mirror of
https://github.com/ggerganov/llama.cpp.git
synced 2025-01-21 00:59:23 +01:00
llama : apply K-cache roping for Falcon and Baichuan
This commit is contained in:
parent
0cbf3bfef8
commit
7c1bdd0e8a
49
llama.cpp
49
llama.cpp
@ -2746,6 +2746,7 @@ static struct ggml_cgraph * llm_build_llama(
|
||||
ggml_set_name(cur, "attention_norm_0");
|
||||
}
|
||||
|
||||
// shift the entire K-cache if needed
|
||||
if (do_rope_shift) {
|
||||
ggml_build_forward_expand(gf,
|
||||
ggml_rope_custom_inplace(ctx0,
|
||||
@ -2987,6 +2988,8 @@ static struct ggml_cgraph * llm_build_baichaun(
|
||||
const int32_t n_tokens = batch.n_tokens;
|
||||
const int32_t n_kv = llama_kv_cache_cell_max(kv_self);
|
||||
|
||||
const bool do_rope_shift = kv_self.has_shift || ggml_allocr_is_measure(lctx.alloc);
|
||||
|
||||
auto & buf_compute = lctx.buf_compute;
|
||||
|
||||
struct ggml_init_params params = {
|
||||
@ -3090,6 +3093,16 @@ static struct ggml_cgraph * llm_build_baichaun(
|
||||
}
|
||||
}
|
||||
|
||||
// K_shift
|
||||
struct ggml_tensor * K_shift = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_ctx);
|
||||
ggml_allocr_alloc(lctx.alloc, K_shift);
|
||||
if (!ggml_allocr_is_measure(lctx.alloc)) {
|
||||
int * data = (int *) K_shift->data;
|
||||
for (int i = 0; i < n_ctx; ++i) {
|
||||
data[i] = kv_self.cells[i].delta;
|
||||
}
|
||||
}
|
||||
|
||||
for (int il = 0; il < n_layer; ++il) {
|
||||
ggml_format_name(inpL, "layer_inp_%d", il);
|
||||
|
||||
@ -3115,6 +3128,18 @@ static struct ggml_cgraph * llm_build_baichaun(
|
||||
ggml_set_name(cur, "attention_norm_0");
|
||||
}
|
||||
|
||||
// shift the entire K-cache if needed
|
||||
if (do_rope_shift) {
|
||||
ggml_build_forward_expand(gf,
|
||||
ggml_rope_custom_inplace(ctx0,
|
||||
ggml_view_3d(ctx0, kv_self.k,
|
||||
n_embd_head, n_head_kv, n_ctx,
|
||||
ggml_element_size(kv_self.k)*n_embd_head,
|
||||
ggml_element_size(kv_self.k)*n_embd_gqa,
|
||||
ggml_element_size(kv_self.k)*n_embd_gqa*n_ctx*il),
|
||||
K_shift, n_embd_head, 0, 0, freq_base, freq_scale));
|
||||
}
|
||||
|
||||
// self-attention
|
||||
{
|
||||
// compute Q and K and RoPE them
|
||||
@ -3362,6 +3387,8 @@ static struct ggml_cgraph * llm_build_falcon(
|
||||
const int32_t n_tokens = batch.n_tokens;
|
||||
const int32_t n_kv = llama_kv_cache_cell_max(kv_self);
|
||||
|
||||
const bool do_rope_shift = kv_self.has_shift || ggml_allocr_is_measure(lctx.alloc);
|
||||
|
||||
auto & buf_compute = lctx.buf_compute;
|
||||
|
||||
struct ggml_init_params params = {
|
||||
@ -3465,6 +3492,16 @@ static struct ggml_cgraph * llm_build_falcon(
|
||||
}
|
||||
}
|
||||
|
||||
// K_shift
|
||||
struct ggml_tensor * K_shift = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_ctx);
|
||||
ggml_allocr_alloc(lctx.alloc, K_shift);
|
||||
if (!ggml_allocr_is_measure(lctx.alloc)) {
|
||||
int * data = (int *) K_shift->data;
|
||||
for (int i = 0; i < n_ctx; ++i) {
|
||||
data[i] = kv_self.cells[i].delta;
|
||||
}
|
||||
}
|
||||
|
||||
for (int il = 0; il < n_layer; ++il) {
|
||||
struct ggml_tensor * attn_norm;
|
||||
|
||||
@ -3476,6 +3513,18 @@ static struct ggml_cgraph * llm_build_falcon(
|
||||
}
|
||||
#endif // GGML_USE_CUBLAS
|
||||
|
||||
// shift the entire K-cache if needed
|
||||
if (do_rope_shift) {
|
||||
ggml_build_forward_expand(gf,
|
||||
ggml_rope_custom_inplace(ctx0,
|
||||
ggml_view_3d(ctx0, kv_self.k,
|
||||
n_embd_head, n_head_kv, n_ctx,
|
||||
ggml_element_size(kv_self.k)*n_embd_head,
|
||||
ggml_element_size(kv_self.k)*n_embd_gqa,
|
||||
ggml_element_size(kv_self.k)*n_embd_gqa*n_ctx*il),
|
||||
K_shift, n_embd_head, 2, 0, freq_base, freq_scale));
|
||||
}
|
||||
|
||||
// self-attention
|
||||
// TODO: refactor into common function (shared with LLaMA)
|
||||
{
|
||||
|
Loading…
Reference in New Issue
Block a user