mirror of
https://github.com/ggerganov/llama.cpp.git
synced 2025-01-24 18:39:19 +01:00
gguf : add support for I64 and F64 arrays (#6062)
* gguf : add support for I64 and F64 arrays GGML currently does not support I64 or F64 arrays and they are not often used in machine learning, however if in the future the need arises, it would be nice to add them now, so that the types are next to the other types I8, I16, I32 in the enums, and it also reserves their type number. Furthermore, with this addition the GGUF format becomes very usable for most computational applications of NumPy (being compatible with the most common NumPy dtypes: i8, i16, i32, i64, f32, f64), providing a faster, and more versatile alternative to the `npz` format, and a simpler alternative to the `hdf5` format. The change in this PR seems small, not significantly increasing the maintenance burden. I tested this from Python using GGUFWriter/Reader and `gguf-dump`, as well as from C, everything seems to work. * Fix compiler warnings
This commit is contained in:
parent
aab606a11f
commit
7ce2c77f88
17
ggml.c
17
ggml.c
@ -470,6 +470,19 @@ static const ggml_type_traits_t type_traits[GGML_TYPE_COUNT] = {
|
||||
.type_size = sizeof(int32_t),
|
||||
.is_quantized = false,
|
||||
},
|
||||
[GGML_TYPE_I64] = {
|
||||
.type_name = "i64",
|
||||
.blck_size = 1,
|
||||
.type_size = sizeof(int64_t),
|
||||
.is_quantized = false,
|
||||
},
|
||||
[GGML_TYPE_F64] = {
|
||||
.type_name = "f64",
|
||||
.blck_size = 1,
|
||||
.type_size = sizeof(double),
|
||||
.is_quantized = false,
|
||||
.nrows = 1,
|
||||
},
|
||||
[GGML_TYPE_F32] = {
|
||||
.type_name = "f32",
|
||||
.blck_size = 1,
|
||||
@ -12418,6 +12431,8 @@ static void ggml_compute_forward_alibi(
|
||||
case GGML_TYPE_I8:
|
||||
case GGML_TYPE_I16:
|
||||
case GGML_TYPE_I32:
|
||||
case GGML_TYPE_I64:
|
||||
case GGML_TYPE_F64:
|
||||
case GGML_TYPE_COUNT:
|
||||
{
|
||||
GGML_ASSERT(false);
|
||||
@ -12504,6 +12519,8 @@ static void ggml_compute_forward_clamp(
|
||||
case GGML_TYPE_I8:
|
||||
case GGML_TYPE_I16:
|
||||
case GGML_TYPE_I32:
|
||||
case GGML_TYPE_I64:
|
||||
case GGML_TYPE_F64:
|
||||
case GGML_TYPE_COUNT:
|
||||
{
|
||||
GGML_ASSERT(false);
|
||||
|
2
ggml.h
2
ggml.h
@ -366,6 +366,8 @@ extern "C" {
|
||||
GGML_TYPE_I8 = 24,
|
||||
GGML_TYPE_I16 = 25,
|
||||
GGML_TYPE_I32 = 26,
|
||||
GGML_TYPE_I64 = 27,
|
||||
GGML_TYPE_F64 = 28,
|
||||
GGML_TYPE_COUNT,
|
||||
};
|
||||
|
||||
|
@ -665,6 +665,8 @@ class GGMLQuantizationType(IntEnum):
|
||||
I8 = 24
|
||||
I16 = 25
|
||||
I32 = 26
|
||||
I64 = 27
|
||||
F64 = 28
|
||||
|
||||
|
||||
class GGUFEndian(IntEnum):
|
||||
@ -734,6 +736,8 @@ GGML_QUANT_SIZES = {
|
||||
GGMLQuantizationType.I8: (1, 1),
|
||||
GGMLQuantizationType.I16: (1, 2),
|
||||
GGMLQuantizationType.I32: (1, 4),
|
||||
GGMLQuantizationType.I64: (1, 8),
|
||||
GGMLQuantizationType.F64: (1, 8),
|
||||
}
|
||||
|
||||
|
||||
|
@ -242,12 +242,15 @@ class GGUFReader:
|
||||
n_bytes = n_elems * type_size // block_size
|
||||
data_offs = int(start_offs + offset_tensor[0])
|
||||
item_type: npt.DTypeLike
|
||||
if ggml_type == GGMLQuantizationType.F32:
|
||||
item_count = n_elems
|
||||
item_type = np.float32
|
||||
elif ggml_type == GGMLQuantizationType.F16:
|
||||
if ggml_type == GGMLQuantizationType.F16:
|
||||
item_count = n_elems
|
||||
item_type = np.float16
|
||||
elif ggml_type == GGMLQuantizationType.F32:
|
||||
item_count = n_elems
|
||||
item_type = np.float32
|
||||
elif ggml_type == GGMLQuantizationType.F64:
|
||||
item_count = n_elems
|
||||
item_type = np.float64
|
||||
elif ggml_type == GGMLQuantizationType.I8:
|
||||
item_count = n_elems
|
||||
item_type = np.int8
|
||||
@ -257,6 +260,9 @@ class GGUFReader:
|
||||
elif ggml_type == GGMLQuantizationType.I32:
|
||||
item_count = n_elems
|
||||
item_type = np.int32
|
||||
elif ggml_type == GGMLQuantizationType.I64:
|
||||
item_count = n_elems
|
||||
item_type = np.int64
|
||||
else:
|
||||
item_count = n_bytes
|
||||
item_type = np.uint8
|
||||
|
@ -204,18 +204,22 @@ class GGUFWriter:
|
||||
for i in range(n_dims):
|
||||
self.ti_data += self._pack("Q", tensor_shape[n_dims - 1 - i])
|
||||
if raw_dtype is None:
|
||||
if tensor_dtype == np.float32:
|
||||
dtype = GGMLQuantizationType.F32
|
||||
elif tensor_dtype == np.float16:
|
||||
if tensor_dtype == np.float16:
|
||||
dtype = GGMLQuantizationType.F16
|
||||
elif tensor_dtype == np.float32:
|
||||
dtype = GGMLQuantizationType.F32
|
||||
elif tensor_dtype == np.float64:
|
||||
dtype = GGMLQuantizationType.F64
|
||||
elif tensor_dtype == np.int8:
|
||||
dtype = GGMLQuantizationType.I8
|
||||
elif tensor_dtype == np.int16:
|
||||
dtype = GGMLQuantizationType.I16
|
||||
elif tensor_dtype == np.int32:
|
||||
dtype = GGMLQuantizationType.I32
|
||||
elif tensor_dtype == np.int64:
|
||||
dtype = GGMLQuantizationType.I64
|
||||
else:
|
||||
raise ValueError("Only F32, F16, I8, I16, I32 tensors are supported for now")
|
||||
raise ValueError("Only F16, F32, F64, I8, I16, I32, I64 tensors are supported for now")
|
||||
else:
|
||||
dtype = raw_dtype
|
||||
self.ti_data += self._pack("I", dtype)
|
||||
|
Loading…
Reference in New Issue
Block a user