mirror of
https://github.com/ggerganov/llama.cpp.git
synced 2025-01-11 21:10:24 +01:00
Make loading weights 10-100x faster
This is a breaking change that's going to give you three benefits: 1. Your inference commands should load 100x faster 2. You may be able to safely load models 2x larger 3. You can run many concurrent inference processes This was accomplished by changing the file format so we can mmap() weights directly into memory without having to read() or copy them thereby ensuring the kernel can make its file cache pages directly accessible to our inference processes; and secondly, that the file cache pages are much less likely to get evicted (which would force loads to hit disk) because they're no longer competing with memory pages that were needlessly created by gigabytes of standard i/o. The new file format supports single-file models like LLaMA 7b, and it also supports multi-file models like LLaMA 13B. Our Python tool now merges the foo.1, foo.2, etc. files back into a single file so that the C++ code which maps it doesn't need to reshape data every time. That's made llama.cpp so much simpler. Much of its load code has now been deleted. Furthermore, this change ensures that tensors are aligned properly on a 32-byte boundary. That opens the door to seeing if we can get additional performance gains on some microprocessors, by using ops that require memory alignment. Lastly note that both POSIX and the Windows platform are supported Fixes #91
This commit is contained in:
parent
a017390358
commit
78ca9838ee
1
.gitignore
vendored
1
.gitignore
vendored
@ -22,6 +22,7 @@ models/*
|
|||||||
/result
|
/result
|
||||||
/perplexity
|
/perplexity
|
||||||
/embedding
|
/embedding
|
||||||
|
/Pipfile
|
||||||
|
|
||||||
arm_neon.h
|
arm_neon.h
|
||||||
compile_commands.json
|
compile_commands.json
|
||||||
|
@ -84,6 +84,11 @@ def read_variables(fin):
|
|||||||
shape = shape[::-1]
|
shape = shape[::-1]
|
||||||
name = fin.read(name_length).decode("utf-8")
|
name = fin.read(name_length).decode("utf-8")
|
||||||
|
|
||||||
|
# ensure tensor data is aligned
|
||||||
|
tensor_data_offset = fin.tell()
|
||||||
|
tensor_data_offset = (tensor_data_offset + 31) & -32
|
||||||
|
fin.seek(tensor_data_offset)
|
||||||
|
|
||||||
if ftype_cur == 2:
|
if ftype_cur == 2:
|
||||||
# 4-bit quantized weights
|
# 4-bit quantized weights
|
||||||
dtype = np.uint8
|
dtype = np.uint8
|
||||||
|
@ -72,6 +72,11 @@ def write_header(shape, dst_name, ftype_cur):
|
|||||||
fout.write(struct.pack("i" * len(shape), *shape[::-1]))
|
fout.write(struct.pack("i" * len(shape), *shape[::-1]))
|
||||||
fout.write(sname)
|
fout.write(sname)
|
||||||
|
|
||||||
|
# ensure tensor data is aligned
|
||||||
|
tensor_data_offset = fout.tell()
|
||||||
|
tensor_data_offset = (tensor_data_offset + 31) & -32
|
||||||
|
fout.seek(tensor_data_offset)
|
||||||
|
|
||||||
def convert_non_q4(src_name, dst_name):
|
def convert_non_q4(src_name, dst_name):
|
||||||
v = model[src_name]
|
v = model[src_name]
|
||||||
shape = v.shape
|
shape = v.shape
|
||||||
|
@ -24,8 +24,57 @@ import torch
|
|||||||
|
|
||||||
from sentencepiece import SentencePieceProcessor
|
from sentencepiece import SentencePieceProcessor
|
||||||
|
|
||||||
def parse_args():
|
QK = 32
|
||||||
|
|
||||||
|
GGML_TYPE_Q4_0 = 0
|
||||||
|
GGML_TYPE_Q4_1 = 1
|
||||||
|
GGML_TYPE_I8 = 2
|
||||||
|
GGML_TYPE_I16 = 3
|
||||||
|
GGML_TYPE_I32 = 4
|
||||||
|
GGML_TYPE_F16 = 5
|
||||||
|
GGML_TYPE_F32 = 6
|
||||||
|
|
||||||
|
WTYPES = {
|
||||||
|
0: GGML_TYPE_F32,
|
||||||
|
1: GGML_TYPE_F16,
|
||||||
|
2: GGML_TYPE_Q4_0,
|
||||||
|
3: GGML_TYPE_Q4_1,
|
||||||
|
}
|
||||||
|
|
||||||
|
GGML_BLCK_SIZE = {
|
||||||
|
GGML_TYPE_Q4_0: QK,
|
||||||
|
GGML_TYPE_Q4_1: QK,
|
||||||
|
GGML_TYPE_I8: 1,
|
||||||
|
GGML_TYPE_I16: 1,
|
||||||
|
GGML_TYPE_I32: 1,
|
||||||
|
GGML_TYPE_F16: 1,
|
||||||
|
GGML_TYPE_F32: 1,
|
||||||
|
}
|
||||||
|
|
||||||
|
GGML_TYPE_SIZE = {
|
||||||
|
GGML_TYPE_Q4_0: 4 + QK/2,
|
||||||
|
GGML_TYPE_Q4_1: 4*2 + QK/2,
|
||||||
|
GGML_TYPE_I8: 1,
|
||||||
|
GGML_TYPE_I16: 2,
|
||||||
|
GGML_TYPE_I32: 4,
|
||||||
|
GGML_TYPE_F16: 2,
|
||||||
|
GGML_TYPE_F32: 4,
|
||||||
|
}
|
||||||
|
|
||||||
|
def ggml_nelements(shape):
|
||||||
|
r = 1
|
||||||
|
for i in shape:
|
||||||
|
r *= i
|
||||||
|
return r
|
||||||
|
|
||||||
|
def ggml_nbytes(shape, ftype):
|
||||||
|
x = ggml_nelements(shape)
|
||||||
|
t = WTYPES[ftype]
|
||||||
|
x *= GGML_TYPE_SIZE[t]
|
||||||
|
x //= GGML_BLCK_SIZE[t]
|
||||||
|
return x
|
||||||
|
|
||||||
|
def parse_args():
|
||||||
parser = argparse.ArgumentParser(description='Convert a LLaMA model checkpoint to a ggml compatible file')
|
parser = argparse.ArgumentParser(description='Convert a LLaMA model checkpoint to a ggml compatible file')
|
||||||
parser.add_argument('dir_model', help='directory containing the model checkpoint')
|
parser.add_argument('dir_model', help='directory containing the model checkpoint')
|
||||||
parser.add_argument('ftype', help='file type (0: float32, 1: float16)', type=int, choices=[0, 1], default=1)
|
parser.add_argument('ftype', help='file type (0: float32, 1: float16)', type=int, choices=[0, 1], default=1)
|
||||||
@ -33,7 +82,6 @@ def parse_args():
|
|||||||
return parser.parse_args()
|
return parser.parse_args()
|
||||||
|
|
||||||
def get_n_parts(dim):
|
def get_n_parts(dim):
|
||||||
|
|
||||||
mappings = {4096: 1, 5120: 2, 6656: 4, 8192: 8}
|
mappings = {4096: 1, 5120: 2, 6656: 4, 8192: 8}
|
||||||
n_parts = mappings.get(dim)
|
n_parts = mappings.get(dim)
|
||||||
if n_parts is None:
|
if n_parts is None:
|
||||||
@ -44,30 +92,24 @@ def get_n_parts(dim):
|
|||||||
return n_parts
|
return n_parts
|
||||||
|
|
||||||
def load_hparams_and_tokenizer(dir_model):
|
def load_hparams_and_tokenizer(dir_model):
|
||||||
|
|
||||||
# `dir_model` is something like `models/7B` or `models/7B/`.
|
# `dir_model` is something like `models/7B` or `models/7B/`.
|
||||||
# "tokenizer.model" is expected under model's parent dir.
|
# "tokenizer.model" is expected under model's parent dir.
|
||||||
# When `dir_model` is a symlink, f"{dir_model}/../tokenizer.model" would not be found.
|
# When `dir_model` is a symlink, f"{dir_model}/../tokenizer.model" would not be found.
|
||||||
# Let's use the model's parent dir directly.
|
# Let's use the model's parent dir directly.
|
||||||
model_parent_dir = os.path.dirname(os.path.normpath(dir_model))
|
model_parent_dir = os.path.dirname(os.path.normpath(dir_model))
|
||||||
|
|
||||||
fname_hparams = f"{dir_model}/params.json"
|
fname_hparams = f"{dir_model}/params.json"
|
||||||
fname_tokenizer = f"{model_parent_dir}/tokenizer.model"
|
fname_tokenizer = f"{model_parent_dir}/tokenizer.model"
|
||||||
|
|
||||||
with open(fname_hparams, "r") as f:
|
with open(fname_hparams, "r") as f:
|
||||||
hparams = json.load(f)
|
hparams = json.load(f)
|
||||||
print(hparams)
|
print(hparams)
|
||||||
|
|
||||||
tokenizer = SentencePieceProcessor(fname_tokenizer)
|
tokenizer = SentencePieceProcessor(fname_tokenizer)
|
||||||
hparams.update({"vocab_size": tokenizer.vocab_size()})
|
hparams.update({"vocab_size": tokenizer.vocab_size()})
|
||||||
|
|
||||||
return hparams, tokenizer
|
return hparams, tokenizer
|
||||||
|
|
||||||
def write_header(fout, hparams, ftype):
|
def write_header(fout, hparams, ftype):
|
||||||
|
|
||||||
keys = ["vocab_size", "dim", "multiple_of", "n_heads", "n_layers"]
|
keys = ["vocab_size", "dim", "multiple_of", "n_heads", "n_layers"]
|
||||||
values = [
|
values = [
|
||||||
0x67676d66, # magic: ggmf in hex
|
0x67676a74, # magic: ggjt in hex
|
||||||
1, # file version
|
1, # file version
|
||||||
*[hparams[key] for key in keys],
|
*[hparams[key] for key in keys],
|
||||||
hparams["dim"] // hparams["n_heads"], # rot (obsolete)
|
hparams["dim"] // hparams["n_heads"], # rot (obsolete)
|
||||||
@ -76,7 +118,6 @@ def write_header(fout, hparams, ftype):
|
|||||||
fout.write(struct.pack("i" * len(values), *values))
|
fout.write(struct.pack("i" * len(values), *values))
|
||||||
|
|
||||||
def write_tokens(fout, tokenizer):
|
def write_tokens(fout, tokenizer):
|
||||||
|
|
||||||
for i in range(tokenizer.vocab_size()):
|
for i in range(tokenizer.vocab_size()):
|
||||||
if tokenizer.is_unknown(i):
|
if tokenizer.is_unknown(i):
|
||||||
text = " \u2047 ".encode("utf-8")
|
text = " \u2047 ".encode("utf-8")
|
||||||
@ -95,85 +136,141 @@ def write_tokens(fout, tokenizer):
|
|||||||
fout.write(text)
|
fout.write(text)
|
||||||
fout.write(struct.pack("f", tokenizer.get_score(i)))
|
fout.write(struct.pack("f", tokenizer.get_score(i)))
|
||||||
|
|
||||||
def process_and_write_variables(fout, model, ftype):
|
def process_and_write_variables(fout, model, ftype, part_id, n_parts):
|
||||||
|
|
||||||
for name, datao in model.items():
|
for name, datao in model.items():
|
||||||
|
|
||||||
if name.endswith("freqs"):
|
if name.endswith("freqs"):
|
||||||
continue
|
continue
|
||||||
|
|
||||||
shape = datao.shape
|
# remove dimensions with a single element
|
||||||
|
|
||||||
print(f"Processing variable: {name} with shape: {shape} and type: {datao.dtype}")
|
|
||||||
|
|
||||||
data = datao.numpy().squeeze()
|
data = datao.numpy().squeeze()
|
||||||
n_dims = len(shape)
|
partshape = data.shape
|
||||||
|
n_dims = len(data.shape)
|
||||||
|
assert n_dims in (1, 2)
|
||||||
|
|
||||||
# default type is fp16
|
print(f"Processing variable: {name} with shape: {partshape} and type: {datao.dtype}")
|
||||||
|
|
||||||
|
# coerce single-dimensional tensors from float16 to float32
|
||||||
ftype_cur = 1
|
ftype_cur = 1
|
||||||
if ftype == 0 or n_dims == 1:
|
if ftype == 0 or n_dims == 1:
|
||||||
print(" Converting to float32")
|
print(" Converting to float32")
|
||||||
data = data.astype(np.float32)
|
data = data.astype(np.float32)
|
||||||
ftype_cur = 0
|
ftype_cur = 0
|
||||||
|
blck_size = GGML_BLCK_SIZE[WTYPES[ftype_cur]]
|
||||||
|
type_size = GGML_TYPE_SIZE[WTYPES[ftype_cur]]
|
||||||
|
|
||||||
# header
|
# determine dimension along which multipart tensor is sharded
|
||||||
|
#
|
||||||
|
# split_dim 0 regex:
|
||||||
|
# - output.*
|
||||||
|
# - layers.*.attention.wq.weight
|
||||||
|
# - layers.*.attention.wk.weight
|
||||||
|
# - layers.*.attention.wv.weight
|
||||||
|
# - layers.*.feed_forward.w1.weight
|
||||||
|
# - layers.*.feed_forward.w3.weight
|
||||||
|
#
|
||||||
|
# split_dim 1 regex:
|
||||||
|
# - tok_embeddings.*
|
||||||
|
# - layers.*.attention.wo.weight
|
||||||
|
# - layers.*.feed_forward.w2.weight
|
||||||
|
#
|
||||||
|
if n_dims > 1:
|
||||||
|
split_dim = 1
|
||||||
|
if "tok_embeddings" in name:
|
||||||
|
split_dim = 1
|
||||||
|
elif "layers" in name:
|
||||||
|
if "attention.wo.weight" in name:
|
||||||
|
split_dim = 1
|
||||||
|
elif "feed_forward.w2.weight" in name:
|
||||||
|
split_dim = 1
|
||||||
|
else:
|
||||||
|
split_dim = 0
|
||||||
|
elif "output" in name:
|
||||||
|
split_dim = 0
|
||||||
|
|
||||||
|
# output tensor header
|
||||||
|
fullshape = list(partshape)
|
||||||
|
if n_dims > 1:
|
||||||
|
fullshape[split_dim] *= n_parts
|
||||||
sname = name.encode('utf-8')
|
sname = name.encode('utf-8')
|
||||||
fout.write(struct.pack("iii", len(data.shape), len(sname), ftype_cur))
|
fout.write(struct.pack("iii", n_dims, len(sname), ftype_cur))
|
||||||
for dim in reversed(data.shape):
|
for dim in reversed(fullshape):
|
||||||
fout.write(struct.pack("i", dim))
|
fout.write(struct.pack("i", dim))
|
||||||
fout.write(sname)
|
fout.write(sname)
|
||||||
|
|
||||||
# data output to file
|
# ensure tensor data is aligned
|
||||||
data.tofile(fout)
|
tensor_data_offset = fout.tell()
|
||||||
|
while tensor_data_offset % QK != 0:
|
||||||
|
fout.write(struct.pack("B", 0))
|
||||||
|
tensor_data_offset += 1
|
||||||
|
|
||||||
|
# output unified mappable tensor data
|
||||||
|
if n_dims == 1 or n_parts == 1:
|
||||||
|
# copy tensor which we thankfully received in one piece
|
||||||
|
if part_id == 0:
|
||||||
|
data.tofile(fout)
|
||||||
|
elif split_dim == 0:
|
||||||
|
# reassemble multifile tensor containing some of the rows
|
||||||
|
rows_per_chunk = partshape[0]
|
||||||
|
current_row = part_id * rows_per_chunk
|
||||||
|
bytes_per_row = fullshape[1] // blck_size * type_size
|
||||||
|
offset = current_row * bytes_per_row
|
||||||
|
fout.seek(tensor_data_offset + offset)
|
||||||
|
data.tofile(fout)
|
||||||
|
elif split_dim == 1:
|
||||||
|
# reassemble multifile tensor containing some of the cols
|
||||||
|
cols_per_chunk = partshape[1]
|
||||||
|
current_col = part_id * cols_per_chunk
|
||||||
|
bytes_per_row = fullshape[1] // blck_size * type_size
|
||||||
|
offset_current_col = current_col // blck_size * type_size
|
||||||
|
for row in range(partshape[0]):
|
||||||
|
offset_row = row * bytes_per_row
|
||||||
|
offset = offset_row + offset_current_col
|
||||||
|
fout.seek(tensor_data_offset + offset)
|
||||||
|
data[row].tofile(fout)
|
||||||
|
|
||||||
|
# advance file position to next tensor
|
||||||
|
fout.seek(tensor_data_offset + ggml_nbytes(fullshape, ftype_cur))
|
||||||
|
|
||||||
def main():
|
def main():
|
||||||
|
|
||||||
args = parse_args()
|
args = parse_args()
|
||||||
dir_model = args.dir_model
|
dir_model = args.dir_model
|
||||||
ftype = args.ftype
|
ftype = args.ftype
|
||||||
ftype_str = ["f32", "f16"]
|
ftype_str = ["f32", "f16"]
|
||||||
|
|
||||||
hparams, tokenizer = load_hparams_and_tokenizer(dir_model)
|
hparams, tokenizer = load_hparams_and_tokenizer(dir_model)
|
||||||
|
|
||||||
print(args)
|
print(args)
|
||||||
|
|
||||||
# if only writing vocab to file
|
# if only writing vocab to file
|
||||||
if args.vocab_only:
|
if args.vocab_only:
|
||||||
|
|
||||||
fname_model = f"{dir_model}/consolidated.00.pth"
|
fname_model = f"{dir_model}/consolidated.00.pth"
|
||||||
fname_out = f"{dir_model}/ggml-vocab.bin"
|
fname_out = f"{dir_model}/ggml-vocab.bin"
|
||||||
|
|
||||||
print(f"Extracting only the vocab from '{fname_model}'\n")
|
print(f"Extracting only the vocab from '{fname_model}'\n")
|
||||||
|
model = torch.load(fname_model, map_location="cpu")
|
||||||
|
|
||||||
with open(fname_out, "wb") as fout:
|
with open(fname_out, "wb") as fout:
|
||||||
write_header(fout, hparams, ftype)
|
write_header(fout, hparams, ftype)
|
||||||
write_tokens(fout, tokenizer)
|
write_tokens(fout, tokenizer)
|
||||||
|
del model
|
||||||
|
|
||||||
print(f"Done. Output file: {fname_out}\n")
|
print(f"Done. Output file: {fname_out}\n")
|
||||||
|
|
||||||
return
|
return
|
||||||
|
|
||||||
n_parts = get_n_parts(hparams["dim"])
|
n_parts = get_n_parts(hparams["dim"])
|
||||||
|
fname_out = f"{dir_model}/ggml-model-{ftype_str[ftype]}.bin"
|
||||||
|
|
||||||
for p in range(n_parts):
|
# we output a single file for ggml
|
||||||
|
with open(fname_out, "wb") as fout:
|
||||||
|
write_header(fout, hparams, ftype)
|
||||||
|
write_tokens(fout, tokenizer)
|
||||||
|
offset_of_tensors = fout.tell()
|
||||||
|
# the tensors we load could be split across multiple files
|
||||||
|
for part_id in range(n_parts):
|
||||||
|
fout.seek(offset_of_tensors)
|
||||||
|
print(f"Processing part {part_id+1} of {n_parts}\n")
|
||||||
|
fname_model = f"{dir_model}/consolidated.0{part_id}.pth"
|
||||||
|
model = torch.load(fname_model, map_location="cpu")
|
||||||
|
process_and_write_variables(fout, model, ftype, part_id, n_parts)
|
||||||
|
del model
|
||||||
|
|
||||||
print(f"Processing part {p+1} of {n_parts}\n")
|
print(f"Done. Output file: {fname_out}\n")
|
||||||
|
|
||||||
fname_model = f"{dir_model}/consolidated.0{p}.pth"
|
|
||||||
fname_out = f"{dir_model}/ggml-model-{ftype_str[ftype]}.bin{'' if p == 0 else '.' + str(p)}"
|
|
||||||
|
|
||||||
model = torch.load(fname_model, map_location="cpu")
|
|
||||||
|
|
||||||
with open(fname_out, "wb") as fout:
|
|
||||||
write_header(fout, hparams, ftype)
|
|
||||||
write_tokens(fout, tokenizer)
|
|
||||||
process_and_write_variables(fout, model, ftype)
|
|
||||||
|
|
||||||
del model
|
|
||||||
|
|
||||||
print(f"Done. Output file: {fname_out}, (part {p})\n")
|
|
||||||
|
|
||||||
if __name__ == "__main__":
|
if __name__ == "__main__":
|
||||||
main()
|
main()
|
||||||
|
503
llama.cpp
503
llama.cpp
@ -12,17 +12,19 @@
|
|||||||
#include <cassert>
|
#include <cassert>
|
||||||
#include <cstring>
|
#include <cstring>
|
||||||
|
|
||||||
// mmap
|
#if defined(_WIN32) && !defined(_POSIX_MAPPED_FILES)
|
||||||
#if defined (__unix__) || defined (__APPLE__)
|
#define WIN32_LEAN_AND_MEAN
|
||||||
# include <sys/mman.h>
|
#include <Windows.h>
|
||||||
# include <fcntl.h>
|
#else
|
||||||
# include <unistd.h>
|
#include <sys/types.h>
|
||||||
#elif defined(_WIN32)
|
#include <sys/mman.h>
|
||||||
# define WIN32_LEAN_AND_MEAN
|
#include <unistd.h>
|
||||||
# include <Windows.h>
|
#include <fcntl.h>
|
||||||
//#include <Memoryapi.h>
|
|
||||||
#endif
|
#endif
|
||||||
|
|
||||||
|
#define Min(X, Y) ((Y) > (X) ? (X) : (Y))
|
||||||
|
#define Max(X, Y) ((Y) < (X) ? (X) : (Y))
|
||||||
|
|
||||||
#define LLAMA_USE_SCRATCH
|
#define LLAMA_USE_SCRATCH
|
||||||
#define LLAMA_MAX_SCRATCH_BUFFERS 16
|
#define LLAMA_MAX_SCRATCH_BUFFERS 16
|
||||||
|
|
||||||
@ -155,7 +157,7 @@ struct llama_model {
|
|||||||
|
|
||||||
// model memory mapped file
|
// model memory mapped file
|
||||||
void * mm_addr = NULL;
|
void * mm_addr = NULL;
|
||||||
size_t mm_length = 0;
|
uint64_t mm_length = 0;
|
||||||
|
|
||||||
// tensors
|
// tensors
|
||||||
int n_loaded;
|
int n_loaded;
|
||||||
@ -180,6 +182,7 @@ struct llama_context {
|
|||||||
|
|
||||||
int64_t t_load_us = 0;
|
int64_t t_load_us = 0;
|
||||||
int64_t t_start_us = 0;
|
int64_t t_start_us = 0;
|
||||||
|
bool has_evaluated_once = false;
|
||||||
|
|
||||||
int64_t t_sample_us = 0;
|
int64_t t_sample_us = 0;
|
||||||
int64_t t_eval_us = 0;
|
int64_t t_eval_us = 0;
|
||||||
@ -221,7 +224,7 @@ struct llama_context {
|
|||||||
}
|
}
|
||||||
|
|
||||||
if (buf_last >= 0) {
|
if (buf_last >= 0) {
|
||||||
buf_max_size[buf_last] = std::max(buf_max_size[buf_last], last_size);
|
buf_max_size[buf_last] = Max(buf_max_size[buf_last], last_size);
|
||||||
}
|
}
|
||||||
|
|
||||||
buf_last = i;
|
buf_last = i;
|
||||||
@ -304,59 +307,57 @@ struct llama_context_params llama_context_default_params() {
|
|||||||
// model loading
|
// model loading
|
||||||
//
|
//
|
||||||
|
|
||||||
static void mmap_file(const char* fname, void * &mm_addr, size_t &mm_length) {
|
static void *mmap_file(const char *fname, uint64_t *mm_length) {
|
||||||
#if defined(MAP_FAILED)
|
#if defined(_WIN32) && !defined(_POSIX_MAPPED_FILES)
|
||||||
// POSIX
|
HANDLE hFile = CreateFileA(fname,
|
||||||
int fd = open(fname, O_RDONLY);
|
GENERIC_READ,
|
||||||
mm_length = lseek(fd, 0, SEEK_END);
|
FILE_SHARE_READ | FILE_SHARE_WRITE | FILE_SHARE_DELETE,
|
||||||
mm_addr = mmap(NULL, mm_length, PROT_READ, MAP_SHARED, fd, 0);
|
NULL,
|
||||||
close(fd);
|
OPEN_EXISTING,
|
||||||
if (mm_addr == MAP_FAILED) {
|
FILE_ATTRIBUTE_NORMAL | FILE_ATTRIBUTE_NOT_CONTENT_INDEXED,
|
||||||
perror("mmap failed");
|
NULL);
|
||||||
mm_addr = NULL;
|
if (hFile == INVALID_HANDLE_VALUE) return 0;
|
||||||
mm_length = 0;
|
|
||||||
}
|
|
||||||
#elif defined(_WIN32)
|
|
||||||
mm_addr = NULL;
|
|
||||||
|
|
||||||
HANDLE hFile = CreateFileA(filename, GENERIC_READ, FILE_SHARE_READ, NULL, OPEN_EXISTING, FILE_ATTRIBUTE_NORMAL, NULL);
|
|
||||||
if (hFile == INVALID_HANDLE_VALUE) {
|
|
||||||
return;
|
|
||||||
}
|
|
||||||
|
|
||||||
// not really necessary
|
|
||||||
LARGE_INTEGER fileSize;
|
LARGE_INTEGER fileSize;
|
||||||
|
fileSize.QuadPart = -1;
|
||||||
GetFileSizeEx(hFile, &fileSize);
|
GetFileSizeEx(hFile, &fileSize);
|
||||||
mm_length = fileSize;
|
int64_t length = fileSize.QuadPart;
|
||||||
|
|
||||||
HANDLE hMapping = CreateFileMappingA(hFile, NULL, PAGE_READONLY, 0, 0, NULL);
|
HANDLE hMapping = CreateFileMappingA(hFile, NULL, PAGE_READONLY, 0, 0, NULL);
|
||||||
CloseHandle(hFile);
|
CloseHandle(hFile);
|
||||||
|
if (!hMapping) return 0;
|
||||||
if (hMapping == NULL) {
|
void *addr = MapViewOfFile(hMapping, FILE_MAP_READ, 0, 0, 0);
|
||||||
return;
|
|
||||||
}
|
|
||||||
|
|
||||||
mm_addr = MapViewOfFile(hMapping, FILE_MAP_READ, 0, 0, 0);
|
|
||||||
CloseHandle(hMapping);
|
CloseHandle(hMapping);
|
||||||
|
if (!addr) return 0;
|
||||||
#else
|
#else
|
||||||
mm_addr = NULL;
|
int fd = open(fname, O_RDONLY);
|
||||||
mm_length = 0;
|
if (fd == -1) return 0;
|
||||||
(void)(fname); // suppress warnings
|
int64_t length = lseek(fd, 0, SEEK_END);
|
||||||
|
void *addr = mmap(NULL, length, PROT_READ, MAP_SHARED, fd, 0);
|
||||||
|
close(fd);
|
||||||
|
if (addr == MAP_FAILED) return 0;
|
||||||
#endif
|
#endif
|
||||||
|
*mm_length = length;
|
||||||
|
return addr;
|
||||||
}
|
}
|
||||||
|
|
||||||
static void munmap_file(void * addr, size_t length) {
|
static void munmap_file(void * addr, size_t length) {
|
||||||
#if defined(MAP_FAILED)
|
#if defined(_WIN32) && !defined(_POSIX_MAPPED_FILES)
|
||||||
// POSIX
|
|
||||||
munmap(addr, length);
|
|
||||||
#elif defined(_WIN32)
|
|
||||||
UnmapViewOfFile(addr);
|
UnmapViewOfFile(addr);
|
||||||
#else
|
#else
|
||||||
(void)(addr); // suppress warnings
|
munmap(addr, length);
|
||||||
(void)(length);
|
|
||||||
#endif
|
#endif
|
||||||
}
|
}
|
||||||
|
|
||||||
|
static bool report_bad_magic(const char *path) {
|
||||||
|
fprintf(stderr,
|
||||||
|
"%s: invalid model file (bad magic)\n"
|
||||||
|
"you most likely need to regenerate your ggml files\n"
|
||||||
|
"the benefit is you'll get 10-100x faster load times\n"
|
||||||
|
"see https://github.com/ggerganov/llama.cpp/issues/91\n"
|
||||||
|
"use convert-pth-to-ggml.py on your llama model files\n",
|
||||||
|
path);
|
||||||
|
return false;
|
||||||
|
}
|
||||||
|
|
||||||
static bool llama_model_load(
|
static bool llama_model_load(
|
||||||
const std::string & fname,
|
const std::string & fname,
|
||||||
llama_context & lctx,
|
llama_context & lctx,
|
||||||
@ -368,23 +369,24 @@ static bool llama_model_load(
|
|||||||
void *progress_callback_user_data) {
|
void *progress_callback_user_data) {
|
||||||
fprintf(stderr, "%s: loading model from '%s' - please wait ...\n", __func__, fname.c_str());
|
fprintf(stderr, "%s: loading model from '%s' - please wait ...\n", __func__, fname.c_str());
|
||||||
|
|
||||||
const int64_t t_start_us = ggml_time_us();
|
lctx.t_start_us = ggml_time_us();
|
||||||
|
|
||||||
lctx.t_start_us = t_start_us;
|
|
||||||
|
|
||||||
// TODO: this could probably be smaller when using mmap
|
|
||||||
std::vector<char> f_buf(1024*1024);
|
|
||||||
|
|
||||||
auto & model = lctx.model;
|
auto & model = lctx.model;
|
||||||
auto & vocab = lctx.vocab;
|
auto & vocab = lctx.vocab;
|
||||||
|
|
||||||
auto fin = std::ifstream(fname, std::ios::binary);
|
auto fin = std::ifstream(fname, std::ios::binary);
|
||||||
fin.rdbuf()->pubsetbuf(f_buf.data(), f_buf.size());
|
|
||||||
if (!fin) {
|
if (!fin) {
|
||||||
fprintf(stderr, "%s: failed to open '%s'\n", __func__, fname.c_str());
|
fprintf(stderr, "%s: failed to open '%s'\n", __func__, fname.c_str());
|
||||||
return false;
|
return false;
|
||||||
}
|
}
|
||||||
|
|
||||||
|
std::vector<char> f_buf(1024*1024);
|
||||||
|
fin.rdbuf()->pubsetbuf(f_buf.data(), f_buf.size());
|
||||||
|
|
||||||
|
fin.seekg(0, fin.end);
|
||||||
|
const size_t file_size = fin.tellg();
|
||||||
|
fin.seekg(0);
|
||||||
|
|
||||||
// verify magic
|
// verify magic
|
||||||
{
|
{
|
||||||
uint32_t magic;
|
uint32_t magic;
|
||||||
@ -395,8 +397,7 @@ static bool llama_model_load(
|
|||||||
return false;
|
return false;
|
||||||
}
|
}
|
||||||
if (magic != LLAMA_FILE_MAGIC) {
|
if (magic != LLAMA_FILE_MAGIC) {
|
||||||
fprintf(stderr, "%s: invalid model file '%s' (bad magic)\n", __func__, fname.c_str());
|
return report_bad_magic(fname.c_str());
|
||||||
return false;
|
|
||||||
}
|
}
|
||||||
|
|
||||||
uint32_t format_version;
|
uint32_t format_version;
|
||||||
@ -519,54 +520,24 @@ static bool llama_model_load(
|
|||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
bool use_mmap = (n_parts == 1);
|
// map model into memory
|
||||||
|
char *mm_addr = NULL;
|
||||||
// try to memory map the model file
|
model.mm_addr = mmap_file(fname.c_str(), &model.mm_length);
|
||||||
void * mm_addr = NULL;
|
if (model.mm_addr == NULL) {
|
||||||
if (use_mmap) {
|
fprintf(stderr, "%s: failed to mmap '%s'\n", __func__, fname.c_str());
|
||||||
mmap_file(fname.c_str(), model.mm_addr, model.mm_length);
|
return false;
|
||||||
if (model.mm_addr == NULL) {
|
|
||||||
use_mmap = false;
|
|
||||||
}
|
|
||||||
else {
|
|
||||||
mm_addr = model.mm_addr;
|
|
||||||
}
|
|
||||||
}
|
}
|
||||||
|
mm_addr = (char *)model.mm_addr;
|
||||||
|
fprintf(stderr, "%s: ggml map size = %6.2f MB\n", __func__, model.mm_length/(1024.0*1024.0));
|
||||||
|
|
||||||
auto & ctx = model.ctx;
|
auto & ctx = model.ctx;
|
||||||
|
|
||||||
size_t ctx_size = 0;
|
size_t ctx_size = 0;
|
||||||
{
|
{
|
||||||
const auto & hparams = model.hparams;
|
const auto &hparams = model.hparams;
|
||||||
|
|
||||||
const int n_embd = hparams.n_embd;
|
|
||||||
const int n_layer = hparams.n_layer;
|
const int n_layer = hparams.n_layer;
|
||||||
const int n_vocab = hparams.n_vocab;
|
|
||||||
|
|
||||||
if (!use_mmap) {
|
|
||||||
ctx_size += n_embd*n_vocab*ggml_type_sizef(vtype); // tok_embeddings
|
|
||||||
|
|
||||||
ctx_size += n_embd*ggml_type_sizef(GGML_TYPE_F32); // norm
|
|
||||||
|
|
||||||
ctx_size += n_embd*n_vocab*ggml_type_sizef(vtype); // output
|
|
||||||
|
|
||||||
ctx_size += n_layer*(n_embd*ggml_type_sizef(GGML_TYPE_F32)); // attention_norm
|
|
||||||
|
|
||||||
ctx_size += n_layer*(n_embd*n_embd*ggml_type_sizef(wtype)); // wq
|
|
||||||
ctx_size += n_layer*(n_embd*n_embd*ggml_type_sizef(wtype)); // wk
|
|
||||||
ctx_size += n_layer*(n_embd*n_embd*ggml_type_sizef(wtype)); // wv
|
|
||||||
ctx_size += n_layer*(n_embd*n_embd*ggml_type_sizef(wtype)); // wo
|
|
||||||
|
|
||||||
ctx_size += n_layer*(n_embd*ggml_type_sizef(GGML_TYPE_F32)); // ffn_norm
|
|
||||||
|
|
||||||
ctx_size += n_layer*(n_ff*n_embd*ggml_type_sizef(wtype)); // w1
|
|
||||||
ctx_size += n_layer*(n_ff*n_embd*ggml_type_sizef(wtype)); // w2
|
|
||||||
ctx_size += n_layer*(n_ff*n_embd*ggml_type_sizef(wtype)); // w3
|
|
||||||
}
|
|
||||||
|
|
||||||
ctx_size += (5 + 10*n_layer)*256; // object overhead
|
ctx_size += (5 + 10*n_layer)*256; // object overhead
|
||||||
|
fprintf(stderr, "%s: ggml ctx size = %6.2f KB\n", __func__, ctx_size/1024.0);
|
||||||
fprintf(stderr, "%s: ggml ctx size = %6.2f MB\n", __func__, ctx_size/(1024.0*1024.0));
|
|
||||||
}
|
}
|
||||||
|
|
||||||
// print memory requirements
|
// print memory requirements
|
||||||
@ -576,6 +547,7 @@ static bool llama_model_load(
|
|||||||
// this is the total memory required to run the inference
|
// this is the total memory required to run the inference
|
||||||
const size_t mem_required =
|
const size_t mem_required =
|
||||||
ctx_size +
|
ctx_size +
|
||||||
|
model.mm_length +
|
||||||
MEM_REQ_SCRATCH0.at(model.type) +
|
MEM_REQ_SCRATCH0.at(model.type) +
|
||||||
MEM_REQ_SCRATCH1.at(model.type) +
|
MEM_REQ_SCRATCH1.at(model.type) +
|
||||||
MEM_REQ_EVAL.at (model.type);
|
MEM_REQ_EVAL.at (model.type);
|
||||||
@ -595,7 +567,7 @@ static bool llama_model_load(
|
|||||||
struct ggml_init_params params = {
|
struct ggml_init_params params = {
|
||||||
/*.mem_size =*/ lctx.model.buf.size(),
|
/*.mem_size =*/ lctx.model.buf.size(),
|
||||||
/*.mem_buffer =*/ lctx.model.buf.data(),
|
/*.mem_buffer =*/ lctx.model.buf.data(),
|
||||||
/*.no_alloc =*/ use_mmap,
|
/*.no_alloc =*/ true,
|
||||||
};
|
};
|
||||||
|
|
||||||
model.ctx = ggml_init(params);
|
model.ctx = ggml_init(params);
|
||||||
@ -658,241 +630,106 @@ static bool llama_model_load(
|
|||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
const size_t file_offset = fin.tellg();
|
|
||||||
|
|
||||||
fin.close();
|
|
||||||
|
|
||||||
std::vector<uint8_t> tmp;
|
std::vector<uint8_t> tmp;
|
||||||
|
|
||||||
if (progress_callback) {
|
if (progress_callback) {
|
||||||
progress_callback(0.0, progress_callback_user_data);
|
progress_callback(0.0, progress_callback_user_data);
|
||||||
}
|
}
|
||||||
|
|
||||||
for (int i = 0; i < n_parts; ++i) {
|
fprintf(stderr, "%s: loading tensors from '%s'\n", __func__, fname.c_str());
|
||||||
const int part_id = i;
|
|
||||||
//const int part_id = n_parts - i - 1;
|
|
||||||
|
|
||||||
std::string fname_part = fname;
|
// load weights
|
||||||
if (i > 0) {
|
{
|
||||||
fname_part += "." + std::to_string(i);
|
size_t total_size = 0;
|
||||||
}
|
model.n_loaded = 0;
|
||||||
|
|
||||||
fprintf(stderr, "%s: loading model part %d/%d from '%s'%s\n", __func__, i+1, n_parts, fname_part.c_str(), use_mmap ? " (memory mapped)" : "");
|
while (true) {
|
||||||
|
int32_t n_dims;
|
||||||
|
int32_t length;
|
||||||
|
int32_t ftype;
|
||||||
|
|
||||||
fin = std::ifstream(fname_part, std::ios::binary);
|
fin.read(reinterpret_cast<char *>(&n_dims), sizeof(n_dims));
|
||||||
fin.rdbuf()->pubsetbuf(f_buf.data(), f_buf.size());
|
fin.read(reinterpret_cast<char *>(&length), sizeof(length));
|
||||||
|
fin.read(reinterpret_cast<char *>(&ftype), sizeof(ftype));
|
||||||
|
|
||||||
fin.seekg(0, fin.end);
|
if (fin.eof()) {
|
||||||
const size_t file_size = fin.tellg();
|
break;
|
||||||
|
|
||||||
fin.seekg(file_offset);
|
|
||||||
|
|
||||||
// load weights
|
|
||||||
{
|
|
||||||
size_t total_size = 0;
|
|
||||||
|
|
||||||
model.n_loaded = 0;
|
|
||||||
|
|
||||||
fprintf(stderr, "%s: ", __func__);
|
|
||||||
|
|
||||||
while (true) {
|
|
||||||
int32_t n_dims;
|
|
||||||
int32_t length;
|
|
||||||
int32_t ftype;
|
|
||||||
|
|
||||||
fin.read(reinterpret_cast<char *>(&n_dims), sizeof(n_dims));
|
|
||||||
fin.read(reinterpret_cast<char *>(&length), sizeof(length));
|
|
||||||
fin.read(reinterpret_cast<char *>(&ftype), sizeof(ftype));
|
|
||||||
|
|
||||||
if (fin.eof()) {
|
|
||||||
break;
|
|
||||||
}
|
|
||||||
|
|
||||||
int32_t nelements = 1;
|
|
||||||
int32_t ne[2] = { 1, 1 };
|
|
||||||
for (int i = 0; i < n_dims; ++i) {
|
|
||||||
fin.read(reinterpret_cast<char *>(&ne[i]), sizeof(ne[i]));
|
|
||||||
nelements *= ne[i];
|
|
||||||
}
|
|
||||||
|
|
||||||
std::string name(length, 0);
|
|
||||||
fin.read(&name[0], length);
|
|
||||||
|
|
||||||
if (model.tensors.find(name.data()) == model.tensors.end()) {
|
|
||||||
fprintf(stderr, "%s: unknown tensor '%s' in model file\n", __func__, name.data());
|
|
||||||
return false;
|
|
||||||
}
|
|
||||||
|
|
||||||
// split_type = 0: split by columns
|
|
||||||
// split_type = 1: split by rows
|
|
||||||
int split_type = 0;
|
|
||||||
|
|
||||||
// split_type = 0:
|
|
||||||
// regex:
|
|
||||||
// - tok_embeddings.*
|
|
||||||
// - layers.*.attention.wo.weight
|
|
||||||
// - layers.*.feed_forward.w2.weight
|
|
||||||
|
|
||||||
// split_type = 1:
|
|
||||||
// regex:
|
|
||||||
// - output.*
|
|
||||||
// - layers.*.attention.wq.weight
|
|
||||||
// - layers.*.attention.wk.weight
|
|
||||||
// - layers.*.attention.wv.weight
|
|
||||||
// - layers.*.feed_forward.w1.weight
|
|
||||||
// - layers.*.feed_forward.w3.weight
|
|
||||||
if (name.find("tok_embeddings") != std::string::npos) {
|
|
||||||
split_type = 0;
|
|
||||||
} else if (name.find("layers") != std::string::npos) {
|
|
||||||
if (name.find("attention.wo.weight") != std::string::npos) {
|
|
||||||
split_type = 0;
|
|
||||||
} else if (name.find("feed_forward.w2.weight") != std::string::npos) {
|
|
||||||
split_type = 0;
|
|
||||||
} else {
|
|
||||||
split_type = 1;
|
|
||||||
}
|
|
||||||
} else if (name.find("output") != std::string::npos) {
|
|
||||||
split_type = 1;
|
|
||||||
}
|
|
||||||
|
|
||||||
auto tensor = model.tensors[name.data()];
|
|
||||||
|
|
||||||
if (n_dims == 1) {
|
|
||||||
if (ggml_nelements(tensor) != nelements) {
|
|
||||||
fprintf(stderr, "%s: tensor '%s' has wrong size in model file\n", __func__, name.data());
|
|
||||||
return false;
|
|
||||||
}
|
|
||||||
} else {
|
|
||||||
if (ggml_nelements(tensor)/n_parts != nelements) {
|
|
||||||
fprintf(stderr, "%s: tensor '%s' has wrong size in model file\n", __func__, name.data());
|
|
||||||
return false;
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
if (n_dims == 1) {
|
|
||||||
if (tensor->ne[0] != ne[0] || tensor->ne[1] != ne[1]) {
|
|
||||||
fprintf(stderr, "%s: tensor '%s' has wrong shape in model file: got [%d, %d], expected [%d, %d]\n",
|
|
||||||
__func__, name.data(), tensor->ne[0], tensor->ne[1], ne[0], ne[1]);
|
|
||||||
return false;
|
|
||||||
}
|
|
||||||
} else {
|
|
||||||
if (split_type == 0) {
|
|
||||||
if (tensor->ne[0]/n_parts != ne[0] || tensor->ne[1] != ne[1]) {
|
|
||||||
fprintf(stderr, "%s: tensor '%s' has wrong shape in model file: got [%d, %d], expected [%d, %d]\n",
|
|
||||||
__func__, name.data(), tensor->ne[0]/n_parts, tensor->ne[1], ne[0], ne[1]);
|
|
||||||
return false;
|
|
||||||
}
|
|
||||||
} else {
|
|
||||||
if (tensor->ne[0] != ne[0] || tensor->ne[1]/n_parts != ne[1]) {
|
|
||||||
fprintf(stderr, "%s: tensor '%s' has wrong shape in model file: got [%d, %d], expected [%d, %d]\n",
|
|
||||||
__func__, name.data(), tensor->ne[0], tensor->ne[1]/n_parts, ne[0], ne[1]);
|
|
||||||
return false;
|
|
||||||
}
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
if (0) {
|
|
||||||
static const char * ftype_str[] = { "f32", "f16", "q4_0", "q4_1", };
|
|
||||||
fprintf(stderr, "%24s - [%5d, %5d], type = %6s, split = %d\n", name.data(), ne[0], ne[1], ftype_str[ftype], split_type);
|
|
||||||
}
|
|
||||||
|
|
||||||
size_t bpe = 0;
|
|
||||||
|
|
||||||
switch (ftype) {
|
|
||||||
case 0: bpe = ggml_type_size(GGML_TYPE_F32); break;
|
|
||||||
case 1: bpe = ggml_type_size(GGML_TYPE_F16); break;
|
|
||||||
case 2: bpe = ggml_type_size(GGML_TYPE_Q4_0); assert(ne[0] % 64 == 0); break;
|
|
||||||
case 3: bpe = ggml_type_size(GGML_TYPE_Q4_1); assert(ne[0] % 64 == 0); break;
|
|
||||||
default:
|
|
||||||
{
|
|
||||||
fprintf(stderr, "%s: unknown ftype %d in model file\n", __func__, ftype);
|
|
||||||
return false;
|
|
||||||
}
|
|
||||||
};
|
|
||||||
|
|
||||||
if (n_dims == 1 || n_parts == 1) {
|
|
||||||
if ((nelements*bpe)/ggml_blck_size(tensor->type) != ggml_nbytes(tensor)) {
|
|
||||||
fprintf(stderr, "%s: tensor '%s' has wrong size in model file: got %zu, expected %zu\n",
|
|
||||||
__func__, name.data(), ggml_nbytes(tensor), nelements*bpe);
|
|
||||||
return false;
|
|
||||||
}
|
|
||||||
|
|
||||||
if (part_id == 0) {
|
|
||||||
if (mm_addr) {
|
|
||||||
off_t offset = fin.tellg();
|
|
||||||
tensor->data = (char *) mm_addr + offset;
|
|
||||||
fin.seekg(ggml_nbytes(tensor), std::ios::cur);
|
|
||||||
}
|
|
||||||
else {
|
|
||||||
fin.read(reinterpret_cast<char *>(tensor->data), ggml_nbytes(tensor));
|
|
||||||
}
|
|
||||||
} else {
|
|
||||||
fin.seekg(ggml_nbytes(tensor), std::ios::cur);
|
|
||||||
}
|
|
||||||
|
|
||||||
total_size += ggml_nbytes(tensor);
|
|
||||||
} else {
|
|
||||||
if ((nelements*bpe)/ggml_blck_size(tensor->type) != ggml_nbytes(tensor)/n_parts) {
|
|
||||||
fprintf(stderr, "%s: tensor '%s' has wrong size in model file: got %zu, expected %zu\n",
|
|
||||||
__func__, name.data(), ggml_nbytes(tensor)/n_parts, nelements*bpe);
|
|
||||||
return false;
|
|
||||||
}
|
|
||||||
|
|
||||||
if (split_type == 0) {
|
|
||||||
const int np0 = ne[0];
|
|
||||||
|
|
||||||
const size_t row_size = (tensor->ne[0]/ggml_blck_size(tensor->type))*ggml_type_size(tensor->type);
|
|
||||||
assert(row_size == tensor->nb[1]);
|
|
||||||
|
|
||||||
for (int i1 = 0; i1 < ne[1]; ++i1) {
|
|
||||||
const size_t offset_row = i1*row_size;
|
|
||||||
const size_t offset = offset_row + ((part_id*np0)/ggml_blck_size(tensor->type))*ggml_type_size(tensor->type);
|
|
||||||
fin.read(reinterpret_cast<char *>(tensor->data) + offset, row_size/n_parts);
|
|
||||||
}
|
|
||||||
} else {
|
|
||||||
const int np1 = ne[1];
|
|
||||||
|
|
||||||
const size_t row_size = (tensor->ne[0]/ggml_blck_size(tensor->type))*ggml_type_size(tensor->type);
|
|
||||||
|
|
||||||
for (int i1 = 0; i1 < ne[1]; ++i1) {
|
|
||||||
const size_t offset_row = (i1 + part_id*np1)*row_size;
|
|
||||||
fin.read(reinterpret_cast<char *>(tensor->data) + offset_row, row_size);
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
total_size += ggml_nbytes(tensor)/n_parts;
|
|
||||||
}
|
|
||||||
|
|
||||||
//fprintf(stderr, "%42s - [%5d, %5d], type = %6s, %6.2f MB\n", name.data(), ne[0], ne[1], ftype == 0 ? "float" : "f16", ggml_nbytes(tensor)/1024.0/1024.0);
|
|
||||||
model.n_loaded++;
|
|
||||||
|
|
||||||
// progress
|
|
||||||
if (progress_callback) {
|
|
||||||
float current_file_progress = float(size_t(fin.tellg()) - file_offset) / float(file_size - file_offset);
|
|
||||||
float current_progress = (float(i) + current_file_progress) / float(n_parts);
|
|
||||||
progress_callback(current_progress, progress_callback_user_data);
|
|
||||||
}
|
|
||||||
if (model.n_loaded % 8 == 0) {
|
|
||||||
fprintf(stderr, ".");
|
|
||||||
fflush(stderr);
|
|
||||||
}
|
|
||||||
}
|
}
|
||||||
|
|
||||||
fprintf(stderr, " done\n");
|
int32_t nelements = 1;
|
||||||
|
int32_t ne[2] = { 1, 1 };
|
||||||
|
for (int i = 0; i < n_dims; ++i) {
|
||||||
|
fin.read(reinterpret_cast<char *>(&ne[i]), sizeof(ne[i]));
|
||||||
|
nelements *= ne[i];
|
||||||
|
}
|
||||||
|
|
||||||
fprintf(stderr, "%s: model size = %8.2f MB / num tensors = %d\n", __func__, total_size/1024.0/1024.0, model.n_loaded);
|
std::string name(length, 0);
|
||||||
if (model.n_loaded == 0) {
|
fin.read(&name[0], length);
|
||||||
fprintf(stderr, "%s: WARN no tensors loaded from model file - assuming empty model for testing\n", __func__);
|
|
||||||
} else if (model.n_loaded != (int) model.tensors.size()) {
|
if (model.tensors.find(name.data()) == model.tensors.end()) {
|
||||||
fprintf(stderr, "%s: ERROR not all tensors loaded from model file - expected %zu, got %d\n", __func__, model.tensors.size(), model.n_loaded);
|
fprintf(stderr, "%s: unknown tensor '%s' in model file\n", __func__, name.data());
|
||||||
return false;
|
return false;
|
||||||
}
|
}
|
||||||
|
|
||||||
|
auto tensor = model.tensors[name.data()];
|
||||||
|
|
||||||
|
if (ggml_nelements(tensor) != nelements) {
|
||||||
|
fprintf(stderr, "%s: tensor '%s' has wrong size in model file\n", __func__, name.data());
|
||||||
|
return false;
|
||||||
|
}
|
||||||
|
if (tensor->ne[0] != ne[0] || tensor->ne[1] != ne[1]) {
|
||||||
|
fprintf(stderr, "%s: tensor '%s' has wrong shape in model file: got [%d, %d], expected [%d, %d]\n",
|
||||||
|
__func__, name.data(), tensor->ne[0], tensor->ne[1], ne[0], ne[1]);
|
||||||
|
return false;
|
||||||
|
}
|
||||||
|
if (0) {
|
||||||
|
static const char * ftype_str[] = { "f32", "f16", "q4_0", "q4_1", };
|
||||||
|
fprintf(stderr, "%24s - [%5d, %5d], type = %6s\n", name.data(), ne[0], ne[1], ftype_str[ftype]);
|
||||||
|
}
|
||||||
|
|
||||||
|
switch (ftype) {
|
||||||
|
case 0: // f32
|
||||||
|
case 1: // f16
|
||||||
|
break;
|
||||||
|
case 2: // q4_0
|
||||||
|
case 3: // q4_1
|
||||||
|
assert(ne[0] % 64 == 0);
|
||||||
|
break;
|
||||||
|
default:
|
||||||
|
fprintf(stderr, "%s: unknown ftype %d in model file\n", __func__, ftype);
|
||||||
|
return false;
|
||||||
|
};
|
||||||
|
|
||||||
|
// load the tensor data into memory without copying or reading it
|
||||||
|
size_t offset = fin.tellg();
|
||||||
|
size_t tensor_data_size = ggml_nbytes(tensor);
|
||||||
|
offset = (offset + 31) & -32;
|
||||||
|
tensor->data = mm_addr + offset;
|
||||||
|
fin.seekg(offset + tensor_data_size);
|
||||||
|
total_size += tensor_data_size;
|
||||||
|
model.n_loaded++;
|
||||||
|
|
||||||
|
// progress
|
||||||
|
if (progress_callback) {
|
||||||
|
double current_progress = size_t(fin.tellg()) / double(file_size);
|
||||||
|
progress_callback(current_progress, progress_callback_user_data);
|
||||||
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
fin.close();
|
fin.close();
|
||||||
|
|
||||||
|
fprintf(stderr, "%s: model size = %8.2f MB / num tensors = %d\n", __func__, total_size/1024.0/1024.0, model.n_loaded);
|
||||||
|
if (model.n_loaded == 0) {
|
||||||
|
fprintf(stderr, "%s: WARN no tensors loaded from model file - assuming empty model for testing\n", __func__);
|
||||||
|
} else if (model.n_loaded != (int) model.tensors.size()) {
|
||||||
|
fprintf(stderr, "%s: ERROR not all tensors loaded from model file - expected %zu, got %d\n", __func__, model.tensors.size(), model.n_loaded);
|
||||||
|
return false;
|
||||||
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
lctx.t_load_us = ggml_time_us() - t_start_us;
|
// loading time will be recalculate after the first eval, so
|
||||||
|
// we take page faults deferred by mmap() into consideration
|
||||||
|
lctx.t_load_us = ggml_time_us() - lctx.t_start_us;
|
||||||
|
|
||||||
if (progress_callback) {
|
if (progress_callback) {
|
||||||
progress_callback(1.0, progress_callback_user_data);
|
progress_callback(1.0, progress_callback_user_data);
|
||||||
@ -1216,7 +1053,7 @@ struct llama_tokenizer {
|
|||||||
size_t offs = 0;
|
size_t offs = 0;
|
||||||
while (offs < text.size()) {
|
while (offs < text.size()) {
|
||||||
llama_sp_symbol sym;
|
llama_sp_symbol sym;
|
||||||
size_t char_len = std::min(text.size() - offs, utf8_len(text[offs]));
|
size_t char_len = Min(text.size() - offs, utf8_len(text[offs]));
|
||||||
sym.text = text.c_str() + offs;
|
sym.text = text.c_str() + offs;
|
||||||
sym.n = char_len;
|
sym.n = char_len;
|
||||||
offs += char_len;
|
offs += char_len;
|
||||||
@ -1381,7 +1218,7 @@ static llama_vocab::id llama_sample_top_p_top_k(
|
|||||||
|
|
||||||
float maxl = -std::numeric_limits<float>::infinity();
|
float maxl = -std::numeric_limits<float>::infinity();
|
||||||
for (const auto & kv : logits_id) {
|
for (const auto & kv : logits_id) {
|
||||||
maxl = std::max(maxl, kv.first);
|
maxl = Max(maxl, kv.first);
|
||||||
}
|
}
|
||||||
|
|
||||||
// compute probs for the top k tokens
|
// compute probs for the top k tokens
|
||||||
@ -1475,8 +1312,7 @@ static bool llama_model_quantize_internal(const std::string & fname_inp, const s
|
|||||||
return false;
|
return false;
|
||||||
}
|
}
|
||||||
if (magic != LLAMA_FILE_MAGIC) {
|
if (magic != LLAMA_FILE_MAGIC) {
|
||||||
fprintf(stderr, "%s: invalid model file '%s' (bad magic)\n", __func__, fname_inp.c_str());
|
return report_bad_magic(fname_inp.c_str());
|
||||||
return false;
|
|
||||||
}
|
}
|
||||||
|
|
||||||
fout.write((char *) &magic, sizeof(magic));
|
fout.write((char *) &magic, sizeof(magic));
|
||||||
@ -1542,8 +1378,8 @@ static bool llama_model_quantize_internal(const std::string & fname_inp, const s
|
|||||||
fout.write((char *) &len, sizeof(len));
|
fout.write((char *) &len, sizeof(len));
|
||||||
|
|
||||||
word.resize(len);
|
word.resize(len);
|
||||||
finp.read ((char *) word.data(), len);
|
finp.read ((char *) &word[0], len);
|
||||||
fout.write((char *) word.data(), len);
|
fout.write((char *) &word[0], len);
|
||||||
|
|
||||||
float score;
|
float score;
|
||||||
finp.read ((char *) &score, sizeof(score));
|
finp.read ((char *) &score, sizeof(score));
|
||||||
@ -1593,6 +1429,13 @@ static bool llama_model_quantize_internal(const std::string & fname_inp, const s
|
|||||||
std::string name(length, 0);
|
std::string name(length, 0);
|
||||||
finp.read (&name[0], length);
|
finp.read (&name[0], length);
|
||||||
|
|
||||||
|
{
|
||||||
|
// ensure tensor data is aligned
|
||||||
|
uint64_t offset = finp.tellg();
|
||||||
|
offset = (offset + 31) & -32;
|
||||||
|
finp.seekg(offset);
|
||||||
|
}
|
||||||
|
|
||||||
{
|
{
|
||||||
static const char * ftype_str[] = { "f32", "f16", "q4_0", "q4_1", };
|
static const char * ftype_str[] = { "f32", "f16", "q4_0", "q4_1", };
|
||||||
printf("%48s - [%5d, %5d], type = %6s ", name.data(), ne[0], ne[1], ftype_str[ftype]);
|
printf("%48s - [%5d, %5d], type = %6s ", name.data(), ne[0], ne[1], ftype_str[ftype]);
|
||||||
@ -1648,6 +1491,13 @@ static bool llama_model_quantize_internal(const std::string & fname_inp, const s
|
|||||||
}
|
}
|
||||||
fout.write(&name[0], length);
|
fout.write(&name[0], length);
|
||||||
|
|
||||||
|
{
|
||||||
|
// ensure tensor data is aligned
|
||||||
|
uint64_t offset = fout.tellp();
|
||||||
|
offset = (offset + 31) & -32;
|
||||||
|
fout.seekp(offset);
|
||||||
|
}
|
||||||
|
|
||||||
if (quantize) {
|
if (quantize) {
|
||||||
printf("quantizing .. ");
|
printf("quantizing .. ");
|
||||||
work.resize(nelements); // for quantization
|
work.resize(nelements); // for quantization
|
||||||
@ -1824,7 +1674,11 @@ int llama_eval(
|
|||||||
fprintf(stderr, "%s: failed to eval\n", __func__);
|
fprintf(stderr, "%s: failed to eval\n", __func__);
|
||||||
return 1;
|
return 1;
|
||||||
}
|
}
|
||||||
|
// get a more accurate load time, upon first eval
|
||||||
|
if (!ctx->has_evaluated_once) {
|
||||||
|
ctx->t_load_us = ggml_time_us() - ctx->t_start_us;
|
||||||
|
ctx->has_evaluated_once = true;
|
||||||
|
}
|
||||||
return 0;
|
return 0;
|
||||||
}
|
}
|
||||||
|
|
||||||
@ -1917,9 +1771,9 @@ llama_token llama_sample_top_p_top_k(
|
|||||||
void llama_print_timings(struct llama_context * ctx) {
|
void llama_print_timings(struct llama_context * ctx) {
|
||||||
const int64_t t_end_us = ggml_time_us();
|
const int64_t t_end_us = ggml_time_us();
|
||||||
|
|
||||||
const int32_t n_sample = std::max(1, ctx->n_sample);
|
const int32_t n_sample = Max(1, ctx->n_sample);
|
||||||
const int32_t n_eval = std::max(1, ctx->n_eval);
|
const int32_t n_eval = Max(1, ctx->n_eval);
|
||||||
const int32_t n_p_eval = std::max(1, ctx->n_p_eval);
|
const int32_t n_p_eval = Max(1, ctx->n_p_eval);
|
||||||
|
|
||||||
fprintf(stderr, "\n");
|
fprintf(stderr, "\n");
|
||||||
fprintf(stderr, "%s: load time = %8.2f ms\n", __func__, ctx->t_load_us / 1000.0);
|
fprintf(stderr, "%s: load time = %8.2f ms\n", __func__, ctx->t_load_us / 1000.0);
|
||||||
@ -1931,7 +1785,6 @@ void llama_print_timings(struct llama_context * ctx) {
|
|||||||
|
|
||||||
void llama_reset_timings(struct llama_context * ctx) {
|
void llama_reset_timings(struct llama_context * ctx) {
|
||||||
ctx->t_start_us = ggml_time_us();
|
ctx->t_start_us = ggml_time_us();
|
||||||
|
|
||||||
ctx->t_sample_us = ctx->n_sample = 0;
|
ctx->t_sample_us = ctx->n_sample = 0;
|
||||||
ctx->t_eval_us = ctx->n_eval = 0;
|
ctx->t_eval_us = ctx->n_eval = 0;
|
||||||
ctx->t_p_eval_us = ctx->n_p_eval = 0;
|
ctx->t_p_eval_us = ctx->n_p_eval = 0;
|
||||||
|
2
llama.h
2
llama.h
@ -20,7 +20,7 @@
|
|||||||
#endif
|
#endif
|
||||||
|
|
||||||
#define LLAMA_FILE_VERSION 1
|
#define LLAMA_FILE_VERSION 1
|
||||||
#define LLAMA_FILE_MAGIC 0x67676d66 // 'ggmf' in hex
|
#define LLAMA_FILE_MAGIC 0x67676a74 // 'ggjt' in hex
|
||||||
#define LLAMA_FILE_MAGIC_UNVERSIONED 0x67676d6c // pre-versioned files
|
#define LLAMA_FILE_MAGIC_UNVERSIONED 0x67676d6c // pre-versioned files
|
||||||
|
|
||||||
#ifdef __cplusplus
|
#ifdef __cplusplus
|
||||||
|
Binary file not shown.
Loading…
x
Reference in New Issue
Block a user