mirror of
https://github.com/ggerganov/llama.cpp.git
synced 2025-01-23 09:59:18 +01:00
CUDA: Faster Mixtral prompt processing (#4538)
* CUDA: make MoE tensors contiguous for batch size>1 * Update ggml-cuda.cu Co-authored-by: slaren <slarengh@gmail.com> --------- Co-authored-by: slaren <slarengh@gmail.com>
This commit is contained in:
parent
328b83de23
commit
799fc22689
118
ggml-cuda.cu
118
ggml-cuda.cu
@ -7830,6 +7830,11 @@ static void ggml_cuda_set_peer_access(const int n_tokens) {
|
||||
}
|
||||
|
||||
#ifdef NDEBUG
|
||||
for (int id = 0; id < g_device_count; ++id) {
|
||||
CUDA_CHECK(ggml_cuda_set_device(id));
|
||||
CUDA_CHECK(cudaDeviceSynchronize());
|
||||
}
|
||||
|
||||
for (int id = 0; id < g_device_count; ++id) {
|
||||
CUDA_CHECK(ggml_cuda_set_device(id));
|
||||
|
||||
@ -7881,8 +7886,6 @@ static void ggml_cuda_op_mul_mat(
|
||||
const int nb2 = dst->nb[2];
|
||||
const int nb3 = dst->nb[3];
|
||||
|
||||
ggml_cuda_set_peer_access(ne11);
|
||||
|
||||
GGML_ASSERT(dst->backend != GGML_BACKEND_GPU_SPLIT);
|
||||
GGML_ASSERT(src1->backend != GGML_BACKEND_GPU_SPLIT);
|
||||
|
||||
@ -8781,16 +8784,21 @@ static void ggml_cuda_mul_mat_id(const ggml_tensor * src0, const ggml_tensor * s
|
||||
|
||||
GGML_ASSERT(dst->backend == GGML_BACKEND_GPU);
|
||||
|
||||
const int64_t nb11 = src1->nb[1];
|
||||
const int64_t nb1 = dst->nb[1];
|
||||
|
||||
const struct ggml_tensor * ids = src0;
|
||||
const int32_t id = ((int32_t *) dst->op_params)[0];
|
||||
const int32_t n_as = ((int32_t *) dst->op_params)[1];
|
||||
|
||||
std::vector<char> ids_host(ggml_nbytes(ids));
|
||||
|
||||
const cudaStream_t stream = g_cudaStreams[g_main_device][0];
|
||||
|
||||
if (ids->backend == GGML_BACKEND_GPU) {
|
||||
const char * ids_dev = (const char *)((const ggml_tensor_extra_gpu *)ids->extra)->data_device[g_main_device];
|
||||
CUDA_CHECK(cudaMemcpyAsync(ids_host.data(), ids_dev, ggml_nbytes(ids), cudaMemcpyDeviceToHost, g_cudaStreams[g_main_device][0]));
|
||||
CUDA_CHECK(cudaStreamSynchronize(g_cudaStreams[g_main_device][0]));
|
||||
CUDA_CHECK(cudaMemcpyAsync(ids_host.data(), ids_dev, ggml_nbytes(ids), cudaMemcpyDeviceToHost, stream));
|
||||
CUDA_CHECK(cudaStreamSynchronize(stream));
|
||||
} else {
|
||||
memcpy(ids_host.data(), ids->data, ggml_nbytes(ids));
|
||||
}
|
||||
@ -8804,37 +8812,93 @@ static void ggml_cuda_mul_mat_id(const ggml_tensor * src0, const ggml_tensor * s
|
||||
ggml_tensor src1_row = *src1;
|
||||
ggml_tensor dst_row = *dst;
|
||||
|
||||
src1_row.ne[1] = 1;
|
||||
dst_row.ne[1] = 1;
|
||||
|
||||
src1_row.nb[2] = src1_row.nb[1];
|
||||
dst_row.nb[2] = dst_row.nb[1];
|
||||
|
||||
src1_row.nb[3] = src1_row.nb[1];
|
||||
dst_row.nb[3] = dst_row.nb[1];
|
||||
|
||||
src1_row.extra = &src1_row_extra;
|
||||
dst_row.extra = &dst_row_extra;
|
||||
|
||||
char * src1_original = (char *) src1_extra->data_device[g_main_device];
|
||||
char * dst_original = (char *) dst_extra->data_device[g_main_device];
|
||||
|
||||
for (int64_t i01 = 0; i01 < ids->ne[1]; i01++) {
|
||||
//int32_t row_id;
|
||||
//CUDA_CHECK(cudaMemcpyAsync(&row_id, ids_dev + i01*ids->nb[1] + id*ids->nb[0], sizeof(int32_t), cudaMemcpyDeviceToHost, g_cudaStreams[g_main_device][0]));
|
||||
//CUDA_CHECK(cudaStreamSynchronize(g_cudaStreams[g_main_device][0]));
|
||||
if (src1->ne[1] == 1) {
|
||||
for (int64_t i01 = 0; i01 < ids->ne[1]; i01++) {
|
||||
//int32_t row_id;
|
||||
//CUDA_CHECK(cudaMemcpyAsync(&row_id, ids_dev + i01*ids->nb[1] + id*ids->nb[0], sizeof(int32_t), cudaMemcpyDeviceToHost, g_cudaStreams[g_main_device][0]));
|
||||
//CUDA_CHECK(cudaStreamSynchronize(g_cudaStreams[g_main_device][0]));
|
||||
|
||||
const int32_t row_id = *(const int32_t *) (ids_host.data() + i01*ids->nb[1] + id*ids->nb[0]);
|
||||
const int32_t row_id = *(const int32_t *) (ids_host.data() + i01*ids->nb[1] + id*ids->nb[0]);
|
||||
|
||||
GGML_ASSERT(row_id >= 0 && row_id < n_as);
|
||||
GGML_ASSERT(row_id >= 0 && row_id < n_as);
|
||||
|
||||
const struct ggml_tensor * src0_row = dst->src[row_id + 2];
|
||||
const struct ggml_tensor * src0_row = dst->src[row_id + 2];
|
||||
|
||||
src1_row_extra.data_device[g_main_device] = (char *) src1_extra->data_device[g_main_device] + i01*src1->nb[1];
|
||||
src1_row.data = (char *) src1->data + i01*src1->nb[1];
|
||||
src1_row_extra.data_device[g_main_device] = src1_original + i01*src1->nb[1];
|
||||
src1_row.data = (char *) src1->data + i01*src1->nb[1]; // TODO why is this set?
|
||||
|
||||
dst_row_extra.data_device[g_main_device] = (char *) dst_extra->data_device[g_main_device] + i01*dst->nb[1];
|
||||
dst_row.data = (char *) dst->data + i01*dst->nb[1];
|
||||
dst_row_extra.data_device[g_main_device] = dst_original + i01*dst->nb[1];
|
||||
dst_row.data = (char *) dst->data + i01*dst->nb[1]; // TODO why is this set?
|
||||
|
||||
ggml_cuda_mul_mat(src0_row, &src1_row, &dst_row);
|
||||
ggml_cuda_mul_mat(src0_row, &src1_row, &dst_row);
|
||||
}
|
||||
} else {
|
||||
size_t as_src1, as_dst;
|
||||
char * src1_contiguous = (char *) ggml_cuda_pool_malloc(sizeof(float)*ggml_nelements(src1), &as_src1);
|
||||
char * dst_contiguous = (char *) ggml_cuda_pool_malloc(sizeof(float)*ggml_nelements(dst), &as_dst);
|
||||
|
||||
src1_row_extra.data_device[g_main_device] = src1_contiguous;
|
||||
dst_row_extra.data_device[g_main_device] = dst_contiguous;
|
||||
|
||||
for (int32_t row_id = 0; row_id < n_as; ++row_id) {
|
||||
const struct ggml_tensor * src0_row = dst->src[row_id + 2];
|
||||
|
||||
int64_t num_src1_rows = 0;
|
||||
for (int64_t i01 = 0; i01 < ids->ne[1]; i01++) {
|
||||
const int32_t row_id_i = *(const int32_t *) (ids_host.data() + i01*ids->nb[1] + id*ids->nb[0]);
|
||||
|
||||
if (row_id_i != row_id) {
|
||||
continue;
|
||||
}
|
||||
|
||||
GGML_ASSERT(row_id >= 0 && row_id < n_as);
|
||||
|
||||
CUDA_CHECK(cudaMemcpyAsync(src1_contiguous + num_src1_rows*nb11, src1_original + i01*nb11,
|
||||
nb11, cudaMemcpyDeviceToDevice, stream));
|
||||
num_src1_rows++;
|
||||
}
|
||||
|
||||
if (num_src1_rows == 0) {
|
||||
continue;
|
||||
}
|
||||
|
||||
src1_row.ne[1] = num_src1_rows;
|
||||
dst_row.ne[1] = num_src1_rows;
|
||||
|
||||
src1_row.nb[1] = nb11;
|
||||
src1_row.nb[2] = num_src1_rows*nb11;
|
||||
src1_row.nb[3] = num_src1_rows*nb11;
|
||||
|
||||
dst_row.nb[1] = nb1;
|
||||
dst_row.nb[2] = num_src1_rows*nb1;
|
||||
dst_row.nb[3] = num_src1_rows*nb1;
|
||||
|
||||
ggml_cuda_mul_mat(src0_row, &src1_row, &dst_row);
|
||||
|
||||
num_src1_rows = 0;
|
||||
for (int64_t i01 = 0; i01 < ids->ne[1]; i01++) {
|
||||
const int32_t row_id_i = *(const int32_t *) (ids_host.data() + i01*ids->nb[1] + id*ids->nb[0]);
|
||||
|
||||
if (row_id_i != row_id) {
|
||||
continue;
|
||||
}
|
||||
|
||||
GGML_ASSERT(row_id >= 0 && row_id < n_as);
|
||||
|
||||
CUDA_CHECK(cudaMemcpyAsync(dst_original + i01*nb1, dst_contiguous + num_src1_rows*nb1,
|
||||
nb1, cudaMemcpyDeviceToDevice, stream));
|
||||
num_src1_rows++;
|
||||
}
|
||||
}
|
||||
|
||||
ggml_cuda_pool_free(src1_contiguous, as_src1);
|
||||
ggml_cuda_pool_free(dst_contiguous, as_dst);
|
||||
}
|
||||
}
|
||||
|
||||
@ -9370,6 +9434,10 @@ bool ggml_cuda_compute_forward(struct ggml_compute_params * params, struct ggml_
|
||||
return false;
|
||||
}
|
||||
|
||||
if (tensor->src[0] != nullptr && tensor->src[0]->backend == GGML_BACKEND_GPU_SPLIT) {
|
||||
ggml_cuda_set_peer_access(tensor->src[1]->ne[1]);
|
||||
}
|
||||
|
||||
if (params->ith != 0) {
|
||||
return true;
|
||||
}
|
||||
|
Loading…
Reference in New Issue
Block a user