mirror of
https://github.com/ggerganov/llama.cpp.git
synced 2025-01-03 17:51:09 +01:00
allocator: fix partial offloading
This commit is contained in:
parent
e87840f9fd
commit
7de7882537
187
ggml-backend.c
187
ggml-backend.c
@ -6,12 +6,13 @@
|
||||
#include <string.h>
|
||||
|
||||
#define UNUSED(x) (void)(x)
|
||||
#define MAX(a, b) ((a) > (b) ? (a) : (b))
|
||||
|
||||
//#define GGML_ALLOCATOR_DEBUG
|
||||
|
||||
//#define AT_PRINTF printf
|
||||
#define AT_PRINTF(...) ((void)0)
|
||||
|
||||
|
||||
|
||||
// allocator
|
||||
|
||||
static size_t aligned_offset(const void * buffer, size_t offset, size_t alignment) {
|
||||
@ -33,6 +34,7 @@ void ggml_backend_buffer_free(struct ggml_backend_buffer * alloc) {
|
||||
free(alloc);
|
||||
}
|
||||
|
||||
#if 0
|
||||
// backend buffer allocator - simple - cannot free tensors, good for weights and small contexts
|
||||
|
||||
struct ggml_allocator_simple_context {
|
||||
@ -47,8 +49,6 @@ static void ggml_allocator_simple_free_buffer(struct ggml_backend_buffer * alloc
|
||||
free(context);
|
||||
}
|
||||
|
||||
#define MAX(a, b) ((a) > (b) ? (a) : (b))
|
||||
|
||||
static void ggml_allocator_simple_alloc_tensor(struct ggml_backend_buffer * alloc, struct ggml_tensor * tensor) {
|
||||
struct ggml_allocator_simple_context * context = (struct ggml_allocator_simple_context *)alloc->context;
|
||||
|
||||
@ -120,7 +120,7 @@ static struct ggml_backend_buffer * ggml_allocator_simple_init(void * data, size
|
||||
return allocator;
|
||||
}
|
||||
|
||||
//////////////////////////////////////////////////////////////
|
||||
#endif
|
||||
|
||||
// backend buffer allocator - default - can free tensors
|
||||
|
||||
@ -136,7 +136,7 @@ struct ggml_allocator_default_context {
|
||||
size_t size;
|
||||
size_t alignment;
|
||||
int n_free_blocks;
|
||||
struct free_block free_blocks[1024];
|
||||
struct free_block free_blocks[MAX_FREE_BLOCKS];
|
||||
|
||||
#ifdef GGML_ALLOCATOR_DEBUG
|
||||
struct ggml_tensor * allocated_tensors[1024];
|
||||
@ -190,8 +190,6 @@ void ggml_allocator_default_alloc_tensor(struct ggml_backend_buffer * alloc, str
|
||||
|
||||
size_t max_avail = 0;
|
||||
|
||||
//fprintf(stderr, "%s: allocating %s - %zu bytes\n", __func__, tensor->name, size);
|
||||
|
||||
// find the best fitting free block
|
||||
int best_fit_block = -1;
|
||||
size_t best_fit_size = SIZE_MAX;
|
||||
@ -230,13 +228,13 @@ void ggml_allocator_default_alloc_tensor(struct ggml_backend_buffer * alloc, str
|
||||
add_allocated_tensor(allocator_ctx, tensor);
|
||||
size_t cur_max = (char*)addr - (char*)allocator_ctx->data + size;
|
||||
if (cur_max > alloc->max_size) {
|
||||
fprintf(stderr, "max_size = %.2f MB: tensors: ", cur_max / 1024.0 / 1024.0);
|
||||
printf("max_size = %.2f MB: tensors: ", cur_max / 1024.0 / 1024.0);
|
||||
for (int i = 0; i < 1024; i++) {
|
||||
if (allocator_ctx->allocated_tensors[i]) {
|
||||
fprintf(stderr, "%s (%.2f MB) ", allocator_ctx->allocated_tensors[i]->name, ggml_nbytes(allocator_ctx->allocated_tensors[i]) / 1024.0 / 1024.0);
|
||||
printf("%s (%.2f MB) ", allocator_ctx->allocated_tensors[i]->name, ggml_nbytes(allocator_ctx->allocated_tensors[i]) / 1024.0 / 1024.0);
|
||||
}
|
||||
}
|
||||
fprintf(stderr, "\n");
|
||||
printf("\n");
|
||||
}
|
||||
#endif
|
||||
|
||||
@ -257,8 +255,9 @@ void ggml_allocator_default_free_tensor(struct ggml_backend_buffer * alloc, stru
|
||||
void * ptr = tensor->data;
|
||||
|
||||
if (ptr < allocator_ctx->data || (char*)ptr >= (char*)allocator_ctx->data + alloc->max_size) {
|
||||
//fprintf(stderr, "%s: %s - tensor not in this buffer (%p - %p - %zu)\n", __func__, tensor->name, ptr, allocator_ctx->data, allocator_ctx->size);
|
||||
//GGML_ASSERT(!"trying to free a tensor that was not allocated by this allocator");
|
||||
// the tensor was not allocated in this buffer
|
||||
// this can happen because the allocator can try to free weights and other constants
|
||||
// the easiest way to deal with this is to just ignore it
|
||||
return;
|
||||
}
|
||||
|
||||
@ -303,7 +302,7 @@ void ggml_allocator_default_free_tensor(struct ggml_backend_buffer * alloc, stru
|
||||
}
|
||||
}
|
||||
// otherwise, add a new block
|
||||
if (allocator_ctx->n_free_blocks < MAX_FREE_BLOCKS) {
|
||||
GGML_ASSERT(allocator_ctx->n_free_blocks < MAX_FREE_BLOCKS && "out of free blocks");
|
||||
// insert the new block in the correct position to keep the array sorted
|
||||
int insert_pos = 0;
|
||||
while (insert_pos < allocator_ctx->n_free_blocks && allocator_ctx->free_blocks[insert_pos].addr < ptr) {
|
||||
@ -317,26 +316,28 @@ void ggml_allocator_default_free_tensor(struct ggml_backend_buffer * alloc, stru
|
||||
allocator_ctx->free_blocks[insert_pos].addr = ptr;
|
||||
allocator_ctx->free_blocks[insert_pos].size = size;
|
||||
allocator_ctx->n_free_blocks++;
|
||||
}
|
||||
else {
|
||||
GGML_ASSERT(!"out of free blocks");
|
||||
}
|
||||
}
|
||||
|
||||
static void ggml_allocator_default_reset(struct ggml_backend_buffer * alloc) {
|
||||
struct ggml_allocator_default_context * ctx = (struct ggml_allocator_default_context *)alloc->context;
|
||||
ctx->n_free_blocks = 1; // TODO
|
||||
ctx->n_free_blocks = 1;
|
||||
size_t align_offset = aligned_offset(ctx->data, 0, ctx->alignment);
|
||||
ctx->free_blocks[0].addr = (char *)ctx->data + align_offset;
|
||||
ctx->free_blocks[0].size = ctx->size - align_offset;
|
||||
}
|
||||
|
||||
size_t ggml_allocator_default_get_alloc_size(struct ggml_backend_buffer * alloc, struct ggml_tensor * tensor) {
|
||||
return ggml_nbytes(tensor);
|
||||
|
||||
UNUSED(alloc);
|
||||
}
|
||||
|
||||
static const struct ggml_backend_buffer_interface ggml_allocator_default_interface = {
|
||||
/* .free_buffer = */ ggml_allocator_default_free_buffer,
|
||||
/* .alloc_tensor = */ ggml_allocator_default_alloc_tensor,
|
||||
/* .free_tensor = */ ggml_allocator_default_free_tensor,
|
||||
/* .reset = */ ggml_allocator_default_reset,
|
||||
/* .get_alloc_size = */ ggml_allocator_simple_get_alloc_size,
|
||||
/* .get_alloc_size = */ ggml_allocator_default_get_alloc_size,
|
||||
/* .init_tensor = */ NULL,
|
||||
/* .free_data = */ NULL,
|
||||
};
|
||||
@ -349,7 +350,7 @@ struct ggml_backend_buffer * ggml_allocator_default_init(void * data, size_t siz
|
||||
ctx->data = data;
|
||||
ctx->size = size;
|
||||
ctx->alignment = alignment;
|
||||
ctx->n_free_blocks = 1; // TODO
|
||||
ctx->n_free_blocks = 1;
|
||||
size_t align_offset = aligned_offset(data, 0, alignment);
|
||||
ctx->free_blocks[0].addr = (char *)data + align_offset;
|
||||
ctx->free_blocks[0].size = size - align_offset;
|
||||
@ -651,7 +652,7 @@ void ggml_graph_splits_add_n_va(struct ggml_graph_splits * splits, struct ggml_t
|
||||
split->src_inputs[i] = *inputs[i];
|
||||
split->dst_inputs[i] = ggml_dup_tensor(ctx, *inputs[i]);
|
||||
ggml_format_name(split->dst_inputs[i], "%s (split output)", split->src_inputs[i]->name);
|
||||
// TODO: maybe support different layings in ggml_backend_cpy_tensor instead
|
||||
// TODO: maybe support different layouts in ggml_backend_cpy_tensor instead
|
||||
for (int j = 0; j < GGML_MAX_DIMS; j++) {
|
||||
split->dst_inputs[i]->nb[j] = split->src_inputs[i]->nb[j];
|
||||
}
|
||||
@ -771,10 +772,6 @@ void ggml_graph_splits_compute(struct ggml_graph_splits * splits) {
|
||||
//exit(0);
|
||||
}
|
||||
|
||||
void ggml_graph_allocate_tensors(struct ggml_cgraph * graph, struct ggml_context * ctx) {
|
||||
ggml_graph_allocate_tensors_n(&graph, 1, ctx);
|
||||
}
|
||||
|
||||
static bool ggml_is_view(struct ggml_tensor * t) {
|
||||
return t->op == GGML_OP_RESHAPE || t->op == GGML_OP_VIEW || t->op == GGML_OP_TRANSPOSE ||
|
||||
t->op == GGML_OP_PERMUTE || t->op == GGML_OP_CPY;
|
||||
@ -794,56 +791,7 @@ struct ggml_tensor * view_parent(struct ggml_tensor * t) {
|
||||
}
|
||||
}
|
||||
|
||||
#if 0
|
||||
void ggml_graph_allocate_tensors_n(struct ggml_cgraph ** graphs, int n_graphs, struct ggml_context * ctx) {
|
||||
struct ggml_buffer * buffer = ggml_get_buffer(ctx);
|
||||
for (int i = 0; i < n_graphs; i++) {
|
||||
struct ggml_cgraph * graph = graphs[i];
|
||||
for (int j = 0; j < graph->n_leafs; j++) {
|
||||
struct ggml_tensor * leaf = graph->leafs[j];
|
||||
GGML_ASSERT(leaf->backend == buffer->backend_buffer->backend);
|
||||
if (leaf->data == NULL) {
|
||||
//printf("allocating leaf %s\n", leaf->name);
|
||||
ggml_backend_buffer_tensor_alloc(buffer->backend_buffer, leaf);
|
||||
}
|
||||
}
|
||||
|
||||
for (int j = 0; j < graph->n_nodes; j++) {
|
||||
struct ggml_tensor * node = graph->nodes[j];
|
||||
GGML_ASSERT(node->backend == buffer->backend_buffer->backend);
|
||||
if (node->data == NULL) {
|
||||
if (ggml_is_view(node)) {
|
||||
size_t offset;
|
||||
memcpy(&offset, node->op_params, sizeof(size_t));
|
||||
switch(node->op) {
|
||||
case GGML_OP_VIEW:
|
||||
//printf("view %s (%s), offset %zu\n", node->name, ggml_op_name(node->op), offset);
|
||||
node->data = (char *) node->src[0]->data + offset;
|
||||
break;
|
||||
case GGML_OP_RESHAPE:
|
||||
case GGML_OP_TRANSPOSE:
|
||||
case GGML_OP_PERMUTE:
|
||||
node->data = node->src[0]->data;
|
||||
break;
|
||||
case GGML_OP_CPY:
|
||||
node->data = node->src[1]->data;
|
||||
break;
|
||||
default:
|
||||
GGML_ASSERT(!"unknown view op");
|
||||
break;
|
||||
}
|
||||
} else {
|
||||
//printf("allocating tensor %s\n", node->name);
|
||||
ggml_backend_buffer_tensor_alloc(buffer->backend_buffer, node);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
//printf("\n\n\n");
|
||||
}
|
||||
#else
|
||||
|
||||
void allocate_node(struct ggml_buffer * buffer, struct ggml_tensor * node) {
|
||||
static void allocate_node(struct ggml_buffer * buffer, struct ggml_tensor * node) {
|
||||
if (node->data == NULL) {
|
||||
if (ggml_is_view(node)) {
|
||||
size_t offset;
|
||||
@ -865,7 +813,6 @@ void allocate_node(struct ggml_buffer * buffer, struct ggml_tensor * node) {
|
||||
break;
|
||||
}
|
||||
} else {
|
||||
//printf("allocating tensor %s\n", node->name);
|
||||
// see if we can reuse a parent's buffer (inplace)
|
||||
for (int i = 0; i < GGML_MAX_SRC; i++) {
|
||||
struct ggml_tensor * parent = node->src[i];
|
||||
@ -897,7 +844,11 @@ void allocate_node(struct ggml_buffer * buffer, struct ggml_tensor * node) {
|
||||
}
|
||||
}
|
||||
|
||||
void ggml_graph_allocate_tensors_n(struct ggml_cgraph ** graphs, int n_graphs, struct ggml_context * ctx) {
|
||||
static void ggml_graph_allocate_tensors_n(
|
||||
struct ggml_cgraph ** graphs, int n_graphs,
|
||||
struct ggml_tensor *** inputs, struct ggml_tensor *** outputs,
|
||||
struct ggml_context * ctx) {
|
||||
|
||||
struct ggml_buffer * buffer = ggml_get_buffer(ctx);
|
||||
|
||||
// reset counters
|
||||
@ -922,6 +873,7 @@ void ggml_graph_allocate_tensors_n(struct ggml_cgraph ** graphs, int n_graphs, s
|
||||
struct ggml_cgraph * gf = graphs[g];
|
||||
for (int i = 0; i < gf->n_nodes; i++) {
|
||||
struct ggml_tensor * node = gf->nodes[i];
|
||||
|
||||
if (ggml_is_view(node)) {
|
||||
struct ggml_tensor * ancestor = node;
|
||||
do {
|
||||
@ -929,19 +881,13 @@ void ggml_graph_allocate_tensors_n(struct ggml_cgraph ** graphs, int n_graphs, s
|
||||
} while (ggml_is_view(ancestor));
|
||||
ancestor->n_views += 1;
|
||||
}
|
||||
|
||||
for (int j = 0; j < GGML_MAX_SRC; j++) {
|
||||
struct ggml_tensor * parent = node->src[j];
|
||||
if (parent == NULL) {
|
||||
break;
|
||||
}
|
||||
parent->n_children += 1;
|
||||
if (ggml_is_view(parent)) {
|
||||
struct ggml_tensor * ancestor = parent;
|
||||
do {
|
||||
ancestor = view_parent(ancestor);
|
||||
} while (ggml_is_view(ancestor));
|
||||
ancestor->n_views += 1;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
@ -949,9 +895,16 @@ void ggml_graph_allocate_tensors_n(struct ggml_cgraph ** graphs, int n_graphs, s
|
||||
// allocate tensors
|
||||
for (int g = 0; g < n_graphs; g++) {
|
||||
struct ggml_cgraph * gf = graphs[g];
|
||||
AT_PRINTF("####### graph %d/%d\n", g, n_graphs);
|
||||
if (inputs != NULL && inputs[g] != NULL) {
|
||||
for (int i = 0; inputs[g][i] != NULL; i++) {
|
||||
struct ggml_tensor * input = inputs[g][i];
|
||||
AT_PRINTF("input: %s\n", input->name);
|
||||
allocate_node(buffer, input);
|
||||
}
|
||||
}
|
||||
for (int i = 0; i < gf->n_nodes; i++) {
|
||||
struct ggml_tensor * node = gf->nodes[i];
|
||||
bool is_view = ggml_is_view(node);
|
||||
|
||||
// allocate parents (leafs)
|
||||
for (int j = 0; j < GGML_MAX_SRC; j++) {
|
||||
@ -959,19 +912,7 @@ void ggml_graph_allocate_tensors_n(struct ggml_cgraph ** graphs, int n_graphs, s
|
||||
if (parent == NULL) {
|
||||
break;
|
||||
}
|
||||
if (parent->freed) {
|
||||
printf("!!!!!! tensor %s used after free\n", parent->name);
|
||||
}
|
||||
if (ggml_is_view(parent)) {
|
||||
struct ggml_tensor * ancestor = parent;
|
||||
do {
|
||||
ancestor = view_parent(ancestor);
|
||||
} while (ggml_is_view(ancestor));
|
||||
if (ancestor->freed) {
|
||||
printf("!!!!!! tensor %s used after free (as view %s)\n", ancestor->name, parent->name);
|
||||
}
|
||||
allocate_node(buffer, ancestor);
|
||||
}
|
||||
GGML_ASSERT(!parent->freed && "tensor used after free");
|
||||
allocate_node(buffer, parent);
|
||||
}
|
||||
|
||||
@ -998,6 +939,9 @@ void ggml_graph_allocate_tensors_n(struct ggml_cgraph ** graphs, int n_graphs, s
|
||||
break;
|
||||
}
|
||||
parent->n_children -= 1;
|
||||
|
||||
//AT_PRINTF("parent %s: %d children, %d views\n", parent->name, parent->n_children, parent->n_views);
|
||||
|
||||
if (parent->n_children == 0 && parent->n_views == 0) {
|
||||
if (ggml_is_view(parent)) {
|
||||
struct ggml_tensor * ancestor = parent;
|
||||
@ -1005,34 +949,36 @@ void ggml_graph_allocate_tensors_n(struct ggml_cgraph ** graphs, int n_graphs, s
|
||||
ancestor = view_parent(ancestor);
|
||||
} while (ggml_is_view(ancestor));
|
||||
ancestor->n_views -= 1;
|
||||
AT_PRINTF("ancestor %s: %d children, %d views\n", ancestor->name, ancestor->n_children, ancestor->n_views);
|
||||
if (ancestor->n_views == 0 && ancestor->n_children == 0 && ancestor->data != node->data) {
|
||||
//AT_PRINTF("free1\n");
|
||||
ggml_backend_buffer_tensor_free(buffer->backend_buffer, ancestor);
|
||||
}
|
||||
}
|
||||
else {
|
||||
if (parent->data != node->data) {
|
||||
//AT_PRINTF("free2\n");
|
||||
ggml_backend_buffer_tensor_free(buffer->backend_buffer, parent);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
if (is_view) {
|
||||
struct ggml_tensor * ancestor = node;
|
||||
do {
|
||||
ancestor = view_parent(ancestor);
|
||||
} while (ggml_is_view(ancestor));
|
||||
ancestor->n_views -= 1;
|
||||
if (ancestor->n_views == 0 && ancestor->n_children == 0) {
|
||||
ggml_backend_buffer_tensor_free(buffer->backend_buffer, ancestor);
|
||||
}
|
||||
}
|
||||
|
||||
AT_PRINTF("\n");
|
||||
}
|
||||
if (outputs != NULL && outputs[g] != NULL) {
|
||||
for (int i = 0; outputs[g][i] != NULL; i++) {
|
||||
struct ggml_tensor * output = outputs[g][i];
|
||||
AT_PRINTF("output: %s\n", output->name);
|
||||
ggml_backend_buffer_tensor_free(buffer->backend_buffer, output);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
#endif
|
||||
|
||||
void ggml_graph_allocate_tensors(struct ggml_cgraph * graph, struct ggml_context * ctx) {
|
||||
ggml_graph_allocate_tensors_n(&graph, 1, NULL, NULL, ctx);
|
||||
}
|
||||
|
||||
void ggml_graph_splits_allocate_tensors(struct ggml_graph_splits * splits) {
|
||||
bool visited[GGML_MAX_SPLITS] = {false};
|
||||
@ -1041,20 +987,21 @@ void ggml_graph_splits_allocate_tensors(struct ggml_graph_splits * splits) {
|
||||
struct ggml_graph_split * split = &splits->splits[i];
|
||||
struct ggml_context * ctx = split->ctx;
|
||||
struct ggml_cgraph * backend_graphs[GGML_MAX_SPLITS];
|
||||
int num_graphs = 0;
|
||||
struct ggml_tensor ** graph_inputs[GGML_MAX_SPLITS];
|
||||
struct ggml_tensor ** graph_outputs[GGML_MAX_SPLITS];
|
||||
int n_graphs = 0;
|
||||
|
||||
for (int j = i; j < splits->n_splits; j++) {
|
||||
if (splits->splits[j].ctx == ctx) {
|
||||
backend_graphs[num_graphs] = splits->splits[j].graph;
|
||||
graph_inputs[n_graphs] = splits->splits[j].dst_inputs;
|
||||
graph_outputs[n_graphs] = j < splits->n_splits - 1 ? splits->splits[j + 1].src_inputs : NULL;
|
||||
backend_graphs[n_graphs] = splits->splits[j].graph;
|
||||
visited[j] = true;
|
||||
num_graphs++;
|
||||
// TODO: need to ensure that the output tensors are never freed
|
||||
// maybe this can be done automatically in ggml_graph_allocate_tensors_n by assuming that n_childs == 0 => output tensor
|
||||
n_graphs++;
|
||||
}
|
||||
}
|
||||
//printf("allocating tensors for %s [%d graphs/%d splits]\n", ggml_backend_name(ggml_get_buffer(ctx)->backend_buffer->backend), num_graphs, splits->n_splits);
|
||||
ggml_graph_allocate_tensors_n(backend_graphs, num_graphs, ctx);
|
||||
AT_PRINTF("allocating tensors for %s [%d graphs/%d splits]\n", ggml_backend_name(ggml_get_buffer(ctx)->backend_buffer->backend), n_graphs, splits->n_splits);
|
||||
ggml_graph_allocate_tensors_n(backend_graphs, n_graphs, graph_inputs, graph_outputs, ctx);
|
||||
}
|
||||
}
|
||||
//printf("done allocating tensors\n");
|
||||
}
|
||||
|
||||
|
@ -155,7 +155,6 @@ extern "C" {
|
||||
|
||||
// graph tensor allocator
|
||||
GGML_API void ggml_graph_allocate_tensors(struct ggml_cgraph * graph, struct ggml_context * ctx);
|
||||
GGML_API void ggml_graph_allocate_tensors_n(struct ggml_cgraph ** graphs, int n_graphs, struct ggml_context * ctx);
|
||||
GGML_API void ggml_graph_splits_allocate_tensors(struct ggml_graph_splits * splits);
|
||||
|
||||
#ifdef __cplusplus
|
||||
|
@ -1390,10 +1390,10 @@ static ggml_graph_splits llama_build_graph(
|
||||
ggml_set_name(cur, "ffn_norm");
|
||||
}
|
||||
|
||||
struct ggml_tensor * tmp = ggml_mul_mat(ctx_l,
|
||||
struct ggml_tensor * rw3 = ggml_mul_mat(ctx_l,
|
||||
model.layers[il].w3,
|
||||
cur);
|
||||
ggml_set_name(tmp, "result_w3");
|
||||
ggml_set_name(rw3, "result_w3");
|
||||
|
||||
cur = ggml_mul_mat(ctx_l,
|
||||
model.layers[il].w1,
|
||||
@ -1404,7 +1404,7 @@ static ggml_graph_splits llama_build_graph(
|
||||
cur = ggml_silu(ctx_l, cur);
|
||||
ggml_set_name(cur, "silu");
|
||||
|
||||
cur = ggml_mul(ctx_l, cur, tmp);
|
||||
cur = ggml_mul(ctx_l, cur, rw3);
|
||||
ggml_set_name(cur, "silu_x_result_w3");
|
||||
|
||||
cur = ggml_mul_mat(ctx_l,
|
||||
@ -1534,8 +1534,7 @@ static bool llama_eval_internal(
|
||||
// for big prompts, if BLAS is enabled, it is better to use only one thread
|
||||
// otherwise, the threads are spin-lock waiting for the BLAS calls and are degrading the performance
|
||||
n_threads = N >= 32 && ggml_cpu_has_blas() ? 1 : n_threads;
|
||||
// TODO: fix this - probably should be set during the model creation
|
||||
// ggml_backend_cpu_set_n_threads(const_cast<ggml_backend*>(model.backend_cpu), n_threads);
|
||||
ggml_backend_cpu_set_n_threads(const_cast<ggml_backend*>(model.backend_cpu), n_threads);
|
||||
|
||||
struct ggml_graph_splits splits = llama_build_graph(lctx, N, n_past, embd_input);
|
||||
|
||||
|
Loading…
Reference in New Issue
Block a user