From 78aacf36344df724cdca9f1e1af849b2d2519cb8 Mon Sep 17 00:00:00 2001 From: Georgi Gerganov Date: Wed, 28 Feb 2024 17:36:53 +0200 Subject: [PATCH] awq-py : remove (#5768) --- awq-py/README.md | 116 ------------------ awq-py/awq/apply_awq.py | 254 ---------------------------------------- awq-py/requirements.txt | 2 - 3 files changed, 372 deletions(-) delete mode 100644 awq-py/README.md delete mode 100644 awq-py/awq/apply_awq.py delete mode 100644 awq-py/requirements.txt diff --git a/awq-py/README.md b/awq-py/README.md deleted file mode 100644 index 16e68d027..000000000 --- a/awq-py/README.md +++ /dev/null @@ -1,116 +0,0 @@ -# AWQ: Activation-aware Weight Quantization for LLM - version apply to llamacpp -[[Paper](https://arxiv.org/abs/2306.00978)][[Original Repo](https://github.com/mit-han-lab/llm-awq)][[Easy-to-use Repo](https://github.com/casper-hansen/AutoAWQ)] - -**Supported models:** - -- [X] LLaMA -- [x] LLaMA 2 -- [X] MPT -- [X] Mistral AI v0.1 -- [ ] Bloom -- [ ] Mixtral MoE - -**TODO:** -- [x] Update version work with both MPT and MPT-AWQ model -- [ ] Add OPT model -- [ ] Add Bloom model -- [ ] Add Mixtral MoE -- [ ] Support w3, w2 - - -## Contents - -- [Install](##Install) -- [Convert](##Convert) -- [Quantize](##Quantize) -- [Test](##Test) -- [Benchmark](##Benchmark) -- [Results](##Results) - -## Install -Install requirements -```bash -pip install -r requirements.txt -``` -Get the pre-computed AWQ search results for multiple model families, including LLaMA, LLaMA2, MPT, OPT -```bash -git clone https://huggingface.co/datasets/mit-han-lab/awq-model-zoo awq_cache -``` - -## Convert -Example for llama model -```bash -# For llama7b and llama2 models -python convert.py models/llama-7b/ --awq-path awq_cache/llama-7b-w4-g128.pt --outfile models/llama_7b_fp16.gguf -# For mistral and mpt models -python convert-hf-to-gguf.py models/mpt-7b/ --awq-path awq_cache/mpt-7b-w4-g128.pt --outfile models/mpt_7b_fp16.gguf -``` - -## Quantize -```bash -# We only benchmark and confirm the results on q4_0, q4_1, and q2_k types. -./quantize models/llama_7b_fp16.gguf models/llama_7b_q4_0.gguf q4_0 -``` - -## Test -```bash -# For all models. -./build/bin/main -m models/llama_7b_q4_0.gguf -n 128 --prompt "Once upon a time" -``` - -## Benchmark -The perplexity measurements in table above are done against the `wikitext2` test dataset (https://paperswithcode.com/dataset/wikitext-2), with context length of 512. -```bash -# For llama and llama2, and mistral models. -./perplexity -m models/llama_7b_q4_0.gguf -f datasets/wikitext-2-raw/wiki.test.raw -``` - -## Results -Results are run on OpenBLAS (CPU) and CuBLAS (GPU) for fair comparison -We use three types of llamacpp quantization methods to work with our version, including q4_0, q4_1, and q2_k - -### Llama 7B (Build with OpenBLAS) - -| Model | Measure | F16 | Q4_0 | Q4_1 | Q2_K | -|-----------:|--------------|-------:|-------:|-------:|-------:| -|Llama 7B | perplexity | 5.9066 | 6.1214 | 6.0643 | 6.5808 | -|Llama 7B | file size | 12.9G | 3.5G | 3.9G | 2.7G | -|Llama 7B | bits/weight | 16.0 | 4.5 | 5.0 | 2.6 | -|AWQ-LLama 7B| perplexity | 5.9175 | 6.0252 | 5.9987 | 6.3692 | -|AWQ-LLama 7B| file size | 12.9G | 3.5G | 3.9G | 2.7G | -|AWQ-LLama 7B| bits/weight | 16.0 | 4.5 | 5.0 | 2.6 | - - -### Llama2 7B (Build with CuBLAS) - -| Model | Measure | F16 | Q4_0 | Q4_1 | Q2_K | -|------------:|--------------|-------:|-------:|-------:|-------:| -|Llama2 7B | perplexity | 5.8664 | 6.0260 | 6.0656 | 6.4496 | -|Llama2 7B | file size | 12.9G | 3.5G | 3.9G | 2.7G | -|Llama2 7B | bits/weight | 16.0 | 4.5 | 5.0 | 2.6 | -|AWQ-LLama2 7B| perplexity | 5.8801 | 6.0054 | 5.9849 | 6.3650 | -|AWQ-LLama2 7B| file size | 12.9G | 3.5G | 3.9G | 2.7G | -|AWQ-LLama2 7B| bits/weight | 16.0 | 4.5 | 5.0 | 2.6 | - - -### Mistral 7B v0.1 (Build with CuBLAS) - -| Model | Measure | F16 | Q4_0 | Q4_1 | Q2_K | -|-------------:|--------------|-------:|-------:|-------:|-------:| -|Mistral 7B | perplexity | 5.6931 | 5.8202 | 5.8268 | 6.1645 | -|Mistral 7B | file size | 14.5G | 4.1G | 4.5G | 3.1G | -|Mistral 7B | bits/weight | 16.0 | 4.5 | 5.0 | 2.6 | -|AWQ-Mistral 7B| perplexity | 5.6934 | 5.8020 | 5.7691 | 6.0426 | -|AWQ-Mistral 7B| file size | 14.5G | 4.1G | 4.5G | 3.1G | -|AWQ-Mistral 7B| bits/weight | 16.0 | 4.5 | 5.0 | 2.6 | - -### MPT 7B (Build with OpenBLAS) - -| Model | Measure | F16 | Q4_0 | Q4_1 | Q2_K | -|---------:|--------------|-------:|-------:|-------:|--------:| -|MPT 7B | perplexity | 8.4369 | 8.7956 | 8.6265 | 11.4913 | -|MPT 7B | file size | 13.7G | 3.9G | 4.3G | 2.8G | -|MPT 7B | bits/weight | 16.0 | 4.5 | 5.0 | 2.6 | -|AWQ-MPT 7B| perplexity | 8.4944 | 8.7053 | 8.6750 | 10.2873| -|AWQ-MPT 7B| file size | 13.7G | 3.9G | 4.3G | 2.8G | -|AWQ-MPT 7B| bits/weight | 16.0 | 4.5 | 5.0 | 2.6 | diff --git a/awq-py/awq/apply_awq.py b/awq-py/awq/apply_awq.py deleted file mode 100644 index 11132c5d2..000000000 --- a/awq-py/awq/apply_awq.py +++ /dev/null @@ -1,254 +0,0 @@ -""" -Implements the AWQ for llama.cpp use cases. -Original paper: https://arxiv.org/abs/2306.00978 - -This code is based on versions of the AWQ implementation found in the following repositories: -* https://github.com/mit-han-lab/llm-awq -* https://github.com/casper-hansen/AutoAWQ -""" - -import os -import torch -import torch.nn as nn - -from transformers import AutoModelForCausalLM, AutoConfig -from transformers.models.bloom.modeling_bloom import BloomGelu -from transformers.models.llama.modeling_llama import LlamaRMSNorm -from transformers.activations import GELUActivation - - -class ScaledActivation(nn.Module): - """ - ScaledActivation module wraps an existing activation function and applies a - scale factor to its output. - - Args: - module (nn.Module): The activation function to be scaled. - scales (torch.Tensor): A tensor of size (num_features,) containing the initial - scale factors for each feature. - - Returns: - torch.Tensor: The scaled output of the activation function. - """ - - def __init__(self, module, scales): - super().__init__() - self.act = module - self.scales = nn.Parameter(scales.data) - - def forward(self, x): - return self.act(x) / self.scales.view(1, 1, -1).to(x.device) - - -def set_op_by_name(layer, name, new_module): - """ - Set the new module for given module's name. - - Args: - layer (nn.Module): The layer in which to replace the submodule. - name (str): The path to the submodule to be replaced, using dot notation - to access nested modules. - new_module (nn.Module): The new module to replace the existing one. - """ - levels = name.split(".") - if len(levels) > 1: - mod_ = layer - for l_idx in range(len(levels) - 1): - if levels[l_idx].isdigit(): - mod_ = mod_[int(levels[l_idx])] - else: - mod_ = getattr(mod_, levels[l_idx]) - setattr(mod_, levels[-1], new_module) - else: - setattr(layer, name, new_module) - - -def get_op_by_name(module, op_name): - """ - Retrieves a submodule within a given layer based on its name. - - Args: - module (nn.Module): The layer containing the submodule to find. - op_name (str): The name of the submodule. - - Returns: - nn.Module: The requested submodule found within the given layer. - - Raises: - ValueError: If the specified submodule cannot be found within the layer. - """ - for name, m in module.named_modules(): - if name == op_name: - return m - raise ValueError(f"Cannot find op {op_name} in module {module}") - - -@torch.no_grad() -def scale_ln_fcs(ln, fcs, scales): - """ - Scales the weights of a LayerNorm and a list of fully-connected layers proportionally. - - Args: - ln (nn.LayerNorm): The LayerNorm module to be scaled. - fcs (List[nn.Linear]): A list of fully-connected layers to be scaled. - scales (torch.Tensor): A 1D tensor of size (num_features,). - """ - - if not isinstance(fcs, list): - fcs = [fcs] - - scales = scales.to(ln.weight.device) - - ln.weight.div_(scales) - if hasattr(ln, "bias") and ln.bias is not None: - ln.bias.div_(scales) - - for fc in fcs: - fc.weight.mul_(scales.view(1, -1)) - - for p in ln.parameters(): - assert torch.isnan(p).sum() == 0 - for fc in fcs: - for p in fc.parameters(): - assert torch.isnan(p).sum() == 0 - - -@torch.no_grad() -def scale_fc_fc(fc1, fc2, scales): - """ - Scales the weights of two fully-connected layers in a specific pattern. - - Args: - fc1 (nn.Linear): The first fully-connected layer to be scaled. - fc2 (nn.Linear): The second fully-connected layer to be scaled. - scales (torch.Tensor): A 1D tensor of size (num_features,). - """ - assert isinstance(fc1, nn.Linear) - assert isinstance(fc2, nn.Linear) - - scales = scales.to(fc1.weight.device) - - fc1.weight[-scales.size(0):].div_(scales.view(-1, 1)) - if fc1.bias is not None: - fc1.bias.div_(scales.view(-1)) - - fc2.weight.mul_(scales.view(1, -1)) - - for p in fc1.parameters(): - assert torch.isnan(p).sum() == 0 - for p in fc2.parameters(): - assert torch.isnan(p).sum() == 0 - - -@torch.no_grad() -def scale_gelu_fc(gelu, fc, scales): - """ - Scales the weight of a GELU activation and a fully-connected layer proportionally. - - Args: - gelu (Union[nn.GELU, BloomGelu, GELUActivation]): The GELU activation module to be scaled. - fc (nn.Linear): The fully-connected layer to be scaled. - scales (torch.Tensor): A 1D tensor of size (num_features,). - - Raises: - TypeError: If the `gelu` module is not of type `nn.GELU`, `BloomGelu`, or `GELUActivation`. - TypeError: If the `fc` module is not of type `nn.Linear`. - """ - assert isinstance(gelu, (nn.GELU, BloomGelu, GELUActivation)) - assert isinstance(fc, nn.Linear) - - fc.weight.mul_(scales.view(1, -1).to(fc.weight.device)) - - for p in fc.parameters(): - assert torch.isnan(p).sum() == 0 - - -def apply_scale(module, scales_list, input_feat_dict=None): - """ - Applies different scaling strategies to layers based on their type and hierarchy within a given module. - - Args: - module (nn.Module): The module containing the layers to be scaled. - scales_list (List[Tuple[str, List[str], torch.Tensor]]): A list of tuples containing: - * prev_op_name (str): The name of the preceding operation or module, - relative to which the layers to be scaled are located. - * layer_names (List[str]): A list of names of the layers to be scaled, relative to the preceding operation. - * scales (torch.Tensor): A 1D tensor of size (num_features,) containing the scaling factors for each feature. - input_feat_dict (Optional[Dict[str, torch.Tensor]]): A dictionary mapping layer names to their corresponding - input features (optional). - """ - for prev_op_name, layer_names, scales in scales_list: - prev_op = get_op_by_name(module, prev_op_name) - layers = [get_op_by_name(module, name) for name in layer_names] - - prev_op.cuda() - for layer in layers: - layer.cuda() - scales.cuda() - - if isinstance(prev_op, nn.Linear): - assert len(layers) == 1 - scale_fc_fc(prev_op, layers[0], scales) - elif isinstance(prev_op, (nn.LayerNorm, LlamaRMSNorm)) or "rmsnorm" in str(prev_op.__class__).lower(): - scale_ln_fcs(prev_op, layers, scales) - elif isinstance(prev_op, (nn.GELU, BloomGelu, GELUActivation)): - new_module = ScaledActivation(prev_op, scales) - set_op_by_name(module, prev_op_name, new_module) - scale_gelu_fc(prev_op, layers[0], scales) - else: - raise NotImplementedError(f"prev_op {type(prev_op)} not supported yet!") - - # apply the scaling to input feat if given; prepare it for clipping - if input_feat_dict is not None: - for layer_name in layer_names: - inp = input_feat_dict[layer_name] - inp.div_(scales.view(1, -1).to(inp.device)) - - prev_op.cpu() - for layer in layers: - layer.cpu() - scales.cpu() - - -@torch.no_grad() -def apply_clip(module, clip_list): - """ - Applies element-wise clipping to the weight of a specific layer within a given module. - - Args: - module (nn.Module): The module containing the layer to be clipped. - clip_list (List[Tuple[str, torch.Tensor]]): A list of tuples containing: - * name (str): The name of the layer to be clipped, relative to the root of the module. - * max_val (torch.Tensor): A 1D or 2D tensor defining the upper bound for each element of the layer's weight. - """ - for name, max_val in clip_list: - layer = get_op_by_name(module, name) - layer.cuda() - max_val = max_val.to(layer.weight.device) - org_shape = layer.weight.shape - layer.weight.data = layer.weight.data.reshape(*max_val.shape[:2], -1) - layer.weight.data = torch.clamp(layer.weight.data, -max_val, max_val) - layer.weight.data = layer.weight.data.reshape(org_shape) - layer.cpu() - - -def add_scale_weights(model_path, scale_path, tmp_path): - """ - Adds pre-computed Activation Weight Quantization (AWQ) results to a model, - including scaling factors and clipping bounds. - - Args: - model_path (str): Path to the pre-trained model to be equipped with AWQ. - scale_path (str): Path to the AWQ scale factors (.pt file). - tmp_path (str): Path to the temporary directory where the equipped model will be saved. - """ - config = AutoConfig.from_pretrained(model_path, trust_remote_code=True) - model = AutoModelForCausalLM.from_pretrained( - model_path, config=config, trust_remote_code=True - ) - model.eval() - awq_results = torch.load(str(scale_path), map_location="cpu") - apply_scale(model, awq_results["scale"]) - apply_clip(model, awq_results["clip"]) - model.save_pretrained(str(tmp_path)) - os.system(f"cp {str(model_path)}/tokenizer* {str(tmp_path)}") diff --git a/awq-py/requirements.txt b/awq-py/requirements.txt deleted file mode 100644 index 991896116..000000000 --- a/awq-py/requirements.txt +++ /dev/null @@ -1,2 +0,0 @@ -torch>=2.1.1 -transformers>=4.32.0