metal : move output into local memory + optimize

- the result from each simdgroup now stays in the registers
- significantly reduced SRAM usage
- more efficient skipping of -INF blocks
- avoid simdgroup barrier in hot loop
- add comments
This commit is contained in:
Georgi Gerganov 2024-01-28 13:15:00 +02:00
parent b3dd7d975f
commit 77f6976a87
No known key found for this signature in database
GPG Key ID: 449E073F9DC10735
2 changed files with 136 additions and 148 deletions

View File

@ -2213,14 +2213,14 @@ static bool ggml_metal_graph_compute(
[encoder setBytes:&ne3 length:sizeof( int64_t) atIndex:26];
[encoder setBytes:&scale length:sizeof( float) atIndex:27];
// for small batches use more simdgroups (needs more tests, to confirm if it's worth it)
const int64_t nsg = ne01 < 4 ? 12 : 4; // simdgroups per threadgroup (a.k.a. warps)
const int64_t nqptg = 8; // queries per threadgroup !! sync with kernel template arguments !!
const int64_t ncpsg = 32; // cache values per simdgroup (does not work for other values)
const int64_t ncpsg = 32; // cache values per simdgroup
//const size_t smem = nqptg*(nhptg*ne00 + nsg*(nhptg*ne00 + 256))*(sizeof(float)/2);
const size_t smem = nqptg*(ne00 + nsg*(ne00 + 1*ncpsg))*(sizeof(float)/2);
// simdgroups per threadgroup (a.k.a. warps)
// for small batches use more simdgroups (needs more tests, to confirm if it's worth it)
const int64_t nsg = ne01 <= nqptg ? MAX(4, MIN(ne11/32, (int64_t) pipeline.maxTotalThreadsPerThreadgroup/32)) : 4;
const size_t smem = nqptg*(ne00 + nsg*(ncpsg + nqptg))*(sizeof(float)/2);
//printf("smem: %zu, max: %zu\n", smem, ctx->device.maxThreadgroupMemoryLength);
GGML_ASSERT(smem <= ctx->device.maxThreadgroupMemoryLength);

View File

@ -1995,6 +1995,7 @@ typedef void (flash_attn_ext_f16_t)(
uint tiisg[[thread_index_in_simdgroup]],
uint sgitg[[simdgroup_index_in_threadgroup]]);
// ref: https://arxiv.org/pdf/2307.08691.pdf
template<int64_t D, int64_t Q, int64_t C> // head size, queries per threadgroup, cache items per threadgroup
kernel void kernel_flash_attn_ext_f16(
device const char * q,
@ -2038,39 +2039,45 @@ kernel void kernel_flash_attn_ext_f16(
const int64_t iq1 = tgpig[0]*Q;
const int64_t D4 = D/4;
const int64_t N4 = N_SIMDWIDTH;
const int64_t L4 = (D4 + N4 - 1)/N4;
const int64_t D8 = D/8;
const int64_t NW = N_SIMDWIDTH;
const int64_t L4 = (D4 + NW - 1)/NW;
const int64_t SH = (C + Q); // shared memory per simdgroup in (half)
const int64_t T = D + nsg*(D + 1*C); // shared memory size per query in half
const int64_t T4 = T/4; // shared memory size per query in half4
const int64_t T = D + nsg*SH; // shared memory size per query in (half)
const int64_t T4 = T/4; // shared memory size per query in (half4)
threadgroup half * pq = (threadgroup half *) (shared + 0*D);
threadgroup half4 * pq4 = (threadgroup half4 *) (shared + 0*D);
threadgroup half * ps = (threadgroup half *) (shared + sgitg*(D + 1*C) + 1*D);
threadgroup half4 * ps4 = (threadgroup half4 *) (shared + sgitg*(D + 1*C) + 1*D);
threadgroup half * ss = (threadgroup half *) (shared + sgitg*(D + 1*C) + 2*D);
threadgroup half * sq = (threadgroup half *) (shared + 0*D); // holds the query data
threadgroup half4 * sq4 = (threadgroup half4 *) (shared + 0*D); // scratch buffer for attention
threadgroup half * ss = (threadgroup half *) (shared + sgitg*SH + 1*D); // scratch buffer for diagonal matrix
// store the result for all queries in local memory in 8x8 matrices (the O matrix from the paper)
simdgroup_half8x8 lo[D8];
for (int64_t i = 0; i < L4; ++i) {
// load heads from Q to shared memory
for (int64_t j = sgitg; j < Q; j += nsg) {
device const float4 * q4 = (device const float4 *) ((device const char *) q + ((iq1 + j)*nb01 + iq2*nb02 + iq3*nb03));
if (iq1 + j < ne01) {
pq4[j*T4 + N4*i + tiisg] = (half4) q4[N4*i + tiisg];
sq4[j*T4 + NW*i + tiisg] = (half4) q4[NW*i + tiisg];
} else {
pq4[j*T4 + N4*i + tiisg] = 0.0h;
sq4[j*T4 + NW*i + tiisg] = 0.0h;
}
}
// zero out shared memory
for (int64_t j = 0; j < Q; ++j) {
ps4[j*T4 + N4*i + tiisg] = 0.0h;
}
}
// zero out lo
for (int64_t i = 0; i < D8; ++i) {
lo[i] = make_filled_simdgroup_matrix<half, 8>(0.0h);
}
// zero out shared memory SH
if (tiisg < C) {
for (int64_t j = 0; j < Q; ++j) {
ss[j*T + 0 + tiisg] = 0.0h;
ss[j*T + tiisg] = 0.0h;
if (tiisg < Q) {
ss[j*T + C + tiisg] = 0.0h;
}
}
}
@ -2103,46 +2110,24 @@ kernel void kernel_flash_attn_ext_f16(
const int64_t iv2 = iq2 / rv2;
const int64_t iv3 = iq3 / rv3;
// load the queries from shared memory into local memory
simdgroup_half8x8 mq[D8];
for (int64_t i = 0; i < D8; ++i) {
simdgroup_load(mq[i], pq + i*8, T);
simdgroup_load(mq[i], sq + i*8, T);
}
// TODO: this can be improved
device const float * mp[Q];
const int64_t ir = iq3*ne02*ne01 + iq2*ne01 + iq1;
{
const int64_t ir = iq3*ne02*ne01 + iq2*ne01 + iq1;
for (int64_t j = 0; j < Q; ++j) {
if (iq1 + j < ne01) {
mp[j] = (device const float *) (mask + ((ir + j)%ne31)*nb31);
} else {
mp[j] = nullptr;
}
}
}
// pointer to the mask
device const float * mp = (device const float *) (mask + (ir%ne31)*nb31);
// prepare diagonal scale matrix
simdgroup_half8x8 mscale(scale);
for (int64_t iic = C*sgitg; iic < ne11; iic += C*nsg) {
// skip -INF blocks
// TODO: double-check this
{
float smc = -INFINITY;
for (int64_t j = 0; j < Q; ++j) {
const float mc = mp[j] ? mp[j][iic + tiisg] : -INFINITY;
smc = simd_max(max(smc, mc));
}
if (smc == -INFINITY) {
continue;
}
}
// loop over the KV cache
// each simdgroup handles blocks of Q rows and C columns
for (int64_t ic = C*sgitg; ic < ne11; ic += C*nsg) {
// Q*K^T
{
simdgroup_half8x8 mk;
@ -2150,7 +2135,7 @@ kernel void kernel_flash_attn_ext_f16(
for (int cc = 0; cc < C/8; ++cc) {
simdgroup_half8x8 mqk = make_filled_simdgroup_matrix<half, Q>(0.h);
device const half * pk = (device const half *) ((device const char *) k + ((iic + 8*cc)*nb11 + ik2*nb12 + ik3*nb13));
device const half * pk = (device const half *) ((device const char *) k + ((ic + 8*cc)*nb11 + ik2*nb12 + ik3*nb13));
for (int64_t i = 0; i < D8; ++i) {
simdgroup_load(mk, pk + i*8, nb11/sizeof(half), 0, true);
@ -2160,65 +2145,77 @@ kernel void kernel_flash_attn_ext_f16(
// mqk = mqk*scale + mask
simdgroup_float8x8 mm;
simdgroup_load(mm, mp[0] + iic + 8*cc, nb31/sizeof(float), 0, false);
simdgroup_load(mm, mp + ic + 8*cc, nb31/sizeof(float), 0, false);
simdgroup_multiply_accumulate(mqk, mqk, mscale, mm);
simdgroup_store(mqk, ss + 8*cc, T, 0, false);
}
}
// used to detect blocks full of -INF
half smax = -INFINITY;
// online softmax
for (int64_t j = 0; j < Q; ++j) {
const int64_t p = tiisg;
//const half s = ss[j*T + p]*scale + (mp[j][iic + p]);
const half s = ss[j*T + p];
half m = M[j];
smax = simd_max(max(smax, s));
M[j] = simd_max(max(M[j], s));
const half m = M[j];
const half ms = m == -INFINITY ? 0.0h : exp(m - M[j]);
const half vs = s == -INFINITY ? 0.0h : exp(s - M[j]);
S[j] = S[j]*ms + simd_sum(vs);
for (int64_t i = 0; i < L4; ++i) {
ps4[j*T4 + N4*i + tiisg] *= ms;
// create an 8x8 diagonal matrix for rescaling the output
if (p == j) {
ss[j*T + C + j] = ms;
}
// the P matrix from the paper (Q rows, C columns)
ss[j*T + p] = vs;
}
simdgroup_barrier(mem_flags::mem_none);
// skip -INF blocks
if (smax == -INFINITY) {
continue;
}
// (Q*K^T)*V
// O = diag(ms)*O
{
simdgroup_half8x8 mm;
simdgroup_load(mm, ss + C, T, 0, false);
for (int64_t i = 0; i < D8; ++i) {
simdgroup_multiply(lo[i], mm, lo[i]);
}
}
// O = O + (Q*K^T)*V
{
simdgroup_half8x8 mv;
simdgroup_half8x8 mp[C/8];
for (int cc = 0; cc < C/8; ++cc) {
simdgroup_load(mp[cc], ss + 8*cc, T, 0, false);
}
simdgroup_half8x8 mp;
simdgroup_load(mp, ss + 8*cc, T, 0, false);
for (int64_t i = 0; i < D8; ++i) {
simdgroup_half8x8 mqkv;
simdgroup_load(mqkv, ps + i*8, T, 0, false);
for (int cc = 0; cc < C/8; ++cc) {
device const half * pv = (device const half *) ((device const char *) v + ((iic + 8*cc)*nb21 + iv2*nb22 + iv3*nb23));
for (int64_t i = 0; i < D8; ++i) {
device const half * pv = (device const half *) ((device const char *) v + ((ic + 8*cc)*nb21 + iv2*nb22 + iv3*nb23));
simdgroup_load(mv, pv + i*8, nb21/sizeof(half), 0, false);
simdgroup_multiply_accumulate(mqkv, mp[cc], mv, mqkv);
simdgroup_multiply_accumulate(lo[i], mp, mv, lo[i]);
}
simdgroup_store(mqkv, ps + i*8, T, 0, false);
}
}
}
// these are needed for reducing the results from the simdgroups (reuse the ss buffer)
for (int64_t j = 0; j < Q; ++j) {
if (tiisg == 0) {
ss[j*T + 0] = S[j];
@ -2227,91 +2224,82 @@ kernel void kernel_flash_attn_ext_f16(
}
}
threadgroup_barrier(mem_flags::mem_threadgroup);
// reduce the warps sequentially
for (int64_t sg = 1; sg < nsg; ++sg) {
half S = { 0.0h };
half M = { -INFINITY };
// reduce the warps
#if 1
threadgroup_barrier(mem_flags::mem_threadgroup);
// each simdgroup stores its output to shared memory, reusing sq4
if (sgitg == sg) {
for (int64_t i = 0; i < D8; ++i) {
simdgroup_store(lo[i], sq + i*8, T, 0, false);
}
}
threadgroup_barrier(mem_flags::mem_threadgroup);
// the first simdgroup accumulates the results from the other simdgroups
if (sgitg == 0) {
for (int64_t j = 0; j < Q; ++j) {
const half S0 = ss[j*T + 0];
const half S1 = ss[j*T + sg*SH + 0];
const half M0 = ss[j*T + 1];
const half M1 = ss[j*T + sg*SH + 1];
M = max(M0, M1);
const half ms0 = exp(M0 - M);
const half ms1 = exp(M1 - M);
S = S0*ms0 + S1*ms1;
if (tiisg == 0) {
ss[j*T + 0] = S;
ss[j*T + 1] = M;
ss[j*T + C + j ] = ms0;
ss[j*T + C + j + sg*SH] = ms1;
}
}
// O_0 = diag(ms0)*O_0 + diag(ms1)*O_1
{
simdgroup_half8x8 t;
simdgroup_half8x8 ms0;
simdgroup_half8x8 ms1;
simdgroup_load(ms0, ss + C, T, 0, false);
simdgroup_load(ms1, ss + C + sg*SH, T, 0, false);
for (int64_t i = 0; i < D8; ++i) {
simdgroup_load (t, sq + i*8, T, 0, false);
simdgroup_multiply(t, ms1, t);
simdgroup_multiply_accumulate(lo[i], ms0, lo[i], t);
}
}
}
}
// store result to shared memory (reuse sq4)
if (sgitg == 0) {
half S = { 0.0h };
half M = { -INFINITY };
for (int64_t sg = 1; sg < nsg; ++sg) {
for (int64_t j = 0; j < Q; ++j) {
const half S0 = ss[j*T + 0];
const half S1 = ss[j*T + sg*(D + 1*C) + 0];
const half M0 = ss[j*T + 1];
const half M1 = ss[j*T + sg*(D + 1*C) + 1];
M = max(M0, M1);
const half ms0 = exp(M0 - M);
const half ms1 = exp(M1 - M);
S = S0*ms0 + S1*ms1;
if (tiisg == 0) {
ss[j*T + 0] = S;
ss[j*T + 1] = M;
}
for (int64_t i = 0; i < L4; ++i) {
ps4[j*T4 + N4*i + tiisg] = ps4[j*T4 + N4*i + tiisg]*ms0 + ps4[j*T4 + sg*(D + 1*C)/4 + N4*i + tiisg]*ms1;
}
}
for (int64_t i = 0; i < D8; ++i) {
simdgroup_store(lo[i], sq + i*8, T, 0, false);
}
}
#else
// parallel reduce
// NOTE: this is significantly slower than the serial version above, likely due to the small number of warps
{
half S = { 0.0h };
half M = { -INFINITY };
for (int64_t sg = nsg/2; sg > 0; sg /= 2) {
if (sgitg >= sg) {
continue;
}
for (int64_t j = 0; j < Q; ++j) {
const half S0 = ss[j*T + 0];
const half S1 = ss[j*T + sg*(D + 1*C) + 0];
const half M0 = ss[j*T + 1];
const half M1 = ss[j*T + sg*(D + 1*C) + 1];
M = max(M0, M1);
const half ms0 = exp(M0 - M);
const half ms1 = exp(M1 - M);
S = S0*ms0 + S1*ms1;
if (tiisg == 0) {
ss[j*T + 0] = S;
ss[j*T + 1] = M;
}
for (int64_t i = 0; i < L4; ++i) {
ps4[j*T4 + N4*i + tiisg] = ps4[j*T4 + N4*i + tiisg]*ms0 + ps4[j*T4 + sg*(D + 1*C)/4 + N4*i + tiisg]*ms1;
}
}
threadgroup_barrier(mem_flags::mem_threadgroup);
}
}
#endif
simdgroup_barrier(mem_flags::mem_threadgroup);
device float4 * dst4 = (device float4 *) dst;
// final rescale with 1/S and store to global memory
if (sgitg == 0) {
for (int64_t j = 0; j < Q && iq1 + j < ne01; ++j) {
const half S = ss[j*T + 0];
for (int64_t i = 0; i < L4; ++i) {
dst4[(iq3*ne2*ne1 + iq2 + (iq1 + j)*ne1)*D4 + N4*i + tiisg] = (float4) ps4[j*T4 + N4*i + tiisg]/S;
dst4[(iq3*ne2*ne1 + iq2 + (iq1 + j)*ne1)*D4 + NW*i + tiisg] = (float4) sq4[j*T4 + NW*i + tiisg]/S;
}
}
}