOf: result) + let data = Data(buffer.map { UInt8(bitPattern: $0) }) + if buffer.count >= 4 { // 4 bytes is the max length of a utf8 character so if we're here we need to reset the buffer + buffer = [] + } + guard let bufferString = String(data: data, encoding: .utf8) else { + return nil + } + buffer = [] + return bufferString + } + return nil +} diff --git a/examples/infill/infill.cpp b/examples/infill/infill.cpp index 9ec75ce42..d994de5e8 100644 --- a/examples/infill/infill.cpp +++ b/examples/infill/infill.cpp @@ -233,10 +233,22 @@ int main(int argc, char ** argv) { const bool add_bos = llama_vocab_type(model) == LLAMA_VOCAB_TYPE_SPM; LOG("add_bos: %d\n", add_bos); + bool suff_rm_leading_spc = params.escape; + if (suff_rm_leading_spc && params.input_suffix.find_first_of(" ") == 0 && params.input_suffix.size() > 1) { + params.input_suffix.erase(0, 1); + suff_rm_leading_spc = false; + } std::vector embd_inp; - std::vector inp_pfx = ::llama_tokenize(ctx, params.input_prefix, add_bos); - std::vector inp_sfx = ::llama_tokenize(ctx, params.input_suffix, add_bos); + std::vector inp_pfx = ::llama_tokenize(ctx, params.input_prefix, false); + std::vector inp_sfx = ::llama_tokenize(ctx, params.input_suffix, false); + const int space_token = 29871; + if (suff_rm_leading_spc && inp_sfx[0] == space_token) { + inp_sfx.erase(inp_sfx.begin()); + } inp_pfx.insert(inp_pfx.begin(), llama_token_prefix(ctx)); + if (add_bos) { + inp_pfx.insert(inp_pfx.begin(), llama_token_bos(ctx)); + } inp_sfx.insert(inp_sfx.begin(), llama_token_suffix(ctx)); embd_inp = inp_pfx; embd_inp.insert(embd_inp.end(), inp_sfx.begin(), inp_sfx.end()); @@ -627,10 +639,27 @@ int main(int argc, char ** argv) { buffer.clear(); // done taking input, reset color console::set_display(console::reset); + + if (params.escape) { + //process escape sequences, for the initial prompt this is done in common.cpp when we load the params, but for the interactive mode we need to do it here + process_escapes(params.input_prefix); + process_escapes(params.input_suffix); + } + suff_rm_leading_spc = params.escape; + if (suff_rm_leading_spc && params.input_suffix.find_first_of(" ") == 0 && params.input_suffix.size() > 1) { + params.input_suffix.erase(0, 1); + suff_rm_leading_spc = false; + } // tokenize new prefix and suffix - std::vector inp_pfx = ::llama_tokenize(ctx, params.input_prefix, add_bos); - std::vector inp_sfx = ::llama_tokenize(ctx, params.input_suffix, add_bos); + std::vector inp_pfx = ::llama_tokenize(ctx, params.input_prefix, false); + std::vector inp_sfx = ::llama_tokenize(ctx, params.input_suffix, false); + if (suff_rm_leading_spc && inp_sfx[0] == space_token) { + inp_sfx.erase(inp_sfx.begin()); + } inp_pfx.insert(inp_pfx.begin(), llama_token_prefix(ctx)); + if (add_bos) { + inp_pfx.insert(inp_pfx.begin(), llama_token_bos(ctx)); + } inp_sfx.insert(inp_sfx.begin(), llama_token_suffix(ctx)); embd_inp = inp_pfx; embd_inp.insert(embd_inp.end(), inp_sfx.begin(), inp_sfx.end()); diff --git a/examples/parallel/parallel.cpp b/examples/parallel/parallel.cpp index 721888da7..04f1e45b9 100644 --- a/examples/parallel/parallel.cpp +++ b/examples/parallel/parallel.cpp @@ -167,7 +167,7 @@ int main(int argc, char ** argv) { // the max batch size is as large as the context to handle cases where we get very long input prompt from multiple // users. regardless of the size, the main loop will chunk the batch into a maximum of params.n_batch tokens at a time - llama_batch batch = llama_batch_init(params.n_ctx, 0); + llama_batch batch = llama_batch_init(n_ctx, 0); int32_t n_total_prompt = 0; int32_t n_total_gen = 0; diff --git a/examples/server/server.cpp b/examples/server/server.cpp index c53a64867..8c5318c65 100644 --- a/examples/server/server.cpp +++ b/examples/server/server.cpp @@ -344,9 +344,20 @@ struct llama_server_context void loadInfill() { - auto prefix_tokens = tokenize(params.input_prefix, true); // always add BOS - auto suffix_tokens = tokenize(params.input_suffix, true); // always add BOS + bool suff_rm_leading_spc = true; + if (params.input_suffix.find_first_of(" ") == 0 && params.input_suffix.size() > 1) { + params.input_suffix.erase(0, 1); + suff_rm_leading_spc = false; + } + + auto prefix_tokens = tokenize(params.input_prefix, false); + auto suffix_tokens = tokenize(params.input_suffix, false); + const int space_token = 29871; + if (suff_rm_leading_spc && suffix_tokens[0] == space_token) { + suffix_tokens.erase(suffix_tokens.begin()); + } prefix_tokens.insert(prefix_tokens.begin(), llama_token_prefix(ctx)); + prefix_tokens.insert(prefix_tokens.begin(), llama_token_bos(ctx)); // always add BOS prefix_tokens.insert(prefix_tokens.end(), llama_token_suffix(ctx)); prefix_tokens.insert(prefix_tokens.end(), suffix_tokens.begin(), suffix_tokens.end()); prefix_tokens.push_back(llama_token_middle(ctx)); diff --git a/ggml-alloc.c b/ggml-alloc.c index 805759db7..34eba3f83 100644 --- a/ggml-alloc.c +++ b/ggml-alloc.c @@ -1,4 +1,5 @@ #include "ggml-alloc.h" +#include "ggml-backend.h" #include "ggml.h" #include #include @@ -6,25 +7,6 @@ #include #include -#ifdef __has_include - #if __has_include() - #include - #if defined(_POSIX_MAPPED_FILES) - #include - #include - #endif - #endif -#endif - -#if defined(_WIN32) - #define WIN32_LEAN_AND_MEAN - #ifndef NOMINMAX - #define NOMINMAX - #endif - #include - #include -#endif - #define UNUSED(x) (void)(x) #define MAX(a, b) ((a) > (b) ? (a) : (b)) @@ -80,8 +62,9 @@ struct free_block { #define MAX_FREE_BLOCKS 256 struct ggml_allocr { + struct ggml_backend_buffer * buffer; + bool buffer_owned; void * data; - size_t size; size_t alignment; int n_free_blocks; struct free_block free_blocks[MAX_FREE_BLOCKS]; @@ -119,16 +102,9 @@ static void remove_allocated_tensor(struct ggml_allocr * alloc, struct ggml_tens } #endif -static size_t ggml_allocr_get_alloc_size(struct ggml_allocr * alloc, struct ggml_tensor * tensor) { - return ggml_nbytes(tensor); - - UNUSED(alloc); -} - // check if a tensor is allocated by this buffer static bool ggml_allocr_is_own(struct ggml_allocr * alloc, const struct ggml_tensor * tensor) { - void * ptr = tensor->data; - return ptr >= alloc->data && (char *)ptr < (char *)alloc->data + alloc->max_size; + return tensor->buffer == alloc->buffer; } static bool ggml_is_view(struct ggml_tensor * t) { @@ -136,11 +112,10 @@ static bool ggml_is_view(struct ggml_tensor * t) { } void ggml_allocr_alloc(struct ggml_allocr * alloc, struct ggml_tensor * tensor) { -#ifdef GGML_ALLOCATOR_DEBUG GGML_ASSERT(!ggml_is_view(tensor)); // views generally get data pointer from one of their sources GGML_ASSERT(tensor->data == NULL); // avoid allocating tensor which already has memory allocated -#endif - size_t size = ggml_allocr_get_alloc_size(alloc, tensor); + + size_t size = ggml_backend_buffer_get_alloc_size(alloc->buffer, tensor); size = aligned_offset(NULL, size, alloc->alignment); AT_PRINTF("%s: allocating %s (%zu bytes) - ", __func__, tensor->name, size); @@ -188,6 +163,8 @@ void ggml_allocr_alloc(struct ggml_allocr * alloc, struct ggml_tensor * tensor) tensor->data = addr; AT_PRINTF("%s: allocated data at %p\n", __func__, tensor->data); + tensor->buffer = alloc->buffer; + ggml_backend_buffer_init_tensor(alloc->buffer, tensor); #ifdef GGML_ALLOCATOR_DEBUG add_allocated_tensor(alloc, tensor); @@ -208,19 +185,21 @@ void ggml_allocr_alloc(struct ggml_allocr * alloc, struct ggml_tensor * tensor) // this is a very naive implementation, but for our case the number of free blocks should be very small static void ggml_allocr_free_tensor(struct ggml_allocr * alloc, struct ggml_tensor * tensor) { - void * ptr = tensor->data; - if (ggml_allocr_is_own(alloc, tensor) == false) { // the tensor was not allocated in this buffer // this can happen because the graph allocator will try to free weights and other tensors from different buffers // the easiest way to deal with this is just to ignore it + AT_PRINTF("ignoring %s (their buffer: %p, our buffer: %p)\n", tensor->name, (void *)tensor->buffer, (void *)alloc->buffer); return; } - size_t size = ggml_allocr_get_alloc_size(alloc, tensor); + void * ptr = tensor->data; + + size_t size = ggml_backend_buffer_get_alloc_size(alloc->buffer, tensor); size = aligned_offset(NULL, size, alloc->alignment); AT_PRINTF("%s: freeing %s at %p (%zu bytes) - n_free_blocks = %d\n", __func__, tensor->name, ptr, size, alloc->n_free_blocks); - AT_PRINTF("%s: alloc->data = %p alloc->data+alloc->size = %p alloc->data+alloc->max_size = %p\n", __func__, alloc->data, (char*)alloc->data + alloc->size, (char*)alloc->data + alloc->max_size); + + ggml_backend_buffer_free_tensor(alloc->buffer, tensor); #ifdef GGML_ALLOCATOR_DEBUG remove_allocated_tensor(alloc, tensor); @@ -285,15 +264,18 @@ void ggml_allocr_reset(struct ggml_allocr * alloc) { alloc->n_free_blocks = 1; size_t align_offset = aligned_offset(alloc->data, 0, alloc->alignment); alloc->free_blocks[0].addr = (char *)alloc->data + align_offset; - alloc->free_blocks[0].size = alloc->size - align_offset; + alloc->free_blocks[0].size = ggml_backend_buffer_get_size(alloc->buffer) - align_offset; } struct ggml_allocr * ggml_allocr_new(void * data, size_t size, size_t alignment) { - struct ggml_allocr * alloc = (struct ggml_allocr *)malloc(sizeof(struct ggml_allocr) /* + n_free_blocks * sizeof(struct free_block) */); + struct ggml_backend_buffer * buffer = ggml_backend_cpu_buffer_from_ptr(NULL, data, size); + + struct ggml_allocr * alloc = (struct ggml_allocr *)malloc(sizeof(struct ggml_allocr)); *alloc = (struct ggml_allocr){ - /*.data = */ data, - /*.size = */ size, + /*.buffer = */ buffer, + /*.buffer_owned = */ true, + /*.base = */ ggml_backend_buffer_get_base(buffer), /*.alignment = */ alignment, /*.n_free_blocks = */ 0, /*.free_blocks = */ {{0}}, @@ -312,74 +294,26 @@ struct ggml_allocr * ggml_allocr_new(void * data, size_t size, size_t alignment) return alloc; } -// OS specific functions to allocate and free uncommitted virtual memory -static void * alloc_vmem(size_t size) { -#if defined(_WIN32) - return VirtualAlloc(NULL, size, MEM_RESERVE, PAGE_NOACCESS); -#elif defined(_POSIX_MAPPED_FILES) - void * ptr = mmap(NULL, size, PROT_NONE, MAP_PRIVATE | MAP_ANON, -1, 0); - if (ptr == MAP_FAILED) { - return NULL; - } - return ptr; -#else - // use a fixed address for other platforms - uintptr_t base_addr = (uintptr_t)-size - 0x100; - return (void *)base_addr; -#endif -} - -static void free_vmem(void * base_addr, size_t size) { -#if defined(_WIN32) - VirtualFree(base_addr, 0, MEM_RELEASE); - UNUSED(size); -#elif defined(_POSIX_MAPPED_FILES) - munmap(base_addr, size); -#else - // nothing to do - UNUSED(base_addr); - UNUSED(size); -#endif -} - -// allocate uncommitted virtual memory to measure the size of the graph -static void alloc_measure_vmem(void ** base_addr, size_t * size) { - // 128GB for 64-bit, 1GB for 32-bit - *size = sizeof(void *) == 4 ? 1ULL<<30 : 1ULL<<37; - do { - *base_addr = alloc_vmem(*size); - if (*base_addr != NULL) { - AT_PRINTF("allocated %.2f GB of virtual memory for measure buffer at %p\n", *size / 1024.0 / 1024.0 / 1024.0, *base_addr); - return; - } - // try again with half the size - *size /= 2; - } while (*size > 0); - - GGML_ASSERT(!"failed to allocate virtual memory for measure buffer"); -} - -static void free_measure_vmem(void * base_addr, size_t size) { - free_vmem(base_addr, size); -} - struct ggml_allocr * ggml_allocr_new_measure(size_t alignment) { - struct ggml_allocr * alloc = (struct ggml_allocr *)malloc(sizeof(struct ggml_allocr) /* + n_free_blocks * sizeof(struct free_block) */); + struct ggml_allocr * alloc = ggml_allocr_new((void *)0x1000, (size_t)-0x1001, alignment); + alloc->measure = true; - void * base_addr; - size_t size; + return alloc; +} - alloc_measure_vmem(&base_addr, &size); +struct ggml_allocr * ggml_allocr_new_from_buffer(struct ggml_backend_buffer * buffer) { + struct ggml_allocr * alloc = (struct ggml_allocr *)malloc(sizeof(struct ggml_allocr)); *alloc = (struct ggml_allocr){ - /*.data = */ base_addr, - /*.size = */ size, - /*.alignment = */ alignment, + /*.buffer = */ buffer, + /*.buffer_owned = */ false, + /*.base = */ ggml_backend_buffer_get_base(buffer), + /*.alignment = */ ggml_backend_buffer_get_alignment(buffer), /*.n_free_blocks = */ 0, /*.free_blocks = */ {{0}}, /*.hash_table = */ {{0}}, /*.max_size = */ 0, - /*.measure = */ true, + /*.measure = */ false, /*.parse_seq = */ {0}, /*.parse_seq_len = */ 0, #ifdef GGML_ALLOCATOR_DEBUG @@ -393,8 +327,8 @@ struct ggml_allocr * ggml_allocr_new_measure(size_t alignment) { } void ggml_allocr_free(struct ggml_allocr * alloc) { - if (alloc->measure) { - free_measure_vmem(alloc->data, alloc->size); + if (alloc->buffer_owned) { + ggml_backend_buffer_free(alloc->buffer); } free(alloc); } @@ -437,7 +371,6 @@ static bool ggml_op_can_inplace(enum ggml_op op) { case GGML_OP_ROPE: case GGML_OP_RMS_NORM: case GGML_OP_SOFT_MAX: - case GGML_OP_CONT: return true; default: @@ -445,12 +378,23 @@ static bool ggml_op_can_inplace(enum ggml_op op) { } } +static void init_view(struct ggml_allocr * alloc, struct ggml_tensor * view) { + assert(view->view_src != NULL && view->view_src->data != NULL); + view->backend = view->view_src->backend; + view->buffer = view->view_src->buffer; + view->data = (char *)view->view_src->data + view->view_offs; + + // FIXME: the view should be initialized by the owning buffer, but currently this breaks the CUDA backend + // due to the ggml_tensor_extra_gpu ring buffer overwriting the KV cache extras + assert(ggml_allocr_is_measure(alloc) || !view->buffer || view->buffer->backend == alloc->buffer->backend); + ggml_backend_buffer_init_tensor(alloc->buffer, view); +} + static void allocate_node(struct ggml_allocr * alloc, struct ggml_tensor * node) { struct hash_node * ht = alloc->hash_table; if (node->data == NULL) { if (ggml_is_view(node)) { - assert(node->view_src->data != NULL); - node->data = (char *)node->view_src->data + node->view_offs; + init_view(alloc, node); } else { // see if we can reuse a parent's buffer (inplace) if (ggml_op_can_inplace(node->op)) { @@ -478,13 +422,17 @@ static void allocate_node(struct ggml_allocr * alloc, struct ggml_tensor * node) // adding a view_src pointer to the tensor would solve this and simplify the code dealing with views // for now, we only reuse the parent's data if the offset is zero (view_src->data == parent->data) AT_PRINTF("reusing view parent %s (%s) for %s\n", parent->name, view_src->name, node->name); - node->data = parent->data; + node->view_src = view_src; + view_src_hn->n_views += 1; + init_view(alloc, node); return; } } else { AT_PRINTF("reusing parent %s for %s\n", parent->name, node->name); - node->data = parent->data; + node->view_src = parent; + p_hn->n_views += 1; + init_view(alloc, node); return; } } @@ -495,7 +443,7 @@ static void allocate_node(struct ggml_allocr * alloc, struct ggml_tensor * node) } } -static size_t ggml_allocr_alloc_graph_tensors_n( +size_t ggml_allocr_alloc_graph_n( struct ggml_allocr * alloc, struct ggml_cgraph ** graphs, int n_graphs, struct ggml_tensor *** inputs, struct ggml_tensor *** outputs) { @@ -513,6 +461,10 @@ static size_t ggml_allocr_alloc_graph_tensors_n( if (ggml_is_view(node)) { struct ggml_tensor * view_src = node->view_src; hash_get(ht, view_src)->n_views += 1; + if (node->buffer == NULL && node->data != NULL) { + // view of a pre-allocated tensor, didn't call init_view() yet + init_view(alloc, node); + } } for (int j = 0; j < GGML_MAX_SRC; j++) { @@ -521,6 +473,9 @@ static size_t ggml_allocr_alloc_graph_tensors_n( break; } hash_get(ht, parent)->n_children += 1; + if (ggml_is_view(parent) && parent->buffer == NULL && parent->data != NULL) { + init_view(alloc, parent); + } } } } @@ -631,7 +586,7 @@ static size_t ggml_allocr_alloc_graph_tensors_n( } size_t ggml_allocr_alloc_graph(struct ggml_allocr * alloc, struct ggml_cgraph * graph) { - return ggml_allocr_alloc_graph_tensors_n(alloc, &graph, 1, NULL, NULL); + return ggml_allocr_alloc_graph_n(alloc, &graph, 1, NULL, NULL); } size_t ggml_allocr_max_size(struct ggml_allocr * alloc) { diff --git a/ggml-alloc.h b/ggml-alloc.h index 0c224f174..e38758878 100644 --- a/ggml-alloc.h +++ b/ggml-alloc.h @@ -6,21 +6,27 @@ extern "C" { #endif +struct ggml_backend_buffer; GGML_API struct ggml_allocr * ggml_allocr_new(void * data, size_t size, size_t alignment); GGML_API struct ggml_allocr * ggml_allocr_new_measure(size_t alignment); +GGML_API struct ggml_allocr * ggml_allocr_new_from_buffer(struct ggml_backend_buffer * buffer); // tell the allocator to parse nodes following the order described in the list // you should call this if your graph are optimized to execute out-of-order GGML_API void ggml_allocr_set_parse_seq(struct ggml_allocr * alloc, const int * list, int n); -GGML_API void ggml_allocr_free(struct ggml_allocr * alloc); -GGML_API bool ggml_allocr_is_measure(struct ggml_allocr * alloc); -GGML_API void ggml_allocr_reset(struct ggml_allocr * alloc); -GGML_API void ggml_allocr_alloc(struct ggml_allocr * alloc, struct ggml_tensor * tensor); +GGML_API void ggml_allocr_free (struct ggml_allocr * alloc); +GGML_API bool ggml_allocr_is_measure (struct ggml_allocr * alloc); +GGML_API void ggml_allocr_reset (struct ggml_allocr * alloc); +GGML_API void ggml_allocr_alloc (struct ggml_allocr * alloc, struct ggml_tensor * tensor); GGML_API size_t ggml_allocr_alloc_graph(struct ggml_allocr * alloc, struct ggml_cgraph * graph); -GGML_API size_t ggml_allocr_max_size(struct ggml_allocr * alloc); +GGML_API size_t ggml_allocr_max_size (struct ggml_allocr * alloc); +GGML_API size_t ggml_allocr_alloc_graph_n( + struct ggml_allocr * alloc, + struct ggml_cgraph ** graphs, int n_graphs, + struct ggml_tensor *** inputs, struct ggml_tensor *** outputs); #ifdef __cplusplus } diff --git a/ggml-backend.c b/ggml-backend.c new file mode 100644 index 000000000..ca8d83daf --- /dev/null +++ b/ggml-backend.c @@ -0,0 +1,385 @@ +#include "ggml-backend.h" +#include "ggml-alloc.h" + +#include +#include +#include +#include +#include + +#define UNUSED GGML_UNUSED + +#define MAX(a, b) ((a) > (b) ? (a) : (b)) + +// backend buffer + +ggml_backend_buffer_t ggml_backend_buffer_init( + struct ggml_backend * backend, + struct ggml_backend_buffer_i iface, + ggml_backend_buffer_context_t context, + size_t size) { + ggml_backend_buffer_t buffer = malloc(sizeof(struct ggml_backend_buffer)); + + GGML_ASSERT(iface.get_base != NULL); + + (*buffer) = (struct ggml_backend_buffer) { + /* .interface = */ iface, + /* .backend = */ backend, + /* .context = */ context, + /* .size = */ size, + }; + + return buffer; +} + +void ggml_backend_buffer_free(ggml_backend_buffer_t buffer) { + if (buffer->iface.free_buffer != NULL) { + buffer->iface.free_buffer(buffer); + } + free(buffer); +} + +size_t ggml_backend_buffer_get_alignment(ggml_backend_buffer_t buffer) { + return ggml_backend_get_alignment(buffer->backend); +} + +void * ggml_backend_buffer_get_base(ggml_backend_buffer_t buffer) { + return buffer->iface.get_base(buffer); +} + +size_t ggml_backend_buffer_get_size(ggml_backend_buffer_t buffer) { + return buffer->size; +} + +size_t ggml_backend_buffer_get_alloc_size(ggml_backend_buffer_t buffer, struct ggml_tensor * tensor) { + if (buffer->iface.get_alloc_size) { + return buffer->iface.get_alloc_size(buffer, tensor); + } + return ggml_nbytes(tensor); +} + +void ggml_backend_buffer_init_tensor(ggml_backend_buffer_t buffer, struct ggml_tensor * tensor) { + if (buffer->iface.init_tensor) { + buffer->iface.init_tensor(buffer, tensor); + } +} + +void ggml_backend_buffer_free_tensor(ggml_backend_buffer_t buffer, struct ggml_tensor * tensor) { + if (buffer->iface.free_tensor) { + buffer->iface.free_tensor(buffer, tensor); + } +} + +// backend + +ggml_backend_t ggml_get_backend(const struct ggml_tensor * tensor) { + return tensor->buffer->backend; +} + +const char * ggml_backend_name(ggml_backend_t backend) { + return backend->iface.get_name(backend); +} + +void ggml_backend_free(ggml_backend_t backend) { + backend->iface.free(backend); +} + +ggml_backend_buffer_t ggml_backend_alloc_buffer(ggml_backend_t backend, size_t size) { + return backend->iface.alloc_buffer(backend, size); +} + +size_t ggml_backend_get_alignment(ggml_backend_t backend) { + return backend->iface.get_alignment(backend); +} + +void ggml_backend_tensor_set_async(struct ggml_tensor * tensor, const void * data, size_t offset, size_t size) { + ggml_get_backend(tensor)->iface.set_tensor_async(ggml_get_backend(tensor), tensor, data, offset, size); +} + +void ggml_backend_tensor_get_async(const struct ggml_tensor * tensor, void * data, size_t offset, size_t size) { + ggml_get_backend(tensor)->iface.get_tensor_async(ggml_get_backend(tensor), tensor, data, offset, size); +} + +void ggml_backend_tensor_set(struct ggml_tensor * tensor, const void * data, size_t offset, size_t size) { + ggml_get_backend(tensor)->iface.set_tensor_async(ggml_get_backend(tensor), tensor, data, offset, size); + ggml_get_backend(tensor)->iface.synchronize(ggml_get_backend(tensor)); +} + +void ggml_backend_tensor_get(const struct ggml_tensor * tensor, void * data, size_t offset, size_t size) { + ggml_get_backend(tensor)->iface.get_tensor_async(ggml_get_backend(tensor), tensor, data, offset, size); + ggml_get_backend(tensor)->iface.synchronize(ggml_get_backend(tensor)); +} + +void ggml_backend_synchronize(ggml_backend_t backend) { + backend->iface.synchronize(backend); +} + +ggml_backend_graph_plan_t ggml_backend_graph_plan_create(ggml_backend_t backend, struct ggml_cgraph * cgraph) { + return backend->iface.graph_plan_create(backend, cgraph); +} + +void ggml_backend_graph_plan_free(ggml_backend_t backend, ggml_backend_graph_plan_t plan) { + backend->iface.graph_plan_free(backend, plan); +} + +void ggml_backend_graph_plan_compute(ggml_backend_t backend, ggml_backend_graph_plan_t plan) { + backend->iface.graph_plan_compute(backend, plan); +} + +void ggml_backend_graph_compute(ggml_backend_t backend, struct ggml_cgraph * cgraph) { + backend->iface.graph_compute(backend, cgraph); +} + +bool ggml_backend_supports_op(ggml_backend_t backend, const struct ggml_tensor * op) { + return backend->iface.supports_op(backend, op); +} + +// backend copy + +static bool ggml_are_same_layout(const struct ggml_tensor * a, const struct ggml_tensor * b) { + if (a->type != b->type) { + return false; + } + for (int i = 0; i < GGML_MAX_DIMS; i++) { + if (a->ne[i] != b->ne[i]) { + return false; + } + if (a->nb[i] != b->nb[i]) { + return false; + } + } + return true; +} + +void ggml_backend_tensor_copy(struct ggml_tensor * src, struct ggml_tensor * dst) { + //printf("src: %s ne: [%d %d %d %d] nb: [%d %d %d %d]\n", src->name, (int)src->ne[0], (int)src->ne[1], (int)src->ne[2], (int)src->ne[3], (int)src->nb[0], (int)src->nb[1], (int)src->nb[2], (int)src->nb[3]); + //printf("dst: %s ne: [%d %d %d %d] nb: [%d %d %d %d]\n", dst->name, (int)dst->ne[0], (int)dst->ne[1], (int)dst->ne[2], (int)dst->ne[3], (int)dst->nb[0], (int)dst->nb[1], (int)dst->nb[2], (int)dst->nb[3]); + GGML_ASSERT(ggml_are_same_layout(src, dst) && "cannot copy tensors with different layouts"); + + // printf("cpy tensor %s from %s to %s (%lu bytes)\n", src->name, ggml_backend_name(src->backend), ggml_backend_name(dst->backend), ggml_nbytes(src)); + + if (src == dst) { + return; + } + + // TODO: allow backends to support copy to/from same backend + + if (ggml_get_backend(dst)->iface.cpy_tensor_from != NULL) { + ggml_get_backend(dst)->iface.cpy_tensor_from(ggml_get_backend(dst)->context, src, dst); + } else if (ggml_get_backend(src)->iface.cpy_tensor_to != NULL) { + ggml_get_backend(src)->iface.cpy_tensor_to(ggml_get_backend(src)->context, src, dst); + } else { + // shouldn't be hit when copying from/to CPU + #ifndef NDEBUG + fprintf(stderr, "ggml_backend_tensor_copy: neither cpy_tensor_from nor cpy_tensor_to are implemented for backends %s and %s, falling back to get/set\n", ggml_backend_name(src->buffer->backend), ggml_backend_name(dst->buffer->backend)); + #endif + size_t nbytes = ggml_nbytes(src); + void * data = malloc(nbytes); + ggml_backend_tensor_get(src, data, 0, nbytes); + ggml_backend_tensor_set(dst, data, 0, nbytes); + free(data); + } +} + +// backend CPU + +struct ggml_backend_cpu_context { + int n_threads; + void * work_data; + size_t work_size; +}; + +static const char * ggml_backend_cpu_name(ggml_backend_t backend) { + return "CPU"; + + UNUSED(backend); +} + +static void ggml_backend_cpu_free(ggml_backend_t backend) { + struct ggml_backend_cpu_context * cpu_ctx = (struct ggml_backend_cpu_context *)backend->context; + free(cpu_ctx->work_data); + free(cpu_ctx); + free(backend); +} + +static void * ggml_backend_cpu_buffer_get_base(ggml_backend_buffer_t buffer) { + return (void *)buffer->context; +} + +static void ggml_backend_cpu_buffer_free_buffer(ggml_backend_buffer_t buffer) { + free(buffer->context); + UNUSED(buffer); +} + +static struct ggml_backend_buffer_i cpu_backend_buffer_i = { + /* .free_buffer = */ ggml_backend_cpu_buffer_free_buffer, + /* .get_base = */ ggml_backend_cpu_buffer_get_base, + /* .get_alloc_size = */ NULL, // defaults to ggml_nbytes + /* .init_tensor = */ NULL, // no initialization required + /* .free_tensor = */ NULL, // no cleanup required +}; + +// for buffers from ptr, free is not called +static struct ggml_backend_buffer_i cpu_backend_buffer_i_from_ptr = { + /* .free_buffer = */ NULL, // ptr is not owned by the buffer, so it does not need to be freed + /* .get_base = */ ggml_backend_cpu_buffer_get_base, + /* .get_alloc_size = */ NULL, // defaults to ggml_nbytes + /* .init_tensor = */ NULL, + /* .free_tensor = */ NULL, +}; + +static const size_t TENSOR_ALIGNMENT = 64; // should be enough for AVX 512 + +static ggml_backend_buffer_t ggml_backend_cpu_alloc_buffer(ggml_backend_t backend, size_t size) { + size += TENSOR_ALIGNMENT; // malloc may return an address that is not aligned + void * data = malloc(size); // TODO: maybe use GGML_ALIGNED_MALLOC? + + return ggml_backend_buffer_init(backend, cpu_backend_buffer_i, data, size); +} + +static size_t ggml_backend_cpu_get_alignment(ggml_backend_t backend) { + return TENSOR_ALIGNMENT; + UNUSED(backend); +} + +static void ggml_backend_cpu_set_tensor_async(ggml_backend_t backend, struct ggml_tensor * tensor, const void * data, size_t offset, size_t size) { + GGML_ASSERT(offset + size <= ggml_nbytes(tensor) && "tensor write out of bounds"); + GGML_ASSERT(tensor->data != NULL && "tensor not allocated"); + + memcpy((char *)tensor->data + offset, data, size); + + UNUSED(backend); +} + +static void ggml_backend_cpu_get_tensor_async(ggml_backend_t backend, const struct ggml_tensor * tensor, void * data, size_t offset, size_t size) { + GGML_ASSERT(offset + size <= ggml_nbytes(tensor) && "tensor read out of bounds"); + GGML_ASSERT(tensor->data != NULL && "tensor not allocated"); + + memcpy(data, (const char *)tensor->data + offset, size); + + UNUSED(backend); +} + +static void ggml_backend_cpu_synchronize(ggml_backend_t backend) { + UNUSED(backend); +} + +static void ggml_backend_cpu_cpy_tensor_from(ggml_backend_t backend, struct ggml_tensor * src, struct ggml_tensor * dst) { + ggml_backend_tensor_get(src, dst->data, 0, ggml_nbytes(src)); + + UNUSED(backend); +} + +static void ggml_backend_cpu_cpy_tensor_to(ggml_backend_t backend, struct ggml_tensor * src, struct ggml_tensor * dst) { + // for a backend such as CUDA that can queue async calls, it is ok to do this asynchronously, but it may not be the case for other backends + ggml_backend_tensor_set_async(dst, src->data, 0, ggml_nbytes(src)); + + UNUSED(backend); +} + +struct ggml_backend_plan_cpu { + struct ggml_cplan cplan; + struct ggml_cgraph cgraph; +}; + +static ggml_backend_graph_plan_t ggml_backend_cpu_graph_plan_create(ggml_backend_t backend, struct ggml_cgraph * cgraph) { + struct ggml_backend_cpu_context * cpu_ctx = (struct ggml_backend_cpu_context *)backend->context; + + struct ggml_backend_plan_cpu * cpu_plan = malloc(sizeof(struct ggml_backend_plan_cpu)); + + cpu_plan->cplan = ggml_graph_plan(cgraph, cpu_ctx->n_threads); + cpu_plan->cgraph = *cgraph; + + if (cpu_plan->cplan.work_size > 0) { + cpu_plan->cplan.work_data = malloc(cpu_plan->cplan.work_size); + } + + return cpu_plan; +} + +static void ggml_backend_cpu_graph_plan_free(ggml_backend_t backend, ggml_backend_graph_plan_t plan) { + struct ggml_backend_plan_cpu * cpu_plan = (struct ggml_backend_plan_cpu *)plan; + + free(cpu_plan->cplan.work_data); + free(cpu_plan); + + UNUSED(backend); +} + +static void ggml_backend_cpu_graph_plan_compute(ggml_backend_t backend, ggml_backend_graph_plan_t plan) { + struct ggml_backend_plan_cpu * cpu_plan = (struct ggml_backend_plan_cpu *)plan; + + ggml_graph_compute(&cpu_plan->cgraph, &cpu_plan->cplan); + + UNUSED(backend); +} + +static void ggml_backend_cpu_graph_compute(ggml_backend_t backend, struct ggml_cgraph * cgraph) { + struct ggml_backend_cpu_context * cpu_ctx = (struct ggml_backend_cpu_context *)backend->context; + + struct ggml_cplan cplan = ggml_graph_plan(cgraph, cpu_ctx->n_threads); + + if (cpu_ctx->work_size < cplan.work_size) { + // TODO: may be faster to free and use malloc to avoid the copy + cpu_ctx->work_data = realloc(cpu_ctx->work_data, cplan.work_size); + cpu_ctx->work_size = cplan.work_size; + } + + cplan.work_data = cpu_ctx->work_data; + + ggml_graph_compute(cgraph, &cplan); +} + +static bool ggml_backend_cpu_supports_op(ggml_backend_t backend, const struct ggml_tensor * op) { + return true; + UNUSED(backend); + UNUSED(op); +} + +static struct ggml_backend_i cpu_backend_i = { + /* .get_name = */ ggml_backend_cpu_name, + /* .free = */ ggml_backend_cpu_free, + /* .alloc_buffer = */ ggml_backend_cpu_alloc_buffer, + /* .get_alignment = */ ggml_backend_cpu_get_alignment, + /* .set_tensor_async = */ ggml_backend_cpu_set_tensor_async, + /* .get_tensor_async = */ ggml_backend_cpu_get_tensor_async, + /* .synchronize = */ ggml_backend_cpu_synchronize, + /* .cpy_tensor_from = */ ggml_backend_cpu_cpy_tensor_from, + /* .cpy_tensor_to = */ ggml_backend_cpu_cpy_tensor_to, + /* .graph_plan_create = */ ggml_backend_cpu_graph_plan_create, + /* .graph_plan_free = */ ggml_backend_cpu_graph_plan_free, + /* .graph_plan_compute = */ ggml_backend_cpu_graph_plan_compute, + /* .graph_compute = */ ggml_backend_cpu_graph_compute, + /* .supports_op = */ ggml_backend_cpu_supports_op, +}; + +ggml_backend_t ggml_backend_cpu_init(void) { + struct ggml_backend_cpu_context * ctx = malloc(sizeof(struct ggml_backend_cpu_context)); + + ctx->n_threads = GGML_DEFAULT_N_THREADS; + ctx->work_data = NULL; + ctx->work_size = 0; + + ggml_backend_t cpu_backend = malloc(sizeof(struct ggml_backend)); + + *cpu_backend = (struct ggml_backend) { + /* .interface = */ cpu_backend_i, + /* .context = */ ctx + }; + return cpu_backend; +} + +bool ggml_backend_is_cpu(ggml_backend_t backend) { + return backend->iface.get_name == ggml_backend_cpu_name; +} + +void ggml_backend_cpu_set_n_threads(ggml_backend_t backend_cpu, int n_threads) { + GGML_ASSERT(ggml_backend_is_cpu(backend_cpu)); + + struct ggml_backend_cpu_context * ctx = (struct ggml_backend_cpu_context *)backend_cpu->context; + ctx->n_threads = n_threads; +} + +ggml_backend_buffer_t ggml_backend_cpu_buffer_from_ptr(ggml_backend_t backend_cpu, void * ptr, size_t size) { + return ggml_backend_buffer_init(backend_cpu, cpu_backend_buffer_i_from_ptr, ptr, size); +} diff --git a/ggml-backend.h b/ggml-backend.h new file mode 100644 index 000000000..da134b0db --- /dev/null +++ b/ggml-backend.h @@ -0,0 +1,143 @@ +#pragma once + +#include "ggml.h" + +#ifdef __cplusplus +extern "C" { +#endif + struct ggml_backend; + struct ggml_backend_buffer; + + // type-erased backend-specific types / wrappers + typedef void * ggml_backend_context_t; + typedef void * ggml_backend_graph_plan_t; + typedef void * ggml_backend_buffer_context_t; + + // avoid accessing internals of these types + typedef struct ggml_backend * ggml_backend_t; + typedef struct ggml_backend_buffer * ggml_backend_buffer_t; + + // + // backend buffer + // + + struct ggml_backend_buffer_i { + void (*free_buffer) (ggml_backend_buffer_t buffer); + void * (*get_base) (ggml_backend_buffer_t buffer); // get base pointer + size_t (*get_alloc_size)(ggml_backend_buffer_t buffer, struct ggml_tensor * tensor); // pre-allocation callback + void (*init_tensor) (ggml_backend_buffer_t buffer, struct ggml_tensor * tensor); // post-allocation callback + void (*free_tensor) (ggml_backend_buffer_t buffer, struct ggml_tensor * tensor); // pre-free callback + }; + + // TODO: hide behind API + struct ggml_backend_buffer { + struct ggml_backend_buffer_i iface; + + ggml_backend_t backend; + ggml_backend_buffer_context_t context; + + size_t size; + }; + + // backend buffer functions + GGML_API ggml_backend_buffer_t ggml_backend_buffer_init( + struct ggml_backend * backend, + struct ggml_backend_buffer_i iface, + ggml_backend_buffer_context_t context, + size_t size); + + GGML_API void ggml_backend_buffer_free (ggml_backend_buffer_t buffer); + GGML_API size_t ggml_backend_buffer_get_alignment (ggml_backend_buffer_t buffer); + GGML_API void * ggml_backend_buffer_get_base (ggml_backend_buffer_t buffer); + GGML_API size_t ggml_backend_buffer_get_size (ggml_backend_buffer_t buffer); + GGML_API size_t ggml_backend_buffer_get_alloc_size(ggml_backend_buffer_t buffer, struct ggml_tensor * tensor); + GGML_API void ggml_backend_buffer_init_tensor (ggml_backend_buffer_t buffer, struct ggml_tensor * tensor); + GGML_API void ggml_backend_buffer_free_tensor (ggml_backend_buffer_t buffer, struct ggml_tensor * tensor); + + // + // backend + // + + struct ggml_backend_i { + const char * (*get_name)(ggml_backend_t backend); + + void (*free)(ggml_backend_t backend); + + // buffer allocation + ggml_backend_buffer_t (*alloc_buffer)(ggml_backend_t backend, size_t size); + + // get buffer alignment + size_t (*get_alignment)(ggml_backend_t backend); + + // tensor data access + // these functions can be asynchronous, helper functions are provided for synchronous access that automatically call synchronize + void (*set_tensor_async)(ggml_backend_t backend, struct ggml_tensor * tensor, const void * data, size_t offset, size_t size); + void (*get_tensor_async)(ggml_backend_t backend, const struct ggml_tensor * tensor, void * data, size_t offset, size_t size); + void (*synchronize) (ggml_backend_t backend); + + // (optional) copy tensor between different backends, allow for single-copy tranfers + void (*cpy_tensor_from)(ggml_backend_t backend, struct ggml_tensor * src, struct ggml_tensor * dst); + void (*cpy_tensor_to) (ggml_backend_t backend, struct ggml_tensor * src, struct ggml_tensor * dst); + + // compute graph with a plan + ggml_backend_graph_plan_t (*graph_plan_create) (ggml_backend_t backend, struct ggml_cgraph * cgraph); + void (*graph_plan_free) (ggml_backend_t backend, ggml_backend_graph_plan_t plan); + void (*graph_plan_compute)(ggml_backend_t backend, ggml_backend_graph_plan_t plan); + + // compute graph without a plan + void (*graph_compute)(ggml_backend_t backend, struct ggml_cgraph * cgraph); + + // check if the backend supports an operation + bool (*supports_op)(ggml_backend_t backend, const struct ggml_tensor * op); + }; + + // TODO: hide behind API + struct ggml_backend { + struct ggml_backend_i iface; + + ggml_backend_context_t context; + }; + + // backend helper functions + GGML_API ggml_backend_t ggml_get_backend(const struct ggml_tensor * tensor); + + GGML_API const char * ggml_backend_name(ggml_backend_t backend); + GGML_API void ggml_backend_free(ggml_backend_t backend); + + GGML_API ggml_backend_buffer_t ggml_backend_alloc_buffer(ggml_backend_t backend, size_t size); + + GGML_API size_t ggml_backend_get_alignment(ggml_backend_t backend); + + GGML_API void ggml_backend_tensor_set_async( struct ggml_tensor * tensor, const void * data, size_t offset, size_t size); + GGML_API void ggml_backend_tensor_get_async(const struct ggml_tensor * tensor, void * data, size_t offset, size_t size); + + GGML_API void ggml_backend_tensor_set( struct ggml_tensor * tensor, const void * data, size_t offset, size_t size); + GGML_API void ggml_backend_tensor_get(const struct ggml_tensor * tensor, void * data, size_t offset, size_t size); + + GGML_API void ggml_backend_synchronize(ggml_backend_t backend); + + GGML_API ggml_backend_graph_plan_t ggml_backend_graph_plan_create (ggml_backend_t backend, struct ggml_cgraph * cgraph); + + GGML_API void ggml_backend_graph_plan_free (ggml_backend_t backend, ggml_backend_graph_plan_t plan); + GGML_API void ggml_backend_graph_plan_compute(ggml_backend_t backend, ggml_backend_graph_plan_t plan); + GGML_API void ggml_backend_graph_compute (ggml_backend_t backend, struct ggml_cgraph * cgraph); + GGML_API bool ggml_backend_supports_op (ggml_backend_t backend, const struct ggml_tensor * op); + + // tensor copy between different backends + GGML_API void ggml_backend_tensor_copy(struct ggml_tensor * src, struct ggml_tensor * dst); + + // + // CPU backend + // + + GGML_API ggml_backend_t ggml_backend_cpu_init(void); + + GGML_API bool ggml_backend_is_cpu(ggml_backend_t backend); + + GGML_API void ggml_backend_cpu_set_n_threads(ggml_backend_t backend_cpu, int n_threads); + + GGML_API ggml_backend_buffer_t ggml_backend_cpu_buffer_from_ptr(ggml_backend_t backend_cpu, void * ptr, size_t size); + +#ifdef __cplusplus +} +#endif diff --git a/ggml-cuda.cu b/ggml-cuda.cu index 989c419cd..654d3632f 100644 --- a/ggml-cuda.cu +++ b/ggml-cuda.cu @@ -62,6 +62,7 @@ #define cudaMemcpyHostToDevice hipMemcpyHostToDevice #define cudaMemcpyKind hipMemcpyKind #define cudaMemset hipMemset +#define cudaMemsetAsync hipMemsetAsync #define cudaOccupancyMaxPotentialBlockSize hipOccupancyMaxPotentialBlockSize #define cudaSetDevice hipSetDevice #define cudaStreamCreateWithFlags hipStreamCreateWithFlags @@ -414,11 +415,13 @@ static_assert(sizeof(block_q6_K) == sizeof(ggml_fp16_t) + 13*QK_K/16, "wrong q6_ #define CUDA_SILU_BLOCK_SIZE 256 #define CUDA_CPY_BLOCK_SIZE 32 #define CUDA_SCALE_BLOCK_SIZE 256 +#define CUDA_CLAMP_BLOCK_SIZE 256 #define CUDA_ROPE_BLOCK_SIZE 256 #define CUDA_ALIBI_BLOCK_SIZE 32 #define CUDA_DIAG_MASK_INF_BLOCK_SIZE 32 #define CUDA_QUANTIZE_BLOCK_SIZE 256 #define CUDA_DEQUANTIZE_BLOCK_SIZE 256 +#define CUDA_GET_ROWS_BLOCK_SIZE 256 // dmmv = dequantize_mul_mat_vec #ifndef GGML_CUDA_DMMV_X @@ -1574,6 +1577,34 @@ static __global__ void quantize_q8_1(const float * __restrict__ x, void * __rest reinterpret_cast(y[ib].ds.y) = sum; } +template +static __global__ void k_get_rows(const void * x, const int32_t * y, dst_t * dst, const int ncols) { + const int col = (blockIdx.x*blockDim.x + threadIdx.x)*2; + const int row = blockDim.y*blockIdx.y + threadIdx.y; + + if (col >= ncols) { + return; + } + + const int r = y[row]; + + // copy x[r*ncols + col] to dst[row*ncols + col] + const int xi = r*ncols + col; + const int di = row*ncols + col; + + const int ib = xi/qk; // block index + const int iqs = (xi%qk)/qr; // quant index + const int iybs = di - di%qk; // y block start index + const int y_offset = qr == 1 ? 1 : qk/2; + + // dequantize + dfloat2 v; + dequantize_kernel(x, ib, iqs, v); + + dst[iybs + iqs + 0] = v.x; + dst[iybs + iqs + y_offset] = v.y; +} + template static __global__ void dequantize_block(const void * __restrict__ vx, dst_t * __restrict__ y, const int k) { const int i = blockDim.x*blockIdx.x + 2*threadIdx.x; @@ -4555,6 +4586,24 @@ static __global__ void scale_f32(const float * x, float * dst, const float scale dst[i] = scale * x[i]; } +static __global__ void clamp_f32(const float * x, float * dst, const float min, const float max, const int k) { + const int i = blockDim.x*blockIdx.x + threadIdx.x; + + if (i >= k) { + return; + } + + dst[i] = x[i] < min ? min : (x[i] > max ? max : x[i]); +} + +template +static void get_rows_cuda(const void * x, const int32_t * y, float * dst, const int nrows, const int ncols, cudaStream_t stream) { + const dim3 block_dims(CUDA_GET_ROWS_BLOCK_SIZE, 1, 1); + const int block_num_x = (ncols + 2*CUDA_GET_ROWS_BLOCK_SIZE - 1) / (2*CUDA_GET_ROWS_BLOCK_SIZE); + const dim3 block_nums(block_num_x, nrows, 1); + k_get_rows<<>>(x, y, dst, ncols); +} + static void add_f32_cuda(const float * x, const float * y, float * dst, const int kx, const int ky, cudaStream_t stream) { const int num_blocks = (kx + CUDA_ADD_BLOCK_SIZE - 1) / CUDA_ADD_BLOCK_SIZE; add_f32<<>>(x, y, dst, kx, ky); @@ -5436,6 +5485,11 @@ static void scale_f32_cuda(const float * x, float * dst, const float scale, cons scale_f32<<>>(x, dst, scale, k); } +static void clamp_f32_cuda(const float * x, float * dst, const float min, const float max, const int k, cudaStream_t stream) { + const int num_blocks = (k + CUDA_CLAMP_BLOCK_SIZE - 1) / CUDA_CLAMP_BLOCK_SIZE; + clamp_f32<<>>(x, dst, min, max, k); +} + template static void rope_cuda(const T * x, T * dst, const int ncols, const int nrows, const int32_t * pos, const float freq_scale, const int p_delta_rows, const float theta_scale, cudaStream_t stream) { @@ -5703,7 +5757,7 @@ static cudaError_t ggml_cuda_cpy_tensor_2d( } else if (src->backend == GGML_BACKEND_GPU || src->backend == GGML_BACKEND_GPU_SPLIT) { GGML_ASSERT(src->backend != GGML_BACKEND_GPU_SPLIT || (i1_low == 0 && i1_high == src->ne[1])); kind = cudaMemcpyDeviceToDevice; - struct ggml_tensor_extra_gpu * extra = (ggml_tensor_extra_gpu *) src->extra; + ggml_tensor_extra_gpu * extra = (ggml_tensor_extra_gpu *) src->extra; int id; CUDA_CHECK(cudaGetDevice(&id)); src_ptr = (char *) extra->data_device[id]; @@ -5739,6 +5793,107 @@ static cudaError_t ggml_cuda_cpy_tensor_2d( } } +static void ggml_cuda_op_repeat( + const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst, + const float * src0_d, const float * src1_d, float * dst_d, const cudaStream_t & stream) { + // guaranteed to be an integer due to the check in ggml_can_repeat + const int64_t ne0 = dst->ne[0]; + const int64_t ne1 = dst->ne[1]; + const int64_t ne2 = dst->ne[2]; + const int64_t ne3 = dst->ne[3]; + + const int64_t ne00 = src0->ne[0]; + const int64_t ne01 = src0->ne[1]; + const int64_t ne02 = src0->ne[2]; + const int64_t ne03 = src0->ne[3]; + + const size_t nb0 = dst->nb[0]; + const size_t nb1 = dst->nb[1]; + const size_t nb2 = dst->nb[2]; + const size_t nb3 = dst->nb[3]; + + const size_t nb00 = src0->nb[0]; + const size_t nb01 = src0->nb[1]; + const size_t nb02 = src0->nb[2]; + const size_t nb03 = src0->nb[3]; + + const int nr0 = (int)(ne0/ne00); + const int nr1 = (int)(ne1/ne01); + const int nr2 = (int)(ne2/ne02); + const int nr3 = (int)(ne3/ne03); + + // TODO: support for transposed / permuted tensors + GGML_ASSERT(nb0 == sizeof(float)); + GGML_ASSERT(nb00 == sizeof(float)); + + // TODO: very inefficient, implement in a kernel, or fewer cudaMemcpyAsync calls for contiguous tensors + for (int i3 = 0; i3 < nr3; i3++) { + for (int k3 = 0; k3 < ne03; k3++) { + for (int i2 = 0; i2 < nr2; i2++) { + for (int k2 = 0; k2 < ne02; k2++) { + for (int i1 = 0; i1 < nr1; i1++) { + for (int k1 = 0; k1 < ne01; k1++) { + for (int i0 = 0; i0 < nr0; i0++) { + CUDA_CHECK(cudaMemcpyAsync( + (char *) dst_d + (i3*ne03 + k3)*nb3 + (i2*ne02 + k2)*nb2 + (i1*ne01 + k1)*nb1 + (i0*ne00)*nb0, + (const char *) src0_d + ( k3)*nb03 + ( k2)*nb02 + ( k1)*nb01, + ne00*nb0, cudaMemcpyDeviceToDevice, stream)); + } + } + } + } + } + } + } + + (void) src1; + (void) src1_d; +} + +static void ggml_cuda_op_get_rows( + const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst, + const float * src0_d, const float * src1_d, float * dst_d, const cudaStream_t & stream) { + + GGML_ASSERT(src1->type == GGML_TYPE_I32); + GGML_ASSERT(dst->type == GGML_TYPE_F32); + GGML_ASSERT(ggml_is_contiguous(src0)); + GGML_ASSERT(ggml_is_contiguous(src1)); + GGML_ASSERT(ggml_is_contiguous(dst)); + + const int ncols = src0->ne[0]; + const int nrows = ggml_nelements(src1); + + const int32_t * src1_i32 = (const int32_t *) src1_d; + + switch (src0->type) { + case GGML_TYPE_F16: + get_rows_cuda<1, 1, convert_f16>(src0_d, src1_i32, dst_d, nrows, ncols, stream); + break; + case GGML_TYPE_F32: + get_rows_cuda<1, 1, convert_f32>(src0_d, src1_i32, dst_d, nrows, ncols, stream); + break; + case GGML_TYPE_Q4_0: + get_rows_cuda(src0_d, src1_i32, dst_d, nrows, ncols, stream); + break; + case GGML_TYPE_Q4_1: + get_rows_cuda(src0_d, src1_i32, dst_d, nrows, ncols, stream); + break; + case GGML_TYPE_Q5_0: + get_rows_cuda(src0_d, src1_i32, dst_d, nrows, ncols, stream); + break; + case GGML_TYPE_Q5_1: + get_rows_cuda(src0_d, src1_i32, dst_d, nrows, ncols, stream); + break; + case GGML_TYPE_Q8_0: + get_rows_cuda(src0_d, src1_i32, dst_d, nrows, ncols, stream); + break; + default: + // TODO: k-quants + GGML_ASSERT(false); + break; + } +} + inline void ggml_cuda_op_add( const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst, const float * src0_dd, const float * src1_dd, float * dst_dd, const cudaStream_t & main_stream) { @@ -6279,12 +6434,12 @@ inline void ggml_cuda_op_alibi( const int64_t ne02 = src0->ne[2]; const int64_t nrows = ggml_nrows(src0); - const int n_past = ((int32_t *) dst->op_params)[0]; + //const int n_past = ((int32_t *) dst->op_params)[0]; const int n_head = ((int32_t *) dst->op_params)[1]; float max_bias; memcpy(&max_bias, (int32_t *) dst->op_params + 2, sizeof(float)); - GGML_ASSERT(ne01 + n_past == ne00); + //GGML_ASSERT(ne01 + n_past == ne00); GGML_ASSERT(n_head == ne02); const int n_heads_log2_floor = 1 << (int) floor(log2(n_head)); @@ -6343,7 +6498,14 @@ inline void ggml_cuda_op_scale( GGML_ASSERT(src1->type == GGML_TYPE_F32); GGML_ASSERT( dst->type == GGML_TYPE_F32); - const float scale = ((float *) src1->data)[0]; + float scale; + // HACK: support for ggml backend interface + if (src1->backend == GGML_BACKEND_CPU) { + scale = ((float *) src1->data)[0]; + } else { + // TODO: pass pointer to kernel instead of copying to host + CUDA_CHECK(cudaMemcpy(&scale, src1->data, sizeof(float), cudaMemcpyDeviceToHost)); + } scale_f32_cuda(src0_dd, dst_dd, scale, ggml_nelements(src0), main_stream); CUDA_CHECK(cudaGetLastError()); @@ -6353,6 +6515,24 @@ inline void ggml_cuda_op_scale( (void) src1_dd; } +inline void ggml_cuda_op_clamp( + const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst, + const float * src0_dd, const float * src1_dd, float * dst_dd, const cudaStream_t & main_stream) { + + GGML_ASSERT(src0->type == GGML_TYPE_F32); + GGML_ASSERT( dst->type == GGML_TYPE_F32); + + const float min = ((float *) dst->op_params)[0]; + const float max = ((float *) dst->op_params)[1]; + + clamp_f32_cuda(src0_dd, dst_dd, min, max, ggml_nelements(src0), main_stream); + CUDA_CHECK(cudaGetLastError()); + + (void) src1; + (void) dst; + (void) src1_dd; +} + static void ggml_cuda_op_flatten(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst, const ggml_cuda_op_flatten_t op) { const int64_t nrows0 = ggml_nrows(src0); @@ -6362,9 +6542,9 @@ static void ggml_cuda_op_flatten(const ggml_tensor * src0, const ggml_tensor * s GGML_ASSERT(!use_src1 || src1->backend != GGML_BACKEND_GPU_SPLIT); GGML_ASSERT( dst->backend != GGML_BACKEND_GPU_SPLIT); - struct ggml_tensor_extra_gpu * src0_extra = (ggml_tensor_extra_gpu *) src0->extra; - struct ggml_tensor_extra_gpu * src1_extra = use_src1 ? (ggml_tensor_extra_gpu *) src1->extra : nullptr; - struct ggml_tensor_extra_gpu * dst_extra = (ggml_tensor_extra_gpu *) dst->extra; + ggml_tensor_extra_gpu * src0_extra = (ggml_tensor_extra_gpu *) src0->extra; + ggml_tensor_extra_gpu * src1_extra = use_src1 ? (ggml_tensor_extra_gpu *) src1->extra : nullptr; + ggml_tensor_extra_gpu * dst_extra = (ggml_tensor_extra_gpu *) dst->extra; const bool src0_on_device = src0->backend == GGML_BACKEND_GPU || src0->backend == GGML_BACKEND_GPU_SPLIT; const bool src1_on_device = use_src1 && src1->backend == GGML_BACKEND_GPU; @@ -6505,9 +6685,9 @@ static void ggml_cuda_op_mul_mat( const size_t q8_1_ts = sizeof(block_q8_1); const size_t q8_1_bs = QK8_1; - struct ggml_tensor_extra_gpu * src0_extra = (ggml_tensor_extra_gpu *) src0->extra; - struct ggml_tensor_extra_gpu * src1_extra = (ggml_tensor_extra_gpu *) src1->extra; - struct ggml_tensor_extra_gpu * dst_extra = (ggml_tensor_extra_gpu *) dst->extra; + ggml_tensor_extra_gpu * src0_extra = (ggml_tensor_extra_gpu *) src0->extra; + ggml_tensor_extra_gpu * src1_extra = (ggml_tensor_extra_gpu *) src1->extra; + ggml_tensor_extra_gpu * dst_extra = (ggml_tensor_extra_gpu *) dst->extra; const bool src0_on_device = src0->backend == GGML_BACKEND_GPU || src0->backend == GGML_BACKEND_GPU_SPLIT; const bool src0_is_contiguous = ggml_is_contiguous(src0); @@ -6585,7 +6765,7 @@ static void ggml_cuda_op_mul_mat( if (convert_src1_to_q8_1) { src1_ddq[id] = (char *) ggml_cuda_pool_malloc(nrows1*src1_padded_col_size*q8_1_ts/q8_1_bs, &src1_asq[id]); - if (split && src1_on_device && src1_is_contiguous) { + if (src1_on_device && src1_is_contiguous) { quantize_row_q8_1_cuda(src1_ddf[id], src1_ddq[id], ne10, nrows1, src1_padded_col_size, stream); CUDA_CHECK(cudaGetLastError()); } @@ -6667,7 +6847,7 @@ static void ggml_cuda_op_mul_mat( GGML_ASSERT(false); } - if (convert_src1_to_q8_1 && src1->backend == GGML_BACKEND_CPU) { + if (convert_src1_to_q8_1 && (src1->backend == GGML_BACKEND_CPU || !src1_is_contiguous)) { quantize_row_q8_1_cuda(src1_ddf_i, src1_ddq_i, ne10, src1_ncols, src1_padded_col_size, stream); CUDA_CHECK(cudaGetLastError()); } @@ -6758,6 +6938,14 @@ static void ggml_cuda_op_mul_mat( } } +static void ggml_cuda_repeat(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) { + ggml_cuda_op_flatten(src0, src1, dst, ggml_cuda_op_repeat); +} + +static void ggml_cuda_get_rows(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) { + ggml_cuda_op_flatten(src0, src1, dst, ggml_cuda_op_get_rows); +} + static void ggml_cuda_add(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) { ggml_cuda_op_flatten(src0, src1, dst, ggml_cuda_op_add); } @@ -6812,13 +7000,13 @@ static void ggml_cuda_mul_mat_vec_p021(const ggml_tensor * src0, const ggml_tens CUDA_CHECK(ggml_cuda_set_device(g_main_device)); cudaStream_t main_stream = g_cudaStreams[g_main_device][0]; - struct ggml_tensor_extra_gpu * src0_extra = (ggml_tensor_extra_gpu *) src0->extra; + ggml_tensor_extra_gpu * src0_extra = (ggml_tensor_extra_gpu *) src0->extra; void * src0_ddq = src0_extra->data_device[g_main_device]; - struct ggml_tensor_extra_gpu * src1_extra = (ggml_tensor_extra_gpu *) src1->extra; + ggml_tensor_extra_gpu * src1_extra = (ggml_tensor_extra_gpu *) src1->extra; float * src1_ddf = (float *) src1_extra->data_device[g_main_device]; - struct ggml_tensor_extra_gpu * dst_extra = (ggml_tensor_extra_gpu *) dst->extra; + ggml_tensor_extra_gpu * dst_extra = (ggml_tensor_extra_gpu *) dst->extra; float * dst_ddf = (float *) dst_extra->data_device[g_main_device]; ggml_mul_mat_p021_f16_f32_cuda(src0_ddq, src1_ddf, dst_ddf, ne00, ne01, ne02, ne12, main_stream); @@ -6843,13 +7031,13 @@ static void ggml_cuda_mul_mat_vec_nc(const ggml_tensor * src0, const ggml_tensor CUDA_CHECK(ggml_cuda_set_device(g_main_device)); cudaStream_t main_stream = g_cudaStreams[g_main_device][0]; - struct ggml_tensor_extra_gpu * src0_extra = (ggml_tensor_extra_gpu *) src0->extra; + ggml_tensor_extra_gpu * src0_extra = (ggml_tensor_extra_gpu *) src0->extra; void * src0_ddq = src0_extra->data_device[g_main_device]; - struct ggml_tensor_extra_gpu * src1_extra = (ggml_tensor_extra_gpu *) src1->extra; + ggml_tensor_extra_gpu * src1_extra = (ggml_tensor_extra_gpu *) src1->extra; float * src1_ddf = (float *) src1_extra->data_device[g_main_device]; - struct ggml_tensor_extra_gpu * dst_extra = (ggml_tensor_extra_gpu *) dst->extra; + ggml_tensor_extra_gpu * dst_extra = (ggml_tensor_extra_gpu *) dst->extra; float * dst_ddf = (float *) dst_extra->data_device[g_main_device]; const int64_t row_stride_x = nb01 / sizeof(half); @@ -6870,11 +7058,11 @@ static void ggml_cuda_mul_mat(const ggml_tensor * src0, const ggml_tensor * src1 } } - if (all_on_device && ggml_is_permuted(src0) && ggml_is_permuted(src1) && src1->ne[1] == 1) { + if (all_on_device && src0->type == GGML_TYPE_F16 && ggml_is_permuted(src0) && ggml_is_permuted(src1) && src1->ne[1] == 1) { ggml_cuda_mul_mat_vec_p021(src0, src1, dst); } else if (all_on_device && !ggml_is_contiguous(src0) && ggml_is_contiguous(src1) && src1->ne[1] == 1) { ggml_cuda_mul_mat_vec_nc(src0, src1, dst); - }else if (src0->type == GGML_TYPE_F32) { + } else if (src0->type == GGML_TYPE_F32) { ggml_cuda_op_mul_mat(src0, src1, dst, ggml_cuda_op_mul_mat_cublas, false); } else if (ggml_is_quantized(src0->type) || src0->type == GGML_TYPE_F16) { if (src1->ne[1] == 1 && src0->ne[0] % GGML_CUDA_DMMV_X == 0) { @@ -6906,6 +7094,10 @@ static void ggml_cuda_scale(const ggml_tensor * src0, const ggml_tensor * src1, ggml_cuda_op_flatten(src0, src1, dst, ggml_cuda_op_scale); } +static void ggml_cuda_clamp(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) { + ggml_cuda_op_flatten(src0, src1, dst, ggml_cuda_op_clamp); +} + static void ggml_cuda_cpy(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) { const int64_t ne = ggml_nelements(src0); GGML_ASSERT(ne == ggml_nelements(src1)); @@ -6935,8 +7127,8 @@ static void ggml_cuda_cpy(const ggml_tensor * src0, const ggml_tensor * src1, gg CUDA_CHECK(ggml_cuda_set_device(g_main_device)); cudaStream_t main_stream = g_cudaStreams[g_main_device][0]; - const struct ggml_tensor_extra_gpu * src0_extra = (ggml_tensor_extra_gpu *) src0->extra; - const struct ggml_tensor_extra_gpu * src1_extra = (ggml_tensor_extra_gpu *) src1->extra; + const ggml_tensor_extra_gpu * src0_extra = (ggml_tensor_extra_gpu *) src0->extra; + const ggml_tensor_extra_gpu * src1_extra = (ggml_tensor_extra_gpu *) src1->extra; char * src0_ddc = (char *) src0_extra->data_device[g_main_device]; char * src1_ddc = (char *) src1_extra->data_device[g_main_device]; @@ -6991,8 +7183,8 @@ void ggml_cuda_transform_tensor(void * data, struct ggml_tensor * tensor) { const size_t nb1 = tensor->nb[1]; - ggml_backend backend = tensor->backend; - struct ggml_tensor_extra_gpu * extra = new struct ggml_tensor_extra_gpu; + ggml_backend_type backend = tensor->backend; + ggml_tensor_extra_gpu * extra = new struct ggml_tensor_extra_gpu; memset(extra, 0, sizeof(*extra)); for (int64_t id = 0; id < g_device_count; ++id) { @@ -7046,7 +7238,6 @@ void ggml_cuda_transform_tensor(void * data, struct ggml_tensor * tensor) { CUDA_CHECK(cudaMemset(buf + original_size, 0, size - original_size)); } - CUDA_CHECK(cudaMemcpy(buf, buf_host, original_size, cudaMemcpyHostToDevice)); extra->data_device[id] = buf; @@ -7085,17 +7276,17 @@ void ggml_cuda_free_data(struct ggml_tensor * tensor) { delete extra; } -static struct ggml_tensor_extra_gpu * g_temp_tensor_extras = nullptr; +static ggml_tensor_extra_gpu * g_temp_tensor_extras = nullptr; static size_t g_temp_tensor_extra_index = 0; -static struct ggml_tensor_extra_gpu * ggml_cuda_alloc_temp_tensor_extra() { +static ggml_tensor_extra_gpu * ggml_cuda_alloc_temp_tensor_extra() { if (g_temp_tensor_extras == nullptr) { g_temp_tensor_extras = new ggml_tensor_extra_gpu[GGML_MAX_NODES]; } size_t alloc_index = g_temp_tensor_extra_index; g_temp_tensor_extra_index = (g_temp_tensor_extra_index + 1) % GGML_MAX_NODES; - struct ggml_tensor_extra_gpu * extra = &g_temp_tensor_extras[alloc_index]; + ggml_tensor_extra_gpu * extra = &g_temp_tensor_extras[alloc_index]; memset(extra, 0, sizeof(*extra)); return extra; @@ -7123,7 +7314,7 @@ static void ggml_cuda_assign_buffers_impl(struct ggml_tensor * tensor, bool scra return; } - struct ggml_tensor_extra_gpu * extra; + ggml_tensor_extra_gpu * extra; const bool inplace = (tensor->src[0] != nullptr && tensor->src[0]->data == tensor->data) || tensor->op == GGML_OP_VIEW || @@ -7132,7 +7323,7 @@ static void ggml_cuda_assign_buffers_impl(struct ggml_tensor * tensor, bool scra CUDA_CHECK(ggml_cuda_set_device(g_main_device)); if (inplace && (tensor->src[0]->backend == GGML_BACKEND_GPU || tensor->src[0]->backend == GGML_BACKEND_GPU_SPLIT)) { - struct ggml_tensor_extra_gpu * src0_extra = (ggml_tensor_extra_gpu * ) tensor->src[0]->extra; + ggml_tensor_extra_gpu * src0_extra = (ggml_tensor_extra_gpu * ) tensor->src[0]->extra; char * src0_ddc = (char *) src0_extra->data_device[g_main_device]; size_t offset = 0; if (tensor->op == GGML_OP_VIEW) { @@ -7141,7 +7332,7 @@ static void ggml_cuda_assign_buffers_impl(struct ggml_tensor * tensor, bool scra extra = ggml_cuda_alloc_temp_tensor_extra(); extra->data_device[g_main_device] = src0_ddc + offset; } else if (tensor->op == GGML_OP_CPY) { - struct ggml_tensor_extra_gpu * src1_extra = (ggml_tensor_extra_gpu * ) tensor->src[1]->extra; + ggml_tensor_extra_gpu * src1_extra = (ggml_tensor_extra_gpu * ) tensor->src[1]->extra; void * src1_ddv = src1_extra->data_device[g_main_device]; extra = ggml_cuda_alloc_temp_tensor_extra(); extra->data_device[g_main_device] = src1_ddv; @@ -7183,13 +7374,13 @@ void ggml_cuda_assign_scratch_offset(struct ggml_tensor * tensor, size_t offset) CUDA_CHECK(cudaMalloc(&g_scratch_buffer, g_scratch_size)); } - struct ggml_tensor_extra_gpu * extra = ggml_cuda_alloc_temp_tensor_extra(); + ggml_tensor_extra_gpu * extra = ggml_cuda_alloc_temp_tensor_extra(); const bool inplace = (tensor->src[0] != nullptr && tensor->src[0]->data == tensor->data) || tensor->op == GGML_OP_VIEW; if (inplace && (tensor->src[0]->backend == GGML_BACKEND_GPU || tensor->src[0]->backend == GGML_BACKEND_GPU_SPLIT)) { - struct ggml_tensor_extra_gpu * src0_extra = (ggml_tensor_extra_gpu * ) tensor->src[0]->extra; + ggml_tensor_extra_gpu * src0_extra = (ggml_tensor_extra_gpu * ) tensor->src[0]->extra; char * src0_ddc = (char *) src0_extra->data_device[g_main_device]; size_t view_offset = 0; if (tensor->op == GGML_OP_VIEW) { @@ -7207,7 +7398,7 @@ void ggml_cuda_copy_to_device(struct ggml_tensor * tensor) { GGML_ASSERT(tensor->backend == GGML_BACKEND_GPU); GGML_ASSERT(ggml_is_contiguous(tensor)); - struct ggml_tensor_extra_gpu * extra = (ggml_tensor_extra_gpu *) tensor->extra; + ggml_tensor_extra_gpu * extra = (ggml_tensor_extra_gpu *) tensor->extra; CUDA_CHECK(ggml_cuda_set_device(g_main_device)); CUDA_CHECK(cudaMemcpy(extra->data_device[g_main_device], tensor->data, ggml_nbytes(tensor), cudaMemcpyHostToDevice)); } @@ -7264,58 +7455,47 @@ void ggml_cuda_free_scratch() { g_scratch_buffer = nullptr; } -bool ggml_cuda_compute_forward(struct ggml_compute_params * params, struct ggml_tensor * tensor){ +bool ggml_cuda_compute_forward(struct ggml_compute_params * params, struct ggml_tensor * tensor) { ggml_cuda_func_t func; const bool any_on_device = tensor->backend == GGML_BACKEND_GPU || (tensor->src[0] != nullptr && (tensor->src[0]->backend == GGML_BACKEND_GPU || tensor->src[0]->backend == GGML_BACKEND_GPU_SPLIT)) || (tensor->src[1] != nullptr && tensor->src[1]->backend == GGML_BACKEND_GPU); + if (!any_on_device && tensor->op != GGML_OP_MUL_MAT) { + return false; + } + switch (tensor->op) { + case GGML_OP_REPEAT: + func = ggml_cuda_repeat; + break; + case GGML_OP_GET_ROWS: + func = ggml_cuda_get_rows; + break; case GGML_OP_DUP: - if (!any_on_device) { - return false; - } func = ggml_cuda_dup; break; case GGML_OP_ADD: - if (!any_on_device) { - return false; - } func = ggml_cuda_add; break; case GGML_OP_MUL: - if (!any_on_device) { - return false; - } func = ggml_cuda_mul; break; case GGML_OP_UNARY: switch (ggml_get_unary_op(tensor)) { case GGML_UNARY_OP_GELU: - if (!any_on_device) { - return false; - } func = ggml_cuda_gelu; break; case GGML_UNARY_OP_SILU: - if (!any_on_device) { - return false; - } func = ggml_cuda_silu; break; default: return false; } break; case GGML_OP_NORM: - if (!any_on_device) { - return false; - } func = ggml_cuda_norm; break; case GGML_OP_RMS_NORM: - if (!any_on_device) { - return false; - } func = ggml_cuda_rms_norm; break; case GGML_OP_MUL_MAT: @@ -7325,54 +7505,36 @@ bool ggml_cuda_compute_forward(struct ggml_compute_params * params, struct ggml_ func = ggml_cuda_mul_mat; break; case GGML_OP_SCALE: - if (!any_on_device) { - return false; - } func = ggml_cuda_scale; break; - case GGML_OP_CPY: + case GGML_OP_CLAMP: if (!any_on_device) { return false; } + func = ggml_cuda_clamp; + break; + case GGML_OP_CPY: func = ggml_cuda_cpy; break; case GGML_OP_CONT: - if (!any_on_device) { - return false; - } func = ggml_cuda_dup; break; case GGML_OP_RESHAPE: case GGML_OP_VIEW: case GGML_OP_PERMUTE: case GGML_OP_TRANSPOSE: - if (!any_on_device) { - return false; - } func = ggml_cuda_nop; break; case GGML_OP_DIAG_MASK_INF: - if (!any_on_device) { - return false; - } func = ggml_cuda_diag_mask_inf; break; case GGML_OP_SOFT_MAX: - if (!any_on_device) { - return false; - } func = ggml_cuda_soft_max; break; case GGML_OP_ROPE: - if (!any_on_device) { - return false; - } func = ggml_cuda_rope; break; case GGML_OP_ALIBI: - if (!any_on_device) { - return false; - } func = ggml_cuda_alibi; break; default: @@ -7400,3 +7562,263 @@ void ggml_cuda_get_device_description(int device, char * description, size_t des CUDA_CHECK(cudaGetDeviceProperties(&prop, device)); snprintf(description, description_size, "%s", prop.name); } + +//////////////////////////////////////////////////////////////////////////////// + +// backend interface + +#define UNUSED GGML_UNUSED + +struct ggml_backend_context_cuda { +}; + +static const char * ggml_backend_cuda_name(ggml_backend_t backend) { + return GGML_CUDA_NAME; + + UNUSED(backend); +} + +static void ggml_backend_cuda_free(ggml_backend_t backend) { + ggml_backend_context_cuda * cuda_ctx = (ggml_backend_context_cuda *)backend->context; + delete cuda_ctx; + delete backend; +} + +struct ggml_backend_buffer_context_cuda { + void * device; + + ggml_tensor_extra_gpu * temp_tensor_extras = nullptr; + size_t temp_tensor_extra_index = 0; + + ~ggml_backend_buffer_context_cuda() { + delete[] temp_tensor_extras; + } + + ggml_tensor_extra_gpu * ggml_cuda_alloc_temp_tensor_extra() { + if (temp_tensor_extras == nullptr) { + temp_tensor_extras = new ggml_tensor_extra_gpu[GGML_MAX_NODES]; + } + + size_t alloc_index = temp_tensor_extra_index; + temp_tensor_extra_index = (temp_tensor_extra_index + 1) % GGML_MAX_NODES; + ggml_tensor_extra_gpu * extra = &temp_tensor_extras[alloc_index]; + memset(extra, 0, sizeof(*extra)); + + return extra; + } +}; + +static void ggml_backend_cuda_buffer_free_buffer(ggml_backend_buffer_t buffer) { + ggml_backend_buffer_context_cuda * ctx = (ggml_backend_buffer_context_cuda *)buffer->context; + CUDA_CHECK(cudaFree(ctx->device)); + delete ctx; +} + +static void * ggml_backend_cuda_buffer_get_base(ggml_backend_buffer_t buffer) { + ggml_backend_buffer_context_cuda * ctx = (ggml_backend_buffer_context_cuda *)buffer->context; + return ctx->device; +} + +static size_t ggml_backend_cuda_buffer_get_alloc_size(ggml_backend_buffer_t buffer, ggml_tensor * tensor) { + int64_t row_low = 0; + int64_t row_high = ggml_nrows(tensor); + int64_t nrows_split = row_high - row_low; + + size_t size = ggml_nbytes_split(tensor, nrows_split); + + int64_t ne0 = tensor->ne[0]; + + if (ggml_is_quantized(tensor->type)) { + if (ne0 % MATRIX_ROW_PADDING != 0) { + size += (MATRIX_ROW_PADDING - ne0 % MATRIX_ROW_PADDING) + * ggml_type_size(tensor->type)/ggml_blck_size(tensor->type); + } + } + + return size; + + UNUSED(buffer); +} + +static void ggml_backend_cuda_buffer_init_tensor(ggml_backend_buffer_t buffer, ggml_tensor * tensor) { + ggml_backend_buffer_context_cuda * ctx = (ggml_backend_buffer_context_cuda *)buffer->context; + + if (tensor->view_src != NULL && tensor->view_offs == 0) { + assert(tensor->view_src->buffer->backend == buffer->backend); + tensor->backend = tensor->view_src->backend; + tensor->extra = tensor->view_src->extra; + return; + } + + ggml_tensor_extra_gpu * extra = ctx->ggml_cuda_alloc_temp_tensor_extra(); + + extra->data_device[g_main_device] = tensor->data; + + tensor->backend = GGML_BACKEND_GPU; + tensor->extra = extra; + + if (ggml_is_quantized(tensor->type)) { + // initialize padding to 0 to avoid possible NaN values + int64_t row_low = 0; + int64_t row_high = ggml_nrows(tensor); + int64_t nrows_split = row_high - row_low; + + size_t original_size = ggml_nbytes_split(tensor, nrows_split); + size_t padded_size = ggml_backend_cuda_buffer_get_alloc_size(tensor->buffer, tensor); + + if (padded_size > original_size && tensor->view_src == nullptr) { + CUDA_CHECK(cudaMemsetAsync((char *)tensor->data + original_size, 0, padded_size - original_size, g_cudaStreams[g_main_device][0])); + } + } + + UNUSED(buffer); +} + +static struct ggml_backend_buffer_i cuda_backend_buffer_interface = { + /* .free_buffer = */ ggml_backend_cuda_buffer_free_buffer, + /* .get_base = */ ggml_backend_cuda_buffer_get_base, + /* .get_alloc_size = */ ggml_backend_cuda_buffer_get_alloc_size, + /* .init_tensor = */ ggml_backend_cuda_buffer_init_tensor, + /* .free_tensor = */ NULL, +}; + +static ggml_backend_buffer_t ggml_backend_cuda_alloc_buffer(ggml_backend_t backend, size_t size) { + ggml_cuda_set_device(g_main_device); + + ggml_backend_buffer_context_cuda * ctx = new ggml_backend_buffer_context_cuda; + CUDA_CHECK(cudaMalloc(&ctx->device, size)); + return ggml_backend_buffer_init(backend, cuda_backend_buffer_interface, ctx, size); +} + +static size_t ggml_backend_cuda_get_alignment(ggml_backend_t backend) { + return 128; + UNUSED(backend); +} + +static void ggml_backend_cuda_set_tensor_async(ggml_backend_t backend, ggml_tensor * tensor, const void * data, size_t offset, size_t size) { + GGML_ASSERT(offset + size <= ggml_nbytes(tensor) && "tensor write out of bounds"); + GGML_ASSERT(tensor->data != NULL && "tensor not allocated"); + GGML_ASSERT(tensor->backend == GGML_BACKEND_GPU); + + CUDA_CHECK(cudaMemcpyAsync((char *)tensor->data + offset, data, size, cudaMemcpyHostToDevice, g_cudaStreams[g_main_device][0])); + + UNUSED(backend); +} + +static void ggml_backend_cuda_get_tensor_async(ggml_backend_t backend, const ggml_tensor * tensor, void * data, size_t offset, size_t size) { + GGML_ASSERT(offset + size <= ggml_nbytes(tensor) && "tensor read out of bounds"); + GGML_ASSERT(tensor->data != NULL && "tensor not allocated"); + GGML_ASSERT(tensor->backend == GGML_BACKEND_GPU); + + CUDA_CHECK(cudaMemcpyAsync(data, (const char *)tensor->data + offset, size, cudaMemcpyDeviceToHost, g_cudaStreams[g_main_device][0])); + + UNUSED(backend); +} + +static void ggml_backend_cuda_synchronize(ggml_backend_t backend) { + CUDA_CHECK(cudaStreamSynchronize(g_cudaStreams[g_main_device][0])); + + UNUSED(backend); +} + +static ggml_backend_graph_plan_t ggml_backend_cuda_graph_plan_create(ggml_backend_t backend, ggml_cgraph * cgraph) { + GGML_ASSERT(!"not implemented"); + + return nullptr; + + UNUSED(backend); + UNUSED(cgraph); +} + +static void ggml_backend_cuda_graph_plan_free(ggml_backend_t backend, ggml_backend_graph_plan_t plan) { + GGML_ASSERT(!"not implemented"); + + UNUSED(backend); + UNUSED(plan); +} + +static void ggml_backend_cuda_graph_plan_compute(ggml_backend_t backend, ggml_backend_graph_plan_t plan) { + GGML_ASSERT(!"not implemented"); + + UNUSED(backend); + UNUSED(plan); +} + +static void ggml_backend_cuda_graph_compute(ggml_backend_t backend, ggml_cgraph * cgraph) { + ggml_cuda_set_device(g_main_device); + + ggml_compute_params params = {}; + params.type = GGML_TASK_COMPUTE; + params.ith = 0; + for (int i = 0; i < cgraph->n_nodes; i++) { + ggml_tensor * node = cgraph->nodes[i]; + + assert(node->backend == GGML_BACKEND_GPU); + for (int j = 0; j < GGML_MAX_SRC; j++) { + if (node->src[j] != nullptr) { + assert(node->src[j]->backend == GGML_BACKEND_GPU); + } + } + + bool ok = ggml_cuda_compute_forward(¶ms, node); + if (!ok) { + fprintf(stderr, "%s: error: op not supported %s (%s)\n", __func__, node->name, ggml_op_name(node->op)); + } + GGML_ASSERT(ok); + +#if 0 + if (node->type == GGML_TYPE_F32) { + cudaDeviceSynchronize(); + std::vector tmp(ggml_nelements(node), 0.0f); + cudaMemcpy(tmp.data(), node->data, ggml_nelements(node)*sizeof(float), cudaMemcpyDeviceToHost); + printf("\n%s (%s) (%s %s) (%s %s): ", node->name, ggml_op_name(node->op), + ggml_type_name(node->src[0]->type), + node->src[1] ? ggml_type_name(node->src[1]->type) : "none", + node->src[0]->name, + node->src[1] ? node->src[1]->name : "none"); + double sum = 0.0; + double sq_sum = 0.0; + for (int i = 0; i < ggml_nelements(node); i++) { + printf("%f ", tmp[i]); + sum += tmp[i]; + sq_sum += tmp[i]*tmp[i]; + } + printf("\n"); + printf("sum: %f, ", sum); + printf("sq_sum: %f\n", sq_sum); + } +#endif + } + + UNUSED(backend); +} + +static ggml_backend_i cuda_backend_i = { + /* .get_name = */ ggml_backend_cuda_name, + /* .free = */ ggml_backend_cuda_free, + /* .alloc_buffer = */ ggml_backend_cuda_alloc_buffer, + /* .get_alignment = */ ggml_backend_cuda_get_alignment, + /* .set_tensor_async = */ ggml_backend_cuda_set_tensor_async, + /* .get_tensor_async = */ ggml_backend_cuda_get_tensor_async, + /* .synchronize = */ ggml_backend_cuda_synchronize, + /* .cpy_tensor_from = */ nullptr, + /* .cpy_tensor_to = */ nullptr, + /* .graph_plan_create = */ ggml_backend_cuda_graph_plan_create, + /* .graph_plan_free = */ ggml_backend_cuda_graph_plan_free, + /* .graph_plan_compute = */ ggml_backend_cuda_graph_plan_compute, + /* .graph_compute = */ ggml_backend_cuda_graph_compute, + /* .supports_op = */ nullptr, +}; + +ggml_backend_t ggml_backend_cuda_init() { + ggml_init_cublas(); // TODO: remove from ggml.c + + ggml_backend_context_cuda * ctx = new ggml_backend_context_cuda; + + ggml_backend_t cuda_backend = new ggml_backend { + /* .interface = */ cuda_backend_i, + /* .context = */ ctx + }; + + return cuda_backend; +} diff --git a/ggml-cuda.h b/ggml-cuda.h index fda704b66..57adc9cf3 100644 --- a/ggml-cuda.h +++ b/ggml-cuda.h @@ -1,6 +1,7 @@ #pragma once #include "ggml.h" +#include "ggml-backend.h" #ifdef GGML_USE_HIPBLAS #define GGML_CUDA_NAME "ROCm" @@ -42,6 +43,9 @@ GGML_API bool ggml_cuda_compute_forward(struct ggml_compute_params * params, s GGML_API int ggml_cuda_get_device_count(void); GGML_API void ggml_cuda_get_device_description(int device, char * description, size_t description_size); +// backend API +GGML_API ggml_backend_t ggml_backend_cuda_init(void); // TODO: take a list of devices to use + #ifdef __cplusplus } #endif diff --git a/ggml-metal.h b/ggml-metal.h index 790cf0bf7..096b844e3 100644 --- a/ggml-metal.h +++ b/ggml-metal.h @@ -20,6 +20,7 @@ #pragma once #include "ggml.h" +#include "ggml-backend.h" #include #include @@ -35,10 +36,15 @@ struct ggml_cgraph; extern "C" { #endif -void ggml_metal_log_set_callback(ggml_log_callback log_callback, void * user_data); +// +// internal API +// temporary exposed to user-code +// struct ggml_metal_context; +void ggml_metal_log_set_callback(ggml_log_callback log_callback, void * user_data); + // number of command buffers to use struct ggml_metal_context * ggml_metal_init(int n_cb); void ggml_metal_free(struct ggml_metal_context * ctx); @@ -83,6 +89,17 @@ int * ggml_metal_get_concur_list(struct ggml_metal_context * ctx); // creates gf->n_threads command buffers in parallel void ggml_metal_graph_compute(struct ggml_metal_context * ctx, struct ggml_cgraph * gf); +// +// backend API +// user-code should use only these functions +// + +GGML_API ggml_backend_t ggml_backend_metal_init(void); + +GGML_API bool ggml_backend_is_metal(ggml_backend_t backend); + +GGML_API void ggml_backend_metal_set_n_cb(ggml_backend_t backend, int n_cb); + #ifdef __cplusplus } #endif diff --git a/ggml-metal.m b/ggml-metal.m index 92956ed97..87fa17216 100644 --- a/ggml-metal.m +++ b/ggml-metal.m @@ -779,8 +779,8 @@ void ggml_metal_graph_compute( } break; case GGML_OP_CONCAT: { + const int64_t nb = ne00; - int64_t nb = ne00; [encoder setComputePipelineState:ctx->pipeline_concat]; [encoder setBuffer:id_src0 offset:offs_src0 atIndex:0]; [encoder setBuffer:id_src1 offset:offs_src1 atIndex:1]; @@ -812,6 +812,7 @@ void ggml_metal_graph_compute( [encoder setBytes:&nb length:sizeof(nb) atIndex:27]; const int nth = MIN(1024, ne0); + [encoder dispatchThreadgroups:MTLSizeMake(ne1, ne2, ne3) threadsPerThreadgroup:MTLSizeMake(nth, 1, 1)]; } break; case GGML_OP_ADD: @@ -909,9 +910,10 @@ void ggml_metal_graph_compute( [encoder setBuffer:id_dst offset:offs_dst atIndex:1]; [encoder setBytes:&scale length:sizeof(scale) atIndex:2]; - const int64_t n = ggml_nelements(dst)/4; + const int64_t n = ggml_nelements(dst); + GGML_ASSERT(n % 4 == 0); - [encoder dispatchThreadgroups:MTLSizeMake(n, 1, 1) threadsPerThreadgroup:MTLSizeMake(1, 1, 1)]; + [encoder dispatchThreadgroups:MTLSizeMake(n/4, 1, 1) threadsPerThreadgroup:MTLSizeMake(1, 1, 1)]; } break; case GGML_OP_UNARY: switch (ggml_get_unary_op(gf->nodes[i])) { @@ -921,9 +923,10 @@ void ggml_metal_graph_compute( [encoder setBuffer:id_src0 offset:offs_src0 atIndex:0]; [encoder setBuffer:id_dst offset:offs_dst atIndex:1]; - const int64_t n = ggml_nelements(dst)/4; + const int64_t n = ggml_nelements(dst); + GGML_ASSERT(n % 4 == 0); - [encoder dispatchThreadgroups:MTLSizeMake(n, 1, 1) threadsPerThreadgroup:MTLSizeMake(1, 1, 1)]; + [encoder dispatchThreadgroups:MTLSizeMake(n/4, 1, 1) threadsPerThreadgroup:MTLSizeMake(1, 1, 1)]; } break; case GGML_UNARY_OP_RELU: { @@ -941,9 +944,10 @@ void ggml_metal_graph_compute( [encoder setBuffer:id_src0 offset:offs_src0 atIndex:0]; [encoder setBuffer:id_dst offset:offs_dst atIndex:1]; - const int64_t n = ggml_nelements(dst)/4; + const int64_t n = ggml_nelements(dst); + GGML_ASSERT(n % 4 == 0); - [encoder dispatchThreadgroups:MTLSizeMake(n, 1, 1) threadsPerThreadgroup:MTLSizeMake(1, 1, 1)]; + [encoder dispatchThreadgroups:MTLSizeMake(n/4, 1, 1) threadsPerThreadgroup:MTLSizeMake(1, 1, 1)]; } break; default: { @@ -1040,7 +1044,7 @@ void ggml_metal_graph_compute( !ggml_is_transposed(src0) && !ggml_is_transposed(src1) && src1t == GGML_TYPE_F32 && - ne00 % 32 == 0 && + ne00 % 32 == 0 && ne00 >= 64 && ne11 > ne11_mm_min) { //printf("matrix: ne00 = %6d, ne01 = %6d, ne02 = %6d, ne11 = %6d, ne12 = %6d\n", ne00, ne01, ne02, ne11, ne12); switch (src0->type) { @@ -1251,6 +1255,8 @@ void ggml_metal_graph_compute( } break; case GGML_OP_RMS_NORM: { + GGML_ASSERT(ne00 % 4 == 0); + float eps; memcpy(&eps, dst->op_params, sizeof(float)); @@ -1293,7 +1299,7 @@ void ggml_metal_graph_compute( const int nth = MIN(1024, ne00); - const int n_past = ((int32_t *) dst->op_params)[0]; UNUSED(n_past); + //const int n_past = ((int32_t *) dst->op_params)[0]; const int n_head = ((int32_t *) dst->op_params)[1]; float max_bias; memcpy(&max_bias, (int32_t *) dst->op_params + 2, sizeof(float)); @@ -1456,3 +1462,140 @@ void ggml_metal_graph_compute( } } + +//////////////////////////////////////////////////////////////////////////////// + +// backend interface + +static const char * ggml_backend_metal_name(ggml_backend_t backend) { + return "Metal"; + + UNUSED(backend); +} + +static void ggml_backend_metal_free(ggml_backend_t backend) { + struct ggml_metal_context * ctx = (struct ggml_metal_context *)backend->context; + ggml_metal_free(ctx); + free(backend); +} + +static void * ggml_backend_metal_buffer_get_base(ggml_backend_buffer_t buffer) { + return (void *)buffer->context; +} + +static void ggml_backend_metal_buffer_free_buffer(ggml_backend_buffer_t buffer) { + free(buffer->context); + UNUSED(buffer); +} + +static struct ggml_backend_buffer_i metal_backend_buffer_i = { + /* .free_buffer = */ ggml_backend_metal_buffer_free_buffer, + /* .get_base = */ ggml_backend_metal_buffer_get_base, + /* .get_alloc_size = */ NULL, // defaults to ggml_nbytes + /* .init_tensor = */ NULL, // no initialization required + /* .free_tensor = */ NULL, // no cleanup required +}; + +static ggml_backend_buffer_t ggml_backend_metal_alloc_buffer(ggml_backend_t backend, size_t size) { + struct ggml_metal_context * ctx = (struct ggml_metal_context *)backend->context; + + void * data = ggml_metal_host_malloc(size); + + // TODO: set proper name of the buffers + ggml_metal_add_buffer(ctx, "backend", data, size, 0); + + return ggml_backend_buffer_init(backend, metal_backend_buffer_i, data, size); +} + +static size_t ggml_backend_metal_get_alignment(ggml_backend_t backend) { + return 32; + UNUSED(backend); +} + +static void ggml_backend_metal_set_tensor_async(ggml_backend_t backend, struct ggml_tensor * tensor, const void * data, size_t offset, size_t size) { + GGML_ASSERT(offset + size <= ggml_nbytes(tensor) && "tensor write out of bounds"); + GGML_ASSERT(tensor->data != NULL && "tensor not allocated"); + + memcpy((char *)tensor->data + offset, data, size); + + UNUSED(backend); +} + +static void ggml_backend_metal_get_tensor_async(ggml_backend_t backend, const struct ggml_tensor * tensor, void * data, size_t offset, size_t size) { + GGML_ASSERT(offset + size <= ggml_nbytes(tensor) && "tensor read out of bounds"); + GGML_ASSERT(tensor->data != NULL && "tensor not allocated"); + + memcpy(data, (const char *)tensor->data + offset, size); + + UNUSED(backend); +} + +static void ggml_backend_metal_synchronize(ggml_backend_t backend) { + UNUSED(backend); +} + +static void ggml_backend_metal_cpy_tensor_from(ggml_backend_t backend, struct ggml_tensor * src, struct ggml_tensor * dst) { + ggml_backend_tensor_get(src, dst->data, 0, ggml_nbytes(src)); + + UNUSED(backend); +} + +static void ggml_backend_metal_cpy_tensor_to(ggml_backend_t backend, struct ggml_tensor * src, struct ggml_tensor * dst) { + ggml_backend_tensor_set_async(dst, src->data, 0, ggml_nbytes(src)); + + UNUSED(backend); +} + +static void ggml_backend_metal_graph_compute(ggml_backend_t backend, struct ggml_cgraph * cgraph) { + struct ggml_metal_context * metal_ctx = (struct ggml_metal_context *)backend->context; + + ggml_metal_graph_compute(metal_ctx, cgraph); +} + +static bool ggml_backend_metal_supports_op(ggml_backend_t backend, const struct ggml_tensor * op) { + return true; + UNUSED(backend); + UNUSED(op); +} + +static struct ggml_backend_i metal_backend_i = { + /* .get_name = */ ggml_backend_metal_name, + /* .free = */ ggml_backend_metal_free, + /* .alloc_buffer = */ ggml_backend_metal_alloc_buffer, + /* .get_alignment = */ ggml_backend_metal_get_alignment, + /* .set_tensor_async = */ ggml_backend_metal_set_tensor_async, + /* .get_tensor_async = */ ggml_backend_metal_get_tensor_async, + /* .synchronize = */ ggml_backend_metal_synchronize, + /* .cpy_tensor_from = */ ggml_backend_metal_cpy_tensor_from, + /* .cpy_tensor_to = */ ggml_backend_metal_cpy_tensor_to, + /* .graph_plan_create = */ NULL, // the metal implementation does not require creating graph plans atm + /* .graph_plan_free = */ NULL, + /* .graph_plan_compute = */ NULL, + /* .graph_compute = */ ggml_backend_metal_graph_compute, + /* .supports_op = */ ggml_backend_metal_supports_op, +}; + +ggml_backend_t ggml_backend_metal_init(void) { + struct ggml_metal_context * ctx = malloc(sizeof(struct ggml_metal_context)); + + ctx = ggml_metal_init(GGML_DEFAULT_N_THREADS); + + ggml_backend_t metal_backend = malloc(sizeof(struct ggml_backend)); + + *metal_backend = (struct ggml_backend) { + /* .interface = */ metal_backend_i, + /* .context = */ ctx, + }; + + return metal_backend; +} + +bool ggml_backend_is_metal(ggml_backend_t backend) { + return backend->iface.get_name == ggml_backend_metal_name; +} + +void ggml_backend_metal_set_n_cb(ggml_backend_t backend, int n_cb) { + struct ggml_metal_context * ctx = (struct ggml_metal_context *)backend->context; + + ggml_metal_set_n_cb(ctx, n_cb); +} diff --git a/ggml-metal.metal b/ggml-metal.metal index b6288db28..99b9fd7a7 100644 --- a/ggml-metal.metal +++ b/ggml-metal.metal @@ -345,10 +345,11 @@ kernel void kernel_rms_norm( uint sgitg[[simdgroup_index_in_threadgroup]], uint tiisg[[thread_index_in_simdgroup]], uint ntg[[threads_per_threadgroup]]) { - device const float4 * x = (device const float4 *) ((device const char *) src0 + tgpig*nb01); - device const float * x_scalar = (device const float *) x; - float4 sumf=0; - float all_sum=0; + device const float4 * x = (device const float4 *) ((device const char *) src0 + tgpig*nb01); + device const float * x_scalar = (device const float *) x; + + float4 sumf = 0; + float all_sum = 0; // parallel sum for (int i00 = tpitg; i00 < ne00/4; i00 += ntg) { @@ -361,6 +362,7 @@ kernel void kernel_rms_norm( } threadgroup_barrier(mem_flags::mem_threadgroup); + // broadcast, simd group number is ntg / 32 for (uint i = ntg / 32 / 2; i > 0; i /= 2) { if (tpitg < i) { @@ -368,7 +370,9 @@ kernel void kernel_rms_norm( } } if (tpitg == 0) { - for (int i = 4 * (ne00 / 4); i < ne00; i++) {sum[0] += x_scalar[i];} + for (int i = 4 * (ne00 / 4); i < ne00; i++) { + sum[0] += x_scalar[i]; + } sum[0] /= ne00; } @@ -383,7 +387,9 @@ kernel void kernel_rms_norm( y[i00] = x[i00] * scale; } if (tpitg == 0) { - for (int i00 = 4 * (ne00 / 4); i00 < ne00; i00++) {y_scalar[i00] = x_scalar[i00] * scale;} + for (int i00 = 4 * (ne00 / 4); i00 < ne00; i00++) { + y_scalar[i00] = x_scalar[i00] * scale; + } } } diff --git a/ggml.c b/ggml.c index 911a63988..1f5598fa6 100644 --- a/ggml.c +++ b/ggml.c @@ -162,40 +162,16 @@ typedef void * thread_ret_t; #define GGML_PRINT(...) printf(__VA_ARGS__) +// +// end of logging block +// + #ifdef GGML_USE_ACCELERATE // uncomment to use vDSP for soft max computation // note: not sure if it is actually faster //#define GGML_SOFT_MAX_ACCELERATE #endif -// -// logging -// - -#if (GGML_DEBUG >= 1) -#define GGML_PRINT_DEBUG(...) printf(__VA_ARGS__) -#else -#define GGML_PRINT_DEBUG(...) -#endif - -#if (GGML_DEBUG >= 5) -#define GGML_PRINT_DEBUG_5(...) printf(__VA_ARGS__) -#else -#define GGML_PRINT_DEBUG_5(...) -#endif - -#if (GGML_DEBUG >= 10) -#define GGML_PRINT_DEBUG_10(...) printf(__VA_ARGS__) -#else -#define GGML_PRINT_DEBUG_10(...) -#endif - -#define GGML_PRINT(...) printf(__VA_ARGS__) - -// -// end of logging block -// - #if defined(_MSC_VER) || defined(__MINGW32__) #define GGML_ALIGNED_MALLOC(size) _aligned_malloc(size, GGML_MEM_ALIGN) #define GGML_ALIGNED_FREE(ptr) _aligned_free(ptr) @@ -4951,6 +4927,7 @@ static struct ggml_tensor * ggml_new_tensor_impl( *result = (struct ggml_tensor) { /*.type =*/ type, /*.backend =*/ GGML_BACKEND_CPU, + /*.buffer =*/ NULL, /*.n_dims =*/ n_dims, /*.ne =*/ { 1, 1, 1, 1 }, /*.nb =*/ { 0, 0, 0, 0 }, @@ -11256,7 +11233,7 @@ static void ggml_compute_forward_silu_f32( #ifndef NDEBUG for (int k = 0; k < nc; k++) { - const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k]; + const float x = ((float *) ((char *) dst->data + i1*(dst->nb[1])))[k]; UNUSED(x); assert(!isnan(x)); assert(!isinf(x)); @@ -13082,24 +13059,22 @@ static void ggml_compute_forward_alibi_f32( return; } - const int n_past = ((int32_t *) dst->op_params)[0]; UNUSED(n_past); + //const int n_past = ((int32_t *) dst->op_params)[0]; const int n_head = ((int32_t *) dst->op_params)[1]; float max_bias; memcpy(&max_bias, (int32_t *) dst->op_params + 2, sizeof(float)); - assert(n_past >= 0); + const int64_t ne0 = src0->ne[0]; // all_seq_len = n_past + ne1 + const int64_t ne1 = src0->ne[1]; // seq_len_without_past + const int64_t ne2 = src0->ne[2]; // n_head -> this is k + //const int64_t ne3 = src0->ne[3]; // 1 -> bsz - const int ne0 = src0->ne[0]; // all_seq_len = n_past + ne1 - const int ne1 = src0->ne[1]; // seq_len_without_past - const int ne2 = src0->ne[2]; // n_head -> this is k - //const int ne3 = src0->ne[3]; // 1 -> bsz + const int64_t n = ggml_nrows(src0); + const int64_t ne2_ne3 = n/ne1; // ne2*ne3 - const int n = ggml_nrows(src0); - const int ne2_ne3 = n/ne1; // ne2*ne3 - - const int nb0 = src0->nb[0]; - const int nb1 = src0->nb[1]; - const int nb2 = src0->nb[2]; + const size_t nb0 = src0->nb[0]; + const size_t nb1 = src0->nb[1]; + const size_t nb2 = src0->nb[2]; //const int nb3 = src0->nb[3]; GGML_ASSERT(nb0 == sizeof(float)); @@ -13111,9 +13086,9 @@ static void ggml_compute_forward_alibi_f32( const float m0 = powf(2.0f, -(max_bias) / n_heads_log2_floor); const float m1 = powf(2.0f, -(max_bias / 2.0f) / n_heads_log2_floor); - for (int i = 0; i < ne0; i++) { - for (int j = 0; j < ne1; j++) { - for (int k = 0; k < ne2_ne3; k++) { + for (int64_t i = 0; i < ne0; i++) { + for (int64_t j = 0; j < ne1; j++) { + for (int64_t k = 0; k < ne2_ne3; k++) { float * const src = (float *)((char *) src0->data + i*nb0 + j*nb1 + k*nb2); float * pdst = (float *)((char *) dst->data + i*nb0 + j*nb1 + k*nb2); @@ -13128,7 +13103,6 @@ static void ggml_compute_forward_alibi_f32( } pdst[0] = i * m_k + src[0]; - } } } @@ -20203,6 +20177,10 @@ static enum ggml_opt_result ggml_opt_lbfgs( ggml_vec_cpy_f32(nx, xp, x); ggml_vec_cpy_f32(nx, gp, g); + // TODO: instead of passing &cancel here, use the return code of the linesearch + // to determine if the optimization should be cancelled + // this is a simple change, but not doing this atm, since I don't have a nice + // way to test and don't want to break something with so many changes lined up ls = linesearch_backtracking(¶ms, nx, x, &fx, g, d, step, xp, f, gb, &cplan, np, ps, &cancel, callback, callback_data); if (cancel) { return GGML_OPT_CANCEL; diff --git a/ggml.h b/ggml.h index a9d4e33d9..3eddc44b9 100644 --- a/ggml.h +++ b/ggml.h @@ -326,7 +326,7 @@ extern "C" { GGML_TYPE_COUNT, }; - enum ggml_backend { + enum ggml_backend_type { GGML_BACKEND_CPU = 0, GGML_BACKEND_GPU = 10, GGML_BACKEND_GPU_SPLIT = 20, @@ -479,8 +479,10 @@ extern "C" { // n-dimensional tensor struct ggml_tensor { - enum ggml_type type; - enum ggml_backend backend; + enum ggml_type type; + enum ggml_backend_type backend; + + struct ggml_backend_buffer * buffer; int n_dims; int64_t ne[GGML_MAX_DIMS]; // number of elements @@ -514,7 +516,7 @@ extern "C" { void * extra; // extra things e.g. for ggml-cuda.cu - char padding[4]; + char padding[12]; }; static const size_t GGML_TENSOR_SIZE = sizeof(struct ggml_tensor); @@ -1358,7 +1360,7 @@ extern "C" { // alibi position embedding // in-place, returns view(a) - struct ggml_tensor * ggml_alibi( + GGML_API struct ggml_tensor * ggml_alibi( struct ggml_context * ctx, struct ggml_tensor * a, int n_past, @@ -1367,7 +1369,7 @@ extern "C" { // clamp // in-place, returns view(a) - struct ggml_tensor * ggml_clamp( + GGML_API struct ggml_tensor * ggml_clamp( struct ggml_context * ctx, struct ggml_tensor * a, float min, @@ -2102,7 +2104,7 @@ extern "C" { enum ggml_type vec_dot_type; } ggml_type_traits_t; - ggml_type_traits_t ggml_internal_get_type_traits(enum ggml_type type); + GGML_API ggml_type_traits_t ggml_internal_get_type_traits(enum ggml_type type); #ifdef __cplusplus } diff --git a/gguf-py/gguf/gguf.py b/gguf-py/gguf/gguf.py index fb677a6ed..557ce7ac0 100644 --- a/gguf-py/gguf/gguf.py +++ b/gguf-py/gguf/gguf.py @@ -88,29 +88,31 @@ class MODEL_ARCH(IntEnum): PERSIMMON : int = auto() REFACT : int = auto() BERT : int = auto() + BLOOM : int = auto() class MODEL_TENSOR(IntEnum): - TOKEN_EMBD : int = auto() - TOKEN_TYPES : int = auto() - POS_EMBD : int = auto() - OUTPUT : int = auto() - OUTPUT_NORM : int = auto() - ROPE_FREQS : int = auto() - ATTN_Q : int = auto() - ATTN_K : int = auto() - ATTN_V : int = auto() - ATTN_QKV : int = auto() - ATTN_OUT : int = auto() - ATTN_NORM : int = auto() - ATTN_NORM_2 : int = auto() - ATTN_ROT_EMBD: int = auto() - FFN_GATE : int = auto() - FFN_DOWN : int = auto() - FFN_UP : int = auto() - FFN_NORM : int = auto() - ATTN_Q_NORM : int = auto() - ATTN_K_NORM : int = auto() + TOKEN_EMBD : int = auto() + TOKEN_EMBD_NORM : int = auto() + TOKEN_TYPES : int = auto() + POS_EMBD : int = auto() + OUTPUT : int = auto() + OUTPUT_NORM : int = auto() + ROPE_FREQS : int = auto() + ATTN_Q : int = auto() + ATTN_K : int = auto() + ATTN_V : int = auto() + ATTN_QKV : int = auto() + ATTN_OUT : int = auto() + ATTN_NORM : int = auto() + ATTN_NORM_2 : int = auto() + ATTN_ROT_EMBD : int = auto() + FFN_GATE : int = auto() + FFN_DOWN : int = auto() + FFN_UP : int = auto() + FFN_NORM : int = auto() + ATTN_Q_NORM : int = auto() + ATTN_K_NORM : int = auto() MODEL_ARCH_NAMES: dict[MODEL_ARCH, str] = { @@ -125,29 +127,31 @@ MODEL_ARCH_NAMES: dict[MODEL_ARCH, str] = { MODEL_ARCH.PERSIMMON: "persimmon", MODEL_ARCH.REFACT: "refact", MODEL_ARCH.BERT: "bert", + MODEL_ARCH.BLOOM: "bloom", } TENSOR_NAMES: dict[MODEL_TENSOR, str] = { - MODEL_TENSOR.TOKEN_EMBD: "token_embd", - MODEL_TENSOR.TOKEN_TYPES: "token_types", - MODEL_TENSOR.POS_EMBD: "position_embd", - MODEL_TENSOR.OUTPUT_NORM: "output_norm", - MODEL_TENSOR.OUTPUT: "output", - MODEL_TENSOR.ROPE_FREQS: "rope_freqs", - MODEL_TENSOR.ATTN_NORM: "blk.{bid}.attn_norm", - MODEL_TENSOR.ATTN_NORM_2: "blk.{bid}.attn_norm_2", - MODEL_TENSOR.ATTN_QKV: "blk.{bid}.attn_qkv", - MODEL_TENSOR.ATTN_Q: "blk.{bid}.attn_q", - MODEL_TENSOR.ATTN_K: "blk.{bid}.attn_k", - MODEL_TENSOR.ATTN_V: "blk.{bid}.attn_v", - MODEL_TENSOR.ATTN_OUT: "blk.{bid}.attn_output", - MODEL_TENSOR.ATTN_ROT_EMBD: "blk.{bid}.attn_rot_embd", - MODEL_TENSOR.ATTN_Q_NORM: "blk.{bid}.attn_q_norm", - MODEL_TENSOR.ATTN_K_NORM: "blk.{bid}.attn_k_norm", - MODEL_TENSOR.FFN_NORM: "blk.{bid}.ffn_norm", - MODEL_TENSOR.FFN_GATE: "blk.{bid}.ffn_gate", - MODEL_TENSOR.FFN_DOWN: "blk.{bid}.ffn_down", - MODEL_TENSOR.FFN_UP: "blk.{bid}.ffn_up", + MODEL_TENSOR.TOKEN_EMBD: "token_embd", + MODEL_TENSOR.TOKEN_EMBD_NORM: "token_embd_norm", + MODEL_TENSOR.TOKEN_TYPES: "token_types", + MODEL_TENSOR.POS_EMBD: "position_embd", + MODEL_TENSOR.OUTPUT_NORM: "output_norm", + MODEL_TENSOR.OUTPUT: "output", + MODEL_TENSOR.ROPE_FREQS: "rope_freqs", + MODEL_TENSOR.ATTN_NORM: "blk.{bid}.attn_norm", + MODEL_TENSOR.ATTN_NORM_2: "blk.{bid}.attn_norm_2", + MODEL_TENSOR.ATTN_QKV: "blk.{bid}.attn_qkv", + MODEL_TENSOR.ATTN_Q: "blk.{bid}.attn_q", + MODEL_TENSOR.ATTN_K: "blk.{bid}.attn_k", + MODEL_TENSOR.ATTN_V: "blk.{bid}.attn_v", + MODEL_TENSOR.ATTN_OUT: "blk.{bid}.attn_output", + MODEL_TENSOR.ATTN_ROT_EMBD: "blk.{bid}.attn_rot_embd", + MODEL_TENSOR.ATTN_Q_NORM: "blk.{bid}.attn_q_norm", + MODEL_TENSOR.ATTN_K_NORM: "blk.{bid}.attn_k_norm", + MODEL_TENSOR.FFN_NORM: "blk.{bid}.ffn_norm", + MODEL_TENSOR.FFN_GATE: "blk.{bid}.ffn_gate", + MODEL_TENSOR.FFN_DOWN: "blk.{bid}.ffn_down", + MODEL_TENSOR.FFN_UP: "blk.{bid}.ffn_up", } MODEL_TENSORS: dict[MODEL_ARCH, list[MODEL_TENSOR]] = { @@ -282,6 +286,18 @@ MODEL_TENSORS: dict[MODEL_ARCH, list[MODEL_TENSOR]] = { MODEL_TENSOR.FFN_DOWN, MODEL_TENSOR.FFN_UP, ], + MODEL_ARCH.BLOOM: [ + MODEL_TENSOR.TOKEN_EMBD, + MODEL_TENSOR.TOKEN_EMBD_NORM, + MODEL_TENSOR.OUTPUT_NORM, + MODEL_TENSOR.OUTPUT, + MODEL_TENSOR.ATTN_NORM, + MODEL_TENSOR.ATTN_QKV, + MODEL_TENSOR.ATTN_OUT, + MODEL_TENSOR.FFN_NORM, + MODEL_TENSOR.FFN_DOWN, + MODEL_TENSOR.FFN_UP, + ], MODEL_ARCH.GPT2: [ # TODO ], @@ -311,6 +327,7 @@ class TensorNameMap: "gpt_neox.embed_in", # gptneox "transformer.wte", # gpt2 gpt-j mpt refact "transformer.word_embeddings", # falcon + "word_embeddings", # bloom "model.embed_tokens", # llama-hf "tok_embeddings", # llama-pth "embeddings.word_embeddings", # bert @@ -322,6 +339,11 @@ class TensorNameMap: "embeddings.token_type_embeddings", # bert ), + # Normalization of token embeddings + MODEL_TENSOR.TOKEN_EMBD_NORM: ( + "word_embeddings_layernorm", # bloom + ), + # Position embeddings MODEL_TENSOR.POS_EMBD: ( "transformer.wpe", # gpt2 @@ -332,7 +354,7 @@ class TensorNameMap: MODEL_TENSOR.OUTPUT: ( "embed_out", # gptneox "lm_head", # gpt2 mpt falcon llama-hf baichuan - "output", # llama-pth + "output", # llama-pth bloom "word_embeddings_for_head", # persimmon ), @@ -344,7 +366,7 @@ class TensorNameMap: "norm", # llama-pth "embeddings.LayerNorm", # bert "transformer.norm_f", # mpt - "ln_f", # refact + "ln_f", # refact bloom "language_model.encoder.final_layernorm", # persimmon ), @@ -361,6 +383,7 @@ class TensorNameMap: "transformer.h.{bid}.ln_1", # gpt2 gpt-j refact "transformer.blocks.{bid}.norm_1", # mpt "transformer.h.{bid}.input_layernorm", # falcon7b + "h.{bid}.input_layernorm", # bloom "transformer.h.{bid}.ln_mlp", # falcon40b "model.layers.{bid}.input_layernorm", # llama-hf "layers.{bid}.attention_norm", # llama-pth @@ -379,6 +402,7 @@ class TensorNameMap: "transformer.h.{bid}.attn.c_attn", # gpt2 "transformer.blocks.{bid}.attn.Wqkv", # mpt "transformer.h.{bid}.self_attention.query_key_value", # falcon + "h.{bid}.self_attention.query_key_value", # bloom "language_model.encoder.layers.{bid}.self_attention.query_key_value", # persimmon ), @@ -412,6 +436,7 @@ class TensorNameMap: "transformer.h.{bid}.attn.c_proj", # gpt2 refact "transformer.blocks.{bid}.attn.out_proj", # mpt "transformer.h.{bid}.self_attention.dense", # falcon + "h.{bid}.self_attention.dense", # bloom "model.layers.{bid}.self_attn.o_proj", # llama-hf "layers.{bid}.attention.wo", # llama-pth "encoder.layer.{bid}.attention.output.dense", # bert @@ -429,6 +454,7 @@ class TensorNameMap: MODEL_TENSOR.FFN_NORM: ( "gpt_neox.layers.{bid}.post_attention_layernorm", # gptneox "transformer.h.{bid}.ln_2", # gpt2 refact + "h.{bid}.post_attention_layernorm", # bloom "transformer.blocks.{bid}.norm_2", # mpt "model.layers.{bid}.post_attention_layernorm", # llama-hf "layers.{bid}.ffn_norm", # llama-pth @@ -442,6 +468,7 @@ class TensorNameMap: "transformer.h.{bid}.mlp.c_fc", # gpt2 "transformer.blocks.{bid}.ffn.up_proj", # mpt "transformer.h.{bid}.mlp.dense_h_to_4h", # falcon + "h.{bid}.mlp.dense_h_to_4h", # bloom "model.layers.{bid}.mlp.up_proj", # llama-hf refact "layers.{bid}.feed_forward.w3", # llama-pth "encoder.layer.{bid}.intermediate.dense", # bert @@ -461,6 +488,7 @@ class TensorNameMap: "transformer.h.{bid}.mlp.c_proj", # gpt2 refact "transformer.blocks.{bid}.ffn.down_proj", # mpt "transformer.h.{bid}.mlp.dense_4h_to_h", # falcon + "h.{bid}.mlp.dense_4h_to_h", # bloom "model.layers.{bid}.mlp.down_proj", # llama-hf "layers.{bid}.feed_forward.w2", # llama-pth "encoder.layer.{bid}.output.dense", # bert diff --git a/llama.cpp b/llama.cpp index a4312ab72..7ed872237 100644 --- a/llama.cpp +++ b/llama.cpp @@ -188,6 +188,7 @@ enum llm_arch { LLM_ARCH_STARCODER, LLM_ARCH_PERSIMMON, LLM_ARCH_REFACT, + LLM_ARCH_BLOOM, LLM_ARCH_UNKNOWN, }; @@ -201,7 +202,8 @@ static std::map LLM_ARCH_NAMES = { { LLM_ARCH_BAICHUAN, "baichuan" }, { LLM_ARCH_STARCODER, "starcoder" }, { LLM_ARCH_PERSIMMON, "persimmon" }, - { LLM_ARCH_REFACT, "refact" }, + { LLM_ARCH_REFACT, "refact" }, + { LLM_ARCH_BLOOM, "bloom" }, }; enum llm_kv { @@ -304,6 +306,7 @@ struct LLM_KV { enum llm_tensor { LLM_TENSOR_TOKEN_EMBD, + LLM_TENSOR_TOKEN_EMBD_NORM, LLM_TENSOR_POS_EMBD, LLM_TENSOR_OUTPUT, LLM_TENSOR_OUTPUT_NORM, @@ -424,6 +427,14 @@ static std::map> LLM_TENSOR_NAMES = LLM_ARCH_MPT, { { LLM_TENSOR_TOKEN_EMBD, "token_embd" }, + { LLM_TENSOR_OUTPUT_NORM, "output_norm" }, + { LLM_TENSOR_OUTPUT, "output" }, + { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" }, + { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" }, + { LLM_TENSOR_ATTN_QKV, "blk.%d.attn_qkv" }, + { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" }, + { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" }, + { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" }, }, }, { @@ -458,6 +469,21 @@ static std::map> LLM_TENSOR_NAMES = { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" }, }, }, + { + LLM_ARCH_BLOOM, + { + { LLM_TENSOR_TOKEN_EMBD, "token_embd" }, + { LLM_TENSOR_TOKEN_EMBD_NORM, "token_embd_norm" }, + { LLM_TENSOR_OUTPUT_NORM, "output_norm" }, + { LLM_TENSOR_OUTPUT, "output" }, + { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" }, + { LLM_TENSOR_ATTN_QKV, "blk.%d.attn_qkv" }, + { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" }, + { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" }, + { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" }, + { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" }, + }, + }, { LLM_ARCH_UNKNOWN, { @@ -1011,6 +1037,9 @@ struct llama_hparams { float rope_freq_base_train; float rope_freq_scale_train; + float f_clamp_kqv; + float f_max_alibi_bias; + bool operator!=(const llama_hparams & other) const { if (this->vocab_only != other.vocab_only) return true; if (this->n_vocab != other.n_vocab) return true; @@ -1196,6 +1225,8 @@ struct llama_model { struct ggml_tensor * tok_embeddings; struct ggml_tensor * pos_embeddings; + struct ggml_tensor * tok_norm; + struct ggml_tensor * tok_norm_b; struct ggml_tensor * output_norm; struct ggml_tensor * output_norm_b; @@ -1325,7 +1356,11 @@ static bool llama_kv_cache_init( cache.cells.clear(); cache.cells.resize(n_ctx); + // TODO: this should be: + // cache.buf.resize(2u*n_elements*ggml_type_size(wtype) + 2u*ggml_tensor_overhead()); + // change it and test that it works cache.buf.resize(2u*n_elements*ggml_type_size(wtype) + 2u*MB); + memset(cache.buf.data, 0, cache.buf.size); struct ggml_init_params params; params.mem_size = cache.buf.size; @@ -1730,7 +1765,7 @@ struct llama_model_loader { } } - struct ggml_tensor * create_tensor_for(struct ggml_context * ctx, struct ggml_tensor * meta, ggml_backend backend) { + struct ggml_tensor * create_tensor_for(struct ggml_context * ctx, struct ggml_tensor * meta, ggml_backend_type backend) { if (backend != GGML_BACKEND_CPU) { ggml_set_no_alloc(ctx, true); } @@ -1748,7 +1783,7 @@ struct llama_model_loader { return tensor; } - struct ggml_tensor * create_tensor(struct ggml_context * ctx, const std::string & name, const std::vector & ne, ggml_backend backend) { + struct ggml_tensor * create_tensor(struct ggml_context * ctx, const std::string & name, const std::vector & ne, ggml_backend_type backend) { struct ggml_tensor * cur = ggml_get_tensor(ctx_meta, name.c_str()); if (cur == NULL) { @@ -2041,13 +2076,13 @@ static void llm_load_hparams( } } break; case LLM_ARCH_PERSIMMON: - { - GGUF_GET_KEY(ctx, hparams.f_norm_eps, gguf_get_val_f32, GGUF_TYPE_FLOAT32, true, kv(LLM_KV_ATTENTION_LAYERNORM_EPS)); - switch (hparams.n_layer) { - case 36: model.type = e_model::MODEL_8B; break; - default: model.type = e_model::MODEL_UNKNOWN; - } - } break; + { + GGUF_GET_KEY(ctx, hparams.f_norm_eps, gguf_get_val_f32, GGUF_TYPE_FLOAT32, true, kv(LLM_KV_ATTENTION_LAYERNORM_EPS)); + switch (hparams.n_layer) { + case 36: model.type = e_model::MODEL_8B; break; + default: model.type = e_model::MODEL_UNKNOWN; + } + } break; case LLM_ARCH_REFACT: { GGUF_GET_KEY(ctx, hparams.f_norm_rms_eps, gguf_get_val_f32, GGUF_TYPE_FLOAT32, true, kv(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS)); @@ -2056,6 +2091,33 @@ static void llm_load_hparams( default: model.type = e_model::MODEL_UNKNOWN; } } break; + case LLM_ARCH_BLOOM: + { + GGUF_GET_KEY(ctx, hparams.f_norm_eps, gguf_get_val_f32, GGUF_TYPE_FLOAT32, true, kv(LLM_KV_ATTENTION_LAYERNORM_EPS)); + + switch (hparams.n_layer) { + case 24: model.type = e_model::MODEL_1B; break; + case 30: + switch (hparams.n_embd) { + case 2560: model.type = e_model::MODEL_3B; break; + case 4096: model.type = e_model::MODEL_7B; break; + } break; + } + } break; + case LLM_ARCH_MPT: + { + hparams.f_clamp_kqv = 0.0f; + + GGUF_GET_KEY(ctx, hparams.f_norm_eps, gguf_get_val_f32, GGUF_TYPE_FLOAT32, true, kv(LLM_KV_ATTENTION_LAYERNORM_EPS)); + GGUF_GET_KEY(ctx, hparams.f_clamp_kqv, gguf_get_val_f32, GGUF_TYPE_FLOAT32, false, kv(LLM_KV_ATTENTION_CLAMP_KQV)); + GGUF_GET_KEY(ctx, hparams.f_max_alibi_bias, gguf_get_val_f32, GGUF_TYPE_FLOAT32, true, kv(LLM_KV_ATTENTION_MAX_ALIBI_BIAS)); + + switch (hparams.n_layer) { + case 32: model.type = e_model::MODEL_7B; break; + case 48: model.type = e_model::MODEL_30B; break; + default: model.type = e_model::MODEL_UNKNOWN; + } + } break; default: (void)0; } @@ -2200,6 +2262,8 @@ static void llm_load_print_meta(llama_model_loader & ml, llama_model & model) { LLAMA_LOG_INFO("%s: n_gqa = %u\n", __func__, hparams.n_gqa()); LLAMA_LOG_INFO("%s: f_norm_eps = %.1e\n", __func__, hparams.f_norm_eps); LLAMA_LOG_INFO("%s: f_norm_rms_eps = %.1e\n", __func__, hparams.f_norm_rms_eps); + LLAMA_LOG_INFO("%s: f_clamp_kqv = %.1e\n", __func__, hparams.f_clamp_kqv); + LLAMA_LOG_INFO("%s: f_max_alibi_bias = %.1e\n", __func__, hparams.f_max_alibi_bias); LLAMA_LOG_INFO("%s: n_ff = %u\n", __func__, hparams.n_ff); LLAMA_LOG_INFO("%s: freq_base_train = %.1f\n", __func__, hparams.rope_freq_base_train); LLAMA_LOG_INFO("%s: freq_scale_train = %g\n", __func__, hparams.rope_freq_scale_train); @@ -2299,8 +2363,8 @@ static void llm_load_tensors( // output { - ggml_backend backend_norm; - ggml_backend backend_output; + ggml_backend_type backend_norm; + ggml_backend_type backend_output; if (n_gpu_layers > int(n_layer)) { // norm is not performance relevant on its own but keeping it in VRAM reduces data copying @@ -2335,8 +2399,8 @@ static void llm_load_tensors( model.layers.resize(n_layer); for (uint32_t i = 0; i < n_layer; ++i) { - const ggml_backend backend = int(i) < i_gpu_start ? GGML_BACKEND_CPU : LLAMA_BACKEND_OFFLOAD; // NOLINT - const ggml_backend backend_split = int(i) < i_gpu_start ? GGML_BACKEND_CPU : LLAMA_BACKEND_OFFLOAD_SPLIT; // NOLINT + const ggml_backend_type backend = int(i) < i_gpu_start ? GGML_BACKEND_CPU : LLAMA_BACKEND_OFFLOAD; // NOLINT + const ggml_backend_type backend_split = int(i) < i_gpu_start ? GGML_BACKEND_CPU : LLAMA_BACKEND_OFFLOAD_SPLIT; // NOLINT auto & layer = model.layers[i]; @@ -2365,8 +2429,8 @@ static void llm_load_tensors( { model.tok_embeddings = ml.create_tensor(ctx, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, GGML_BACKEND_CPU); { - ggml_backend backend_norm; - ggml_backend backend_output; + ggml_backend_type backend_norm; + ggml_backend_type backend_output; if (n_gpu_layers > int(n_layer)) { // norm is not performance relevant on its own but keeping it in VRAM reduces data copying @@ -2401,8 +2465,8 @@ static void llm_load_tensors( model.layers.resize(n_layer); for (uint32_t i = 0; i < n_layer; ++i) { - const ggml_backend backend = int(i) < i_gpu_start ? GGML_BACKEND_CPU : LLAMA_BACKEND_OFFLOAD; // NOLINT - const ggml_backend backend_split = int(i) < i_gpu_start ? GGML_BACKEND_CPU : LLAMA_BACKEND_OFFLOAD_SPLIT; // NOLINT + const ggml_backend_type backend = int(i) < i_gpu_start ? GGML_BACKEND_CPU : LLAMA_BACKEND_OFFLOAD; // NOLINT + const ggml_backend_type backend_split = int(i) < i_gpu_start ? GGML_BACKEND_CPU : LLAMA_BACKEND_OFFLOAD_SPLIT; // NOLINT auto & layer = model.layers[i]; @@ -2435,8 +2499,8 @@ static void llm_load_tensors( // output { - ggml_backend backend_norm; - ggml_backend backend_output; + ggml_backend_type backend_norm; + ggml_backend_type backend_output; if (n_gpu_layers > int(n_layer)) { // norm is not performance relevant on its own but keeping it in VRAM reduces data copying @@ -2473,8 +2537,8 @@ static void llm_load_tensors( model.layers.resize(n_layer); for (uint32_t i = 0; i < n_layer; ++i) { - const ggml_backend backend = int(i) < i_gpu_start ? GGML_BACKEND_CPU : LLAMA_BACKEND_OFFLOAD; // NOLINT - const ggml_backend backend_split = int(i) < i_gpu_start ? GGML_BACKEND_CPU : LLAMA_BACKEND_OFFLOAD_SPLIT; // NOLINT + const ggml_backend_type backend = int(i) < i_gpu_start ? GGML_BACKEND_CPU : LLAMA_BACKEND_OFFLOAD; // NOLINT + const ggml_backend_type backend_split = int(i) < i_gpu_start ? GGML_BACKEND_CPU : LLAMA_BACKEND_OFFLOAD_SPLIT; // NOLINT auto & layer = model.layers[i]; @@ -2512,8 +2576,8 @@ static void llm_load_tensors( // output { - ggml_backend backend_norm; - ggml_backend backend_output; + ggml_backend_type backend_norm; + ggml_backend_type backend_output; if (n_gpu_layers > int(n_layer)) { // norm is not performance relevant on its own but keeping it in VRAM reduces data copying @@ -2550,8 +2614,8 @@ static void llm_load_tensors( model.layers.resize(n_layer); for (uint32_t i = 0; i < n_layer; ++i) { - const ggml_backend backend = int(i) < i_gpu_start ? GGML_BACKEND_CPU : LLAMA_BACKEND_OFFLOAD; // NOLINT - const ggml_backend backend_split = int(i) < i_gpu_start ? GGML_BACKEND_CPU : LLAMA_BACKEND_OFFLOAD_SPLIT; // NOLINT + const ggml_backend_type backend = int(i) < i_gpu_start ? GGML_BACKEND_CPU : LLAMA_BACKEND_OFFLOAD; // NOLINT + const ggml_backend_type backend_split = int(i) < i_gpu_start ? GGML_BACKEND_CPU : LLAMA_BACKEND_OFFLOAD_SPLIT; // NOLINT auto & layer = model.layers[i]; @@ -2589,8 +2653,8 @@ static void llm_load_tensors( model.tok_embeddings = ml.create_tensor(ctx, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, GGML_BACKEND_CPU); { - ggml_backend backend_norm; - ggml_backend backend_output; + ggml_backend_type backend_norm; + ggml_backend_type backend_output; if (n_gpu_layers > int(n_layer)) { // norm is not performance relevant on its own but keeping it in VRAM reduces data copying @@ -2624,8 +2688,8 @@ static void llm_load_tensors( const int i_gpu_start = n_layer - n_gpu_layers; model.layers.resize(n_layer); for (uint32_t i = 0; i < n_layer; ++i) { - const ggml_backend backend = int(i) < i_gpu_start ? GGML_BACKEND_CPU : LLAMA_BACKEND_OFFLOAD; - const ggml_backend backend_split = int(i) < i_gpu_start ? GGML_BACKEND_CPU : LLAMA_BACKEND_OFFLOAD_SPLIT; + const ggml_backend_type backend = int(i) < i_gpu_start ? GGML_BACKEND_CPU : LLAMA_BACKEND_OFFLOAD; + const ggml_backend_type backend_split = int(i) < i_gpu_start ? GGML_BACKEND_CPU : LLAMA_BACKEND_OFFLOAD_SPLIT; auto & layer = model.layers[i]; layer.attn_norm = ml.create_tensor(ctx, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, backend); layer.attn_norm_b = ml.create_tensor(ctx, tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd}, backend); @@ -2645,6 +2709,155 @@ static void llm_load_tensors( layer.attn_k_norm_b = ml.create_tensor(ctx, tn(LLM_TENSOR_ATTN_K_NORM, "bias", i), {64}, backend); } } break; + case LLM_ARCH_BLOOM: + { + // TODO: CPU-only for now + + model.tok_embeddings = ml.create_tensor(ctx, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, GGML_BACKEND_CPU); + model.tok_norm = ml.create_tensor(ctx, tn(LLM_TENSOR_TOKEN_EMBD_NORM, "weight"), {n_embd}, GGML_BACKEND_CPU); + model.tok_norm_b = ml.create_tensor(ctx, tn(LLM_TENSOR_TOKEN_EMBD_NORM, "bias"), {n_embd}, GGML_BACKEND_CPU); + + // output + { + ggml_backend_type backend_norm; + ggml_backend_type backend_output; + + if (n_gpu_layers > int(n_layer)) { + // norm is not performance relevant on its own but keeping it in VRAM reduces data copying + // on Windows however this is detrimental unless everything is on the GPU +#ifndef _WIN32 + backend_norm = LLAMA_BACKEND_OFFLOAD; +#else + backend_norm = n_gpu_layers <= (int) n_layer + 2 ? GGML_BACKEND_CPU : LLAMA_BACKEND_OFFLOAD; +#endif // _WIN32 + + backend_output = LLAMA_BACKEND_OFFLOAD_SPLIT; + } else { + backend_norm = GGML_BACKEND_CPU; + backend_output = GGML_BACKEND_CPU; + } + + model.output_norm = ml.create_tensor(ctx, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, backend_norm); + model.output_norm_b = ml.create_tensor(ctx, tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd}, backend_norm); + model.output = ml.create_tensor(ctx, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, backend_output); + + if (backend_norm == GGML_BACKEND_GPU) { + vram_weights += ggml_nbytes(model.output_norm); + vram_weights += ggml_nbytes(model.output_norm_b); + } + if (backend_output == GGML_BACKEND_GPU_SPLIT) { + vram_weights += ggml_nbytes(model.output); + } + } + + const uint32_t n_ff = hparams.n_ff; + + const int i_gpu_start = n_layer - n_gpu_layers; + + model.layers.resize(n_layer); + + for (uint32_t i = 0; i < n_layer; ++i) { + const ggml_backend_type backend = int(i) < i_gpu_start ? GGML_BACKEND_CPU : LLAMA_BACKEND_OFFLOAD; // NOLINT + const ggml_backend_type backend_split = int(i) < i_gpu_start ? GGML_BACKEND_CPU : LLAMA_BACKEND_OFFLOAD_SPLIT; // NOLINT + + auto & layer = model.layers[i]; + + layer.attn_norm = ml.create_tensor(ctx, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, backend); + layer.attn_norm_b = ml.create_tensor(ctx, tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd}, backend); + + layer.wqkv = ml.create_tensor(ctx, tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa}, backend_split); + layer.bqkv = ml.create_tensor(ctx, tn(LLM_TENSOR_ATTN_QKV, "bias", i), {n_embd + 2*n_embd_gqa}, backend_split); + + layer.wo = ml.create_tensor(ctx, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, backend_split); + layer.bo = ml.create_tensor(ctx, tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd}, backend_split); + + layer.ffn_norm = ml.create_tensor(ctx, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, backend); + layer.ffn_norm_b = ml.create_tensor(ctx, tn(LLM_TENSOR_FFN_NORM, "bias", i), {n_embd}, backend); + + layer.w2 = ml.create_tensor(ctx, tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd}, backend_split); + layer.b2 = ml.create_tensor(ctx, tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd}, backend_split); + + layer.w3 = ml.create_tensor(ctx, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, backend_split); + layer.b3 = ml.create_tensor(ctx, tn(LLM_TENSOR_FFN_UP, "bias", i), {n_ff}, backend_split); + + if (backend == GGML_BACKEND_GPU) { + vram_weights += + ggml_nbytes(layer.attn_norm) + ggml_nbytes(layer.attn_norm_b) + + ggml_nbytes(layer.wqkv) + ggml_nbytes(layer.bqkv) + + ggml_nbytes(layer.wo) + ggml_nbytes(layer.bo) + + ggml_nbytes(layer.ffn_norm) + ggml_nbytes(layer.ffn_norm_b) + + ggml_nbytes(layer.w3) + ggml_nbytes(layer.b3) + + ggml_nbytes(layer.w2) + ggml_nbytes(layer.b2); + } + } + } break; + case LLM_ARCH_MPT: + { + model.tok_embeddings = ml.create_tensor(ctx, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, GGML_BACKEND_CPU); + + // output + { + ggml_backend_type backend_norm; + ggml_backend_type backend_output; + + if (n_gpu_layers > int(n_layer)) { + // norm is not performance relevant on its own but keeping it in VRAM reduces data copying + // on Windows however this is detrimental unless everything is on the GPU +#ifndef _WIN32 + backend_norm = LLAMA_BACKEND_OFFLOAD; +#else + backend_norm = n_gpu_layers <= (int) n_layer + 2 ? GGML_BACKEND_CPU : LLAMA_BACKEND_OFFLOAD; +#endif // _WIN32 + + backend_output = LLAMA_BACKEND_OFFLOAD_SPLIT; + } else { + backend_norm = GGML_BACKEND_CPU; + backend_output = GGML_BACKEND_CPU; + } + + model.output_norm = ml.create_tensor(ctx, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, backend_norm); + model.output = ml.create_tensor(ctx, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, backend_output); + + if (backend_norm == GGML_BACKEND_GPU) { + vram_weights += ggml_nbytes(model.output_norm); + } + if (backend_output == GGML_BACKEND_GPU_SPLIT) { + vram_weights += ggml_nbytes(model.output); + } + } + + const uint32_t n_ff = hparams.n_ff; + + const int i_gpu_start = n_layer - n_gpu_layers; + + model.layers.resize(n_layer); + + for (uint32_t i = 0; i < n_layer; ++i) { + const ggml_backend_type backend = int(i) < i_gpu_start ? GGML_BACKEND_CPU : LLAMA_BACKEND_OFFLOAD; // NOLINT + const ggml_backend_type backend_split = int(i) < i_gpu_start ? GGML_BACKEND_CPU : LLAMA_BACKEND_OFFLOAD_SPLIT; // NOLINT + + auto & layer = model.layers[i]; + + layer.attn_norm = ml.create_tensor(ctx, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, backend); + layer.wqkv = ml.create_tensor(ctx, tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, 3*n_embd}, backend_split); + layer.wo = ml.create_tensor(ctx, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, backend_split); + + layer.ffn_norm = ml.create_tensor(ctx, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, backend); + + layer.w2 = ml.create_tensor(ctx, tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, backend_split); + layer.w3 = ml.create_tensor(ctx, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, backend_split); + + if (backend == GGML_BACKEND_GPU) { + vram_weights += + ggml_nbytes(layer.attn_norm) + + ggml_nbytes(layer.wqkv) + + ggml_nbytes(layer.wo) + + ggml_nbytes(layer.ffn_norm) + + ggml_nbytes(layer.w2) + + ggml_nbytes(layer.w3); + } + } + } break; default: throw std::runtime_error("unknown architecture"); } @@ -4501,7 +4714,6 @@ static struct ggml_cgraph * llm_build_starcoder( return gf; } - static struct ggml_cgraph * llm_build_persimmon( llama_context & lctx, const llama_batch & batch) { @@ -4899,6 +5111,565 @@ static struct ggml_cgraph * llm_build_persimmon( return gf; } +static struct ggml_cgraph * llm_build_bloom( + llama_context & lctx, + const llama_batch & batch) { + const auto & model = lctx.model; + const auto & hparams = model.hparams; + const auto & cparams = lctx.cparams; + + const auto & kv_self = lctx.kv_self; + + GGML_ASSERT(!!kv_self.ctx); + + const int64_t n_embd = hparams.n_embd; + const int64_t n_layer = hparams.n_layer; + const int64_t n_ctx = cparams.n_ctx; + const int64_t n_head = hparams.n_head; + const int64_t n_head_kv = hparams.n_head_kv; + const int64_t n_embd_head = hparams.n_embd_head(); + const int64_t n_embd_gqa = hparams.n_embd_gqa(); + + GGML_ASSERT(n_embd_head == hparams.n_rot); + + const float norm_eps = hparams.f_norm_eps; + + const int32_t n_tokens = batch.n_tokens; + const int32_t n_kv = ggml_allocr_is_measure(lctx.alloc) ? n_ctx : kv_self.n; + const int32_t kv_head = ggml_allocr_is_measure(lctx.alloc) ? n_ctx - n_tokens : kv_self.head; + + auto & buf_compute = lctx.buf_compute; + + struct ggml_init_params params = { + /*.mem_size =*/ buf_compute.size, + /*.mem_buffer =*/ buf_compute.data, + /*.no_alloc =*/ false, + }; + + params.no_alloc = true; + + struct ggml_context * ctx0 = ggml_init(params); + + ggml_cgraph * gf = ggml_new_graph(ctx0); + + struct ggml_tensor * cur; + struct ggml_tensor * token; + struct ggml_tensor * inpL; + + if (batch.token) { + struct ggml_tensor * inp_tokens = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_tokens); + + ggml_allocr_alloc(lctx.alloc, inp_tokens); + if (!ggml_allocr_is_measure(lctx.alloc)) { + memcpy(inp_tokens->data, batch.token, n_tokens*ggml_element_size(inp_tokens)); + } + ggml_set_name(inp_tokens, "inp_tokens"); + + token = ggml_get_rows(ctx0, model.tok_embeddings, inp_tokens); + } else { +#ifdef GGML_USE_MPI + GGML_ASSERT(false && "not implemented"); +#endif + + token = ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, n_embd, n_tokens); + + ggml_allocr_alloc(lctx.alloc, token); + if (!ggml_allocr_is_measure(lctx.alloc)) { + memcpy(token->data, batch.embd, n_tokens * n_embd * ggml_element_size(token)); + } + } + + // KQ_scale + struct ggml_tensor * KQ_scale = ggml_new_tensor_1d(ctx0, GGML_TYPE_F32, 1); + ggml_set_name(KQ_scale, "1/sqrt(n_embd_head)"); + ggml_allocr_alloc(lctx.alloc, KQ_scale); + if (!ggml_allocr_is_measure(lctx.alloc)) { + ggml_set_f32(KQ_scale, 1.0f/sqrtf(float(n_embd)/n_head)); + } + + // KQ_mask (mask for 1 head, it will be broadcasted to all heads) + struct ggml_tensor * KQ_mask = ggml_new_tensor_3d(ctx0, GGML_TYPE_F32, n_kv, n_tokens, 1); + ggml_set_name(KQ_mask, "KQ_mask"); + ggml_allocr_alloc(lctx.alloc, KQ_mask); + if (!ggml_allocr_is_measure(lctx.alloc)) { + float * data = (float *) KQ_mask->data; + memset(data, 0, ggml_nbytes(KQ_mask)); + + for (int h = 0; h < 1; ++h) { + for (int j = 0; j < n_tokens; ++j) { + const llama_pos pos = batch.pos[j]; + const llama_seq_id seq_id = batch.seq_id[j]; + + for (int i = 0; i < n_kv; ++i) { + if (!kv_self.cells[i].has_seq_id(seq_id) || kv_self.cells[i].pos > pos) { + data[h*(n_kv*n_tokens) + j*n_kv + i] = -INFINITY; + } + } + } + } + } + + // norm + { + inpL = ggml_norm(ctx0, token, norm_eps); + inpL = ggml_add(ctx0, ggml_mul(ctx0, inpL, model.tok_norm), model.tok_norm_b); + } + + ggml_set_name(inpL, "inpL"); + + for (int il = 0; il < n_layer; ++il) { + { + // Norm + cur = ggml_norm(ctx0, inpL, norm_eps); + cur = ggml_add(ctx0, ggml_mul(ctx0, cur, model.layers[il].attn_norm), model.layers[il].attn_norm_b); + } + + { + // Self Attention + cur = ggml_add(ctx0, ggml_mul_mat(ctx0, model.layers[il].wqkv, cur), model.layers[il].bqkv); + + struct ggml_tensor * tmpq = ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 0*sizeof(float)*n_embd); + struct ggml_tensor * tmpk = ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], sizeof(float)*n_embd); + struct ggml_tensor * tmpv = ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], sizeof(float)*(n_embd + n_embd_gqa)); + + struct ggml_tensor * Qcur = tmpq; + struct ggml_tensor * Kcur = tmpk; + + // store key and value to memory + { + struct ggml_tensor * Vcur = ggml_transpose(ctx0, ggml_reshape_2d(ctx0, ggml_cont(ctx0, tmpv), n_embd_gqa, n_tokens)); + ggml_set_name(Vcur, "Vcur"); + + struct ggml_tensor * k = ggml_view_1d(ctx0, kv_self.k, n_tokens*n_embd_gqa, (ggml_element_size(kv_self.k)*n_embd_gqa)*(il*n_ctx + kv_head)); + ggml_set_name(k, "k"); + + struct ggml_tensor * v = ggml_view_2d(ctx0, kv_self.v, n_tokens, n_embd_gqa, + ( n_ctx)*ggml_element_size(kv_self.v), + (il*n_ctx)*ggml_element_size(kv_self.v)*n_embd_gqa + kv_head*ggml_element_size(kv_self.v)); + + ggml_build_forward_expand(gf, ggml_cpy(ctx0, Kcur, k)); + ggml_build_forward_expand(gf, ggml_cpy(ctx0, Vcur, v)); + } + + struct ggml_tensor * Q = + ggml_permute(ctx0, + ggml_cpy(ctx0, + Qcur, + ggml_new_tensor_3d(ctx0, GGML_TYPE_F32, n_embd_head, n_head, n_tokens)), + 0, 2, 1, 3); + ggml_set_name(Q, "Q"); + + struct ggml_tensor * K = + ggml_view_3d(ctx0, kv_self.k, + n_embd_head, n_kv, n_head_kv, + ggml_element_size(kv_self.k)*n_embd_gqa, + ggml_element_size(kv_self.k)*n_embd_head, + ggml_element_size(kv_self.k)*n_embd_gqa*n_ctx*il); + ggml_set_name(K, "K"); + + // K * Q + struct ggml_tensor * KQ = ggml_mul_mat(ctx0, K, Q); + ggml_set_name(KQ, "KQ"); + + // KQ_scaled = KQ / sqrt(n_embd_head) + // KQ_scaled shape [n_past + n_tokens, n_tokens, n_head, 1] + struct ggml_tensor * KQ_scaled = ggml_scale_inplace(ctx0, KQ, KQ_scale); + ggml_set_name(KQ_scaled, "KQ_scaled"); + + struct ggml_tensor * KQ_scaled_alibi = ggml_alibi(ctx0, KQ_scaled, /*n_past*/ kv_head, n_head, 8); + ggml_set_name(KQ_scaled_alibi, "KQ_scaled_alibi"); + + // KQ_masked = mask_past(KQ_scaled) + struct ggml_tensor * KQ_masked = ggml_add(ctx0, KQ_scaled_alibi, KQ_mask); + ggml_set_name(KQ_masked, "KQ_masked"); + + // KQ = soft_max(KQ_masked) + struct ggml_tensor * KQ_soft_max = ggml_soft_max_inplace(ctx0, KQ_masked); + ggml_set_name(KQ_soft_max, "KQ_soft_max"); + + // split cached V into n_head heads + struct ggml_tensor * V = + ggml_view_3d(ctx0, kv_self.v, + n_kv, n_embd_head, n_head_kv, + ggml_element_size(kv_self.v)*n_ctx, + ggml_element_size(kv_self.v)*n_ctx*n_embd_head, + ggml_element_size(kv_self.v)*n_ctx*n_embd_gqa*il); + ggml_set_name(V, "V"); + + struct ggml_tensor * KQV = ggml_mul_mat(ctx0, V, KQ_soft_max); + ggml_set_name(KQV, "KQV"); + + // KQV_merged = KQV.permute(0, 2, 1, 3) + struct ggml_tensor * KQV_merged = ggml_permute(ctx0, KQV, 0, 2, 1, 3); + ggml_set_name(KQV_merged, "KQV_merged"); + + // cur = KQV_merged.contiguous().view(n_embd, n_tokens) + cur = ggml_cont_2d(ctx0, KQV_merged, n_embd, n_tokens); + ggml_set_name(cur, "KQV_merged_contiguous"); + } + + // Projection + cur = ggml_add(ctx0, ggml_mul_mat(ctx0, model.layers[il].wo, cur), model.layers[il].bo); + + // Add the input + cur = ggml_add(ctx0, cur, inpL); + + struct ggml_tensor * inpFF = cur; + + // FF + { + // Norm + { + cur = ggml_norm(ctx0, inpFF, norm_eps); + cur = ggml_add(ctx0, ggml_mul(ctx0, cur, model.layers[il].ffn_norm), model.layers[il].ffn_norm_b); + } + + cur = ggml_add(ctx0, ggml_mul_mat(ctx0, model.layers[il].w3, cur), model.layers[il].b3); + + // GELU activation + cur = ggml_gelu(ctx0, cur); + + // Projection + cur = ggml_add(ctx0, ggml_mul_mat(ctx0, model.layers[il].w2, cur), model.layers[il].b2); + } + + inpL = ggml_add(ctx0, cur, inpFF); + } + + // Output Norm + { + cur = ggml_norm(ctx0, inpL, norm_eps); + cur = ggml_add(ctx0, ggml_mul(ctx0, cur, model.output_norm), model.output_norm_b); + } + ggml_set_name(cur, "result_norm"); + + cur = ggml_mul_mat(ctx0, model.output, cur); + ggml_set_name(cur, "result_output"); + + ggml_build_forward_expand(gf, cur); + + ggml_free(ctx0); + + return gf; +} + +static struct ggml_cgraph * llm_build_mpt( + llama_context & lctx, + const llama_batch & batch) { + const auto & model = lctx.model; + const auto & hparams = model.hparams; + const auto & cparams = lctx.cparams; + + const auto & kv_self = lctx.kv_self; + + GGML_ASSERT(!!kv_self.ctx); + + const int64_t n_embd = hparams.n_embd; + const int64_t n_layer = hparams.n_layer; + const int64_t n_ctx = cparams.n_ctx; + const int64_t n_head = hparams.n_head; + const int64_t n_head_kv = hparams.n_head_kv; // == n_head for MPT, as there's no MQA/GQA + const int64_t n_embd_head = hparams.n_embd_head(); + const int64_t n_embd_gqa = hparams.n_embd_gqa(); + + const float norm_eps = hparams.f_norm_eps; + const float clamp_kqv = hparams.f_clamp_kqv; + const float max_alibi_bias = hparams.f_max_alibi_bias; + + const int n_gpu_layers = model.n_gpu_layers; + + const int32_t n_tokens = batch.n_tokens; + const int32_t n_kv = ggml_allocr_is_measure(lctx.alloc) ? n_ctx : kv_self.n; + const int32_t kv_head = ggml_allocr_is_measure(lctx.alloc) ? n_ctx - n_tokens : kv_self.head; + + auto & buf_compute = lctx.buf_compute; + + struct ggml_init_params params = { + /*.mem_size =*/ buf_compute.size, + /*.mem_buffer =*/ buf_compute.data, + /*.no_alloc =*/ false, + }; + + params.no_alloc = true; + + struct ggml_context * ctx0 = ggml_init(params); + + ggml_cgraph * gf = ggml_new_graph(ctx0); + + struct ggml_tensor * cur; + struct ggml_tensor * inpL; + + //int warmup = 0; + if (batch.token) { + struct ggml_tensor * inp_tokens = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_tokens); + + ggml_allocr_alloc(lctx.alloc, inp_tokens); + if (!ggml_allocr_is_measure(lctx.alloc)) { + memcpy(inp_tokens->data, batch.token, n_tokens*ggml_element_size(inp_tokens)); + //warmup = ((uint32_t*) inp_tokens->data)[0] == 0; + } + + ggml_set_name(inp_tokens, "inp_tokens"); + + inpL = ggml_get_rows(ctx0, model.tok_embeddings, inp_tokens); + } else { +#ifdef GGML_USE_MPI + GGML_ASSERT(false && "not implemented"); +#endif + + inpL = ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, n_embd, n_tokens); + + ggml_allocr_alloc(lctx.alloc, inpL); + if (!ggml_allocr_is_measure(lctx.alloc)) { + memcpy(inpL->data, batch.embd, n_tokens * n_embd * ggml_element_size(inpL)); + } + } + + const int i_gpu_start = n_layer - n_gpu_layers; + (void) i_gpu_start; + + // offload functions set the tensor output backend to GPU + // tensors are GPU-accelerated if any input or the output has been offloaded + offload_func_t offload_func_nr = llama_nop; // nr = non-repeating + offload_func_t offload_func_kq = llama_nop; + offload_func_t offload_func_v = llama_nop; + +#ifdef GGML_USE_CUBLAS + if (n_gpu_layers > n_layer) { + offload_func_nr = ggml_cuda_assign_buffers_no_alloc; + } + if (n_gpu_layers > n_layer + 1) { + offload_func_v = ggml_cuda_assign_buffers_no_alloc; + } + if (n_gpu_layers > n_layer + 2) { + offload_func_kq = ggml_cuda_assign_buffers_no_alloc; + } +#endif // GGML_USE_CUBLAS + + // KQ_scale + struct ggml_tensor * KQ_scale = ggml_new_tensor_1d(ctx0, GGML_TYPE_F32, 1); + ggml_set_name(KQ_scale, "1/sqrt(n_embd_head)"); + ggml_allocr_alloc(lctx.alloc, KQ_scale); + if (!ggml_allocr_is_measure(lctx.alloc)) { + ggml_set_f32(KQ_scale, 1.0f/sqrtf(float(n_embd)/n_head)); + } + + // KQ_mask (mask for 1 head, it will be broadcasted to all heads) + struct ggml_tensor * KQ_mask = ggml_new_tensor_3d(ctx0, GGML_TYPE_F32, n_kv, n_tokens, 1); + offload_func_kq(KQ_mask); + ggml_set_name(KQ_mask, "KQ_mask"); + ggml_allocr_alloc(lctx.alloc, KQ_mask); + if (!ggml_allocr_is_measure(lctx.alloc)) { + float * data = (float *) KQ_mask->data; + memset(data, 0, ggml_nbytes(KQ_mask)); + + for (int h = 0; h < 1; ++h) { + for (int j = 0; j < n_tokens; ++j) { + const llama_pos pos = batch.pos[j]; + const llama_seq_id seq_id = batch.seq_id[j]; + + for (int i = 0; i < n_kv; ++i) { + if (!kv_self.cells[i].has_seq_id(seq_id) || kv_self.cells[i].pos > pos) { + data[h*(n_kv*n_tokens) + j*n_kv + i] = -INFINITY; + } + } + } + } + } + + for (int il = 0; il < n_layer; ++il) { + struct ggml_tensor * attn_norm; + + offload_func_t offload_func = llama_nop; + +#ifdef GGML_USE_CUBLAS + if (il >= i_gpu_start) { + offload_func = ggml_cuda_assign_buffers_no_alloc; + } +#endif // GGML_USE_CUBLAS + + // self-attention + // TODO: refactor into common function (shared with LLaMA) + { + attn_norm = ggml_norm(ctx0, inpL, norm_eps); + offload_func(attn_norm); + + attn_norm = ggml_mul(ctx0, attn_norm, model.layers[il].attn_norm); + offload_func(attn_norm); + + if (1) { + cur = attn_norm; + } + + // compute QKV + + cur = ggml_mul_mat(ctx0, model.layers[il].wqkv, cur); + offload_func_kq(cur); + + if (clamp_kqv > 0.0f) { + cur = ggml_clamp(ctx0, cur, -clamp_kqv, clamp_kqv); + offload_func_kq(cur); + } + + const size_t wsize = ggml_type_size(cur->type); + + struct ggml_tensor * Qcur = ggml_view_3d( + ctx0, cur, n_embd_head, n_head, n_tokens, + wsize * n_embd_head, + wsize * n_embd_head * (n_head + 2 * n_head_kv), + 0); + offload_func_kq(Qcur); + + struct ggml_tensor * Kcur = ggml_view_3d( + ctx0, cur, n_embd_head, n_head_kv, n_tokens, + wsize * n_embd_head, + wsize * n_embd_head * (n_head + 2 * n_head_kv), + wsize * n_embd_head * n_head); + offload_func_kq(Kcur); + + struct ggml_tensor * tmpv = ggml_view_3d( + ctx0, cur, n_embd_head, n_head_kv, n_tokens, + wsize * n_embd_head, + wsize * n_embd_head * (n_head + 2 * n_head_kv), + wsize * n_embd_head * (n_head + n_head_kv)); + offload_func_kq(Kcur); + + ggml_set_name(Qcur, "Qcur"); + ggml_set_name(Kcur, "Kcur"); + + { + struct ggml_tensor * Vcur = ggml_transpose(ctx0, ggml_reshape_2d(ctx0, ggml_cont(ctx0, tmpv), n_embd_gqa, n_tokens)); + offload_func_v(Vcur); + offload_func_v(Vcur->src[0]->src[0]); + ggml_set_name(Vcur, "Vcur"); + + struct ggml_tensor * k = ggml_view_1d(ctx0, kv_self.k, n_tokens*n_embd_gqa, (ggml_element_size(kv_self.k)*n_embd_gqa)*(il*n_ctx + kv_head)); + offload_func_kq(k); + ggml_set_name(k, "k"); + + struct ggml_tensor * v = ggml_view_2d(ctx0, kv_self.v, n_tokens, n_embd_gqa, + ( n_ctx)*ggml_element_size(kv_self.v), + (il*n_ctx)*ggml_element_size(kv_self.v)*n_embd_gqa + kv_head*ggml_element_size(kv_self.v)); + offload_func_v(v); + + ggml_build_forward_expand(gf, ggml_cpy(ctx0, Kcur, k)); + ggml_build_forward_expand(gf, ggml_cpy(ctx0, Vcur, v)); + } + + struct ggml_tensor * Q = ggml_permute(ctx0, Qcur, 0, 2, 1, 3); + offload_func_kq(Q); + ggml_set_name(Q, "Q"); + + struct ggml_tensor * K = + ggml_view_3d(ctx0, kv_self.k, + n_embd_head, n_kv, n_head_kv, + ggml_element_size(kv_self.k)*n_embd_gqa, + ggml_element_size(kv_self.k)*n_embd_head, + ggml_element_size(kv_self.k)*n_embd_gqa*n_ctx*il); + offload_func_kq(K); + ggml_set_name(K, "K"); + + struct ggml_tensor * KQ = ggml_mul_mat(ctx0, K, Q); + offload_func_kq(KQ); + ggml_set_name(KQ, "KQ"); + + struct ggml_tensor * KQ_scaled = ggml_scale(ctx0, KQ, KQ_scale); + offload_func_kq(KQ_scaled); + ggml_set_name(KQ_scaled, "KQ_scaled"); + + // TODO: replace with ggml_add() + struct ggml_tensor * KQ_scaled_alibi = + ggml_alibi(ctx0, KQ_scaled, 0, n_head, max_alibi_bias); + offload_func_kq(KQ_scaled_alibi); + ggml_set_name(KQ_scaled_alibi, "KQ_scaled_alibi"); + + struct ggml_tensor * KQ_masked = ggml_add(ctx0, KQ_scaled_alibi, KQ_mask); + offload_func_kq(KQ_masked); + ggml_set_name(KQ_masked, "KQ_masked"); + + struct ggml_tensor * KQ_soft_max = ggml_soft_max(ctx0, KQ_masked); + offload_func_v(KQ_soft_max); + ggml_set_name(KQ_soft_max, "KQ_soft_max"); + + struct ggml_tensor * V = + ggml_view_3d(ctx0, kv_self.v, + n_kv, n_embd_head, n_head_kv, + ggml_element_size(kv_self.v)*n_ctx, + ggml_element_size(kv_self.v)*n_ctx*n_embd_head, + ggml_element_size(kv_self.v)*n_ctx*n_embd_gqa*il); + offload_func_v(V); + ggml_set_name(V, "V"); + + struct ggml_tensor * KQV = ggml_mul_mat(ctx0, V, KQ_soft_max); + offload_func_v(KQV); + ggml_set_name(KQV, "KQV"); + + struct ggml_tensor * KQV_merged = ggml_permute(ctx0, KQV, 0, 2, 1, 3); + offload_func_v(KQV_merged); + ggml_set_name(KQV_merged, "KQV_merged"); + + cur = ggml_cont_2d(ctx0, KQV_merged, n_embd, n_tokens); + offload_func_v(cur); + ggml_set_name(cur, "KQV_merged_contiguous"); + + cur = ggml_mul_mat(ctx0, model.layers[il].wo, cur); + offload_func(cur); + ggml_set_name(cur, "result_wo"); + } + + // Add the input + cur = ggml_add(ctx0, cur, inpL); + offload_func(cur); + + struct ggml_tensor * attn_out = cur; + + // feed forward + { + // Norm + { + cur = ggml_norm(ctx0, attn_out, norm_eps); + offload_func(cur); + + cur = ggml_mul(ctx0, cur, model.layers[il].ffn_norm); + offload_func(cur); + } + + cur = ggml_mul_mat(ctx0, model.layers[il].w3, cur); + offload_func(cur); + + cur = ggml_gelu(ctx0, cur); + offload_func(cur); + cur = ggml_mul_mat(ctx0, model.layers[il].w2, cur); + offload_func(cur); + } + + cur = ggml_add(ctx0, cur, attn_out); + offload_func(cur); + // input for next layer + inpL = cur; + } + + cur = inpL; + + // norm + { + cur = ggml_norm(ctx0, cur, norm_eps); + offload_func_nr(cur); + + cur = ggml_mul(ctx0, cur, model.output_norm); + ggml_set_name(cur, "result_norm"); + } + + cur = ggml_mul_mat(ctx0, model.output, cur); + ggml_set_name(cur, "result_output"); + + ggml_build_forward_expand(gf, cur); + + ggml_free(ctx0); + + return gf; +} + static struct ggml_cgraph * llama_build_graph( llama_context & lctx, const llama_batch & batch) { @@ -4931,6 +5702,14 @@ static struct ggml_cgraph * llama_build_graph( { result = llm_build_refact(lctx, batch); } break; + case LLM_ARCH_BLOOM: + { + result = llm_build_bloom(lctx, batch); + } break; + case LLM_ARCH_MPT: + { + result = llm_build_mpt(lctx, batch); + } break; default: GGML_ASSERT(false); } @@ -5061,7 +5840,8 @@ static int llama_decode_internal( const bool full_offload_supported = model.arch == LLM_ARCH_LLAMA || model.arch == LLM_ARCH_BAICHUAN || model.arch == LLM_ARCH_FALCON || - model.arch == LLM_ARCH_REFACT; + model.arch == LLM_ARCH_REFACT || + model.arch == LLM_ARCH_MPT; const bool fully_offloaded = model.n_gpu_layers >= (int) hparams.n_layer + 3; if (ggml_cpu_has_cublas() && full_offload_supported && fully_offloaded) { n_threads = 1; @@ -5562,7 +6342,6 @@ private: for (int i = 0; i < (int)text_utf.size(); i++) { const std::string & utf_char = text_utf[i]; bool split_condition = false; - // const char* text_pos = raw_text_p + utf_char.seq_offset_bytes; int bytes_remain = text_utf.size() - i; // forward backward lookups const std::string & utf_char_next = (i + 1 < (int)text_utf.size()) ? text_utf[i + 1] : ""; @@ -5588,9 +6367,9 @@ private: if (!split_condition && bytes_remain >= 3) { // 're|'ve|'ll if (utf_char == "\'" && ( - (utf_char_next == "r" || utf_char_next_next == "e") || - (utf_char_next == "v" || utf_char_next_next == "e") || - (utf_char_next == "l" || utf_char_next_next == "l")) + (utf_char_next == "r" && utf_char_next_next == "e") || + (utf_char_next == "v" && utf_char_next_next == "e") || + (utf_char_next == "l" && utf_char_next_next == "l")) ) { split_condition = true; } @@ -5641,7 +6420,7 @@ private: else if (collecting_special && (codepoint_type(utf_char) == CODEPOINT_TYPE_LETTER || codepoint_type(utf_char) == CODEPOINT_TYPE_DIGIT || codepoint_type(utf_char) == CODEPOINT_TYPE_WHITESPACE)) { split_condition = true; } - else if (collecting_whitespace_lookahead && codepoint_type(utf_char_next) != CODEPOINT_TYPE_WHITESPACE) { + else if (collecting_whitespace_lookahead && (codepoint_type(utf_char_next) == CODEPOINT_TYPE_LETTER || codepoint_type(utf_char_next) == CODEPOINT_TYPE_DIGIT)) { split_condition = true; } } @@ -7157,7 +7936,7 @@ static void llama_model_quantize_internal(const std::string & fname_inp, const s const std::string name = ggml_get_name(meta); // TODO: avoid hardcoded tensor names - use the TN_* constants - if (name.find("attn_v.weight") != std::string::npos) { + if (name.find("attn_v.weight") != std::string::npos || name.find("attn_qkv.weight") != std::string::npos) { ++n_attention_wv; } else if (name.find("ffn_down.weight") != std::string::npos) { diff --git a/scripts/sync-ggml.sh b/scripts/sync-ggml.sh index e44c3bd03..4311268bd 100755 --- a/scripts/sync-ggml.sh +++ b/scripts/sync-ggml.sh @@ -1,16 +1,18 @@ #!/bin/bash -cp -rpv ../ggml/src/ggml.c ./ggml.c -cp -rpv ../ggml/src/ggml-alloc.c ./ggml-alloc.c -cp -rpv ../ggml/src/ggml-cuda.h ./ggml-cuda.h -cp -rpv ../ggml/src/ggml-cuda.cu ./ggml-cuda.cu -cp -rpv ../ggml/src/ggml-opencl.h ./ggml-opencl.h -cp -rpv ../ggml/src/ggml-opencl.cpp ./ggml-opencl.cpp -cp -rpv ../ggml/src/ggml-metal.h ./ggml-metal.h -cp -rpv ../ggml/src/ggml-metal.m ./ggml-metal.m -cp -rpv ../ggml/src/ggml-metal.metal ./ggml-metal.metal -cp -rpv ../ggml/include/ggml/ggml.h ./ggml.h -cp -rpv ../ggml/include/ggml/ggml-alloc.h ./ggml-alloc.h +cp -rpv ../ggml/src/ggml.c ./ggml.c +cp -rpv ../ggml/src/ggml-alloc.c ./ggml-alloc.c +cp -rpv ../ggml/src/ggml-backend.c ./ggml-backend.c +cp -rpv ../ggml/src/ggml-cuda.h ./ggml-cuda.h +cp -rpv ../ggml/src/ggml-cuda.cu ./ggml-cuda.cu +cp -rpv ../ggml/src/ggml-opencl.h ./ggml-opencl.h +cp -rpv ../ggml/src/ggml-opencl.cpp ./ggml-opencl.cpp +cp -rpv ../ggml/src/ggml-metal.h ./ggml-metal.h +cp -rpv ../ggml/src/ggml-metal.m ./ggml-metal.m +cp -rpv ../ggml/src/ggml-metal.metal ./ggml-metal.metal +cp -rpv ../ggml/include/ggml/ggml.h ./ggml.h +cp -rpv ../ggml/include/ggml/ggml-alloc.h ./ggml-alloc.h +cp -rpv ../ggml/include/ggml/ggml-backend.h ./ggml-backend.h cp -rpv ../ggml/tests/test-opt.cpp ./tests/test-opt.cpp cp -rpv ../ggml/tests/test-grad0.cpp ./tests/test-grad0.cpp diff --git a/tests/test-tokenizer-0-falcon.cpp b/tests/test-tokenizer-0-falcon.cpp index 0f3c50bce..a4e9d2b91 100644 --- a/tests/test-tokenizer-0-falcon.cpp +++ b/tests/test-tokenizer-0-falcon.cpp @@ -36,6 +36,8 @@ static const std::map> & k_tests() { { " Hello" , { 258, 23090, }, }, { " Hello" , { 466, 23090, }, }, { " Hello\n Hello" , { 466, 23090, 742, 23090, }, }, + { "\n =" , { 1212, 40, }, }, + { "' era" , { 18, 4932, }, }, }; return _k_tests; @@ -155,7 +157,7 @@ int main(int argc, char **argv) { fprintf(stderr, "%s : text size: %zu\n", __func__, text.size()); - const std::vector res = llama_tokenize(ctx, text, true); + const std::vector res = llama_tokenize(ctx, text, false); fprintf(stderr, "%s : tokens: %zu\n", __func__, res.size()); @@ -169,10 +171,8 @@ int main(int argc, char **argv) { } for (const auto & tok : res) { - ofs << tok << " "; + ofs << tok << " '" << llama_detokenize_bpe(ctx, std::vector{tok}) << "'" << std::endl; } - - ofs << "\n"; } fprintf(stderr, "%s : tokens written to '%s'\n", __func__, (fname_text + ".tokcpp").c_str()); diff --git a/tests/test-tokenizer-0-falcon.py b/tests/test-tokenizer-0-falcon.py index 9c8c1c7d1..cf65a3f65 100644 --- a/tests/test-tokenizer-0-falcon.py +++ b/tests/test-tokenizer-0-falcon.py @@ -41,6 +41,8 @@ tests = [ " Hello", " Hello", " Hello\n Hello", + "\n =", + "' era", ] for text in tests: @@ -69,15 +71,14 @@ fname_tok = args.fname_tok if fname_tok: print('tokenizing file: ', fname_tok) fname_out = fname_tok + '.tok' - with open(fname_tok, 'r') as f: + with open(fname_tok, 'r', encoding='utf-8') as f: lines = f.readlines() s = ''.join(lines) res = tokenizer.encode(s) # write to file - with open(fname_out, 'w') as f: + with open(fname_out, 'w', encoding='utf-8') as f: for x in res: - f.write(str(x) + ' ') - f.write('\n') + f.write(str(x) + ' \'' + tokenizer.decode(x) + '\'\n') print('len(res): ', len(res)) print('len(lines): ', len(lines)) print('results written to: ', fname_out) diff --git a/tests/test-tokenizer-0-llama.cpp b/tests/test-tokenizer-0-llama.cpp index 91c841f7b..39c8d188c 100644 --- a/tests/test-tokenizer-0-llama.cpp +++ b/tests/test-tokenizer-0-llama.cpp @@ -174,10 +174,8 @@ int main(int argc, char **argv) { } for (const auto & tok : res) { - ofs << tok << " "; + ofs << tok << " '" << llama_detokenize_spm(ctx, std::vector{tok}) << "'" << std::endl; } - - ofs << "\n"; } fprintf(stderr, "%s : tokens written to '%s'\n", __func__, (fname_text + ".tokcpp").c_str()); diff --git a/tests/test-tokenizer-0-llama.py b/tests/test-tokenizer-0-llama.py index bc164ee29..078f680b1 100644 --- a/tests/test-tokenizer-0-llama.py +++ b/tests/test-tokenizer-0-llama.py @@ -81,15 +81,14 @@ fname_tok = args.fname_tok if fname_tok: print('tokenizing file: ', fname_tok) fname_out = fname_tok + '.tok' - with open(fname_tok, 'r') as f: + with open(fname_tok, 'r', encoding='utf-8') as f: lines = f.readlines() s = ''.join(lines) res = tokenizer.encode(s, add_bos=True) # write to file - with open(fname_out, 'w') as f: + with open(fname_out, 'w', encoding='utf-8') as f: for x in res: - f.write(str(x) + ' ') - f.write('\n') + f.write(str(x) + ' \'' + tokenizer.decode(x) + '\'\n') print('len(res): ', len(res)) print('len(lines): ', len(lines)) print('results written to: ', fname_out)