llama : first working version

This commit is contained in:
Georgi Gerganov 2023-12-09 12:45:15 +02:00
parent af1a096bf8
commit 7ea36953ba
No known key found for this signature in database
GPG Key ID: 449E073F9DC10735
3 changed files with 14 additions and 5 deletions

9
ggml.c
View File

@ -4105,7 +4105,9 @@ struct ggml_tensor * ggml_mul_mat_id(
result->src[0] = ids; result->src[0] = ids;
result->src[1] = b; result->src[1] = b;
for (int64_t i = 0; i < n_as; i++) { // TODO: n_as is the selected experts, but it should be the total number of experts
//for (int64_t i = 0; i < n_as; i++) {
for (int64_t i = 0; i < 8; i++) {
struct ggml_tensor * a = as[i]; struct ggml_tensor * a = as[i];
GGML_ASSERT(ggml_are_same_shape(as[0], a)); GGML_ASSERT(ggml_are_same_shape(as[0], a));
GGML_ASSERT(ggml_can_mul_mat(a, b)); GGML_ASSERT(ggml_can_mul_mat(a, b));
@ -9758,7 +9760,10 @@ static void ggml_compute_forward_mul_mat_id(
for (int64_t i01 = 0; i01 < ids->ne[1]; i01++) { for (int64_t i01 = 0; i01 < ids->ne[1]; i01++) {
const int32_t row_id = *(const int32_t *) ((const char *) ids->data + i01*ids->nb[1] + id*ids->nb[0]); const int32_t row_id = *(const int32_t *) ((const char *) ids->data + i01*ids->nb[1] + id*ids->nb[0]);
GGML_ASSERT(row_id >= 0 && row_id < ids->ne[0]);
// TODO: this assert seems wrong?
//printf("row_id = %d, ids->ne[0] = %d, id = %d\n", row_id, ids->ne[0], id);
//GGML_ASSERT(row_id >= 0 && row_id < ids->ne[0]);
const struct ggml_tensor * src0_row = dst->src[row_id + 2]; const struct ggml_tensor * src0_row = dst->src[row_id + 2];
ggml_compute_forward_mul_mat(params, src0_row, src1, dst, i01, 1); ggml_compute_forward_mul_mat(params, src0_row, src1, dst, i01, 1);

2
ggml.h
View File

@ -217,7 +217,7 @@
#define GGML_MAX_DIMS 4 #define GGML_MAX_DIMS 4
#define GGML_MAX_PARAMS 1024 #define GGML_MAX_PARAMS 1024
#define GGML_MAX_CONTEXTS 64 #define GGML_MAX_CONTEXTS 64
#define GGML_MAX_SRC 6 #define GGML_MAX_SRC 10
#define GGML_MAX_NAME 64 #define GGML_MAX_NAME 64
#define GGML_MAX_OP_PARAMS 64 #define GGML_MAX_OP_PARAMS 64
#define GGML_DEFAULT_N_THREADS 4 #define GGML_DEFAULT_N_THREADS 4

View File

@ -4242,14 +4242,18 @@ struct llm_build_context {
LLM_NORM_RMS, cb, il); LLM_NORM_RMS, cb, il);
cb(cur, "ffn_norm", il); cb(cur, "ffn_norm", il);
const int n_experts_per_tok = 2; // TODO: param // TODO: param
const int n_experts = 8;
const int n_experts_per_tok = 2;
ggml_tensor * logits = ggml_mul_mat(ctx0, model.layers[il].ffn_gate_inp, cur); // [n_tokens, num_experts] ggml_tensor * logits = ggml_mul_mat(ctx0, model.layers[il].ffn_gate_inp, cur); // [n_tokens, num_experts]
ggml_tensor * probs = ggml_soft_max(ctx0, logits); // [n_tokens, num_experts] ggml_tensor * probs = ggml_soft_max(ctx0, logits); // [n_tokens, num_experts]
// select experts // select experts
ggml_tensor * selected_experts = ggml_top_k(ctx0, probs, n_experts_per_tok); // [n_tokens, num_experts_per_tok] ggml_tensor * selected_experts = ggml_top_k(ctx0, probs, n_experts_per_tok); // [n_tokens, num_experts_per_tok]
ggml_tensor * weights = ggml_get_rows(ctx0, probs, selected_experts); // [n_tokens, num_experts_per_tok, 1] //ggml_tensor * weights = ggml_get_rows(ctx0, probs, selected_experts); // [n_tokens, num_experts_per_tok, 1]
ggml_tensor * weights = ggml_get_rows(ctx0,
ggml_reshape_3d(ctx0, probs, 1, n_experts, n_tokens), selected_experts);
weights = ggml_div(ctx0, weights, ggml_sum_rows(ctx0, weights)); // [n_tokens, num_experts_per_tok, 1] weights = ggml_div(ctx0, weights, ggml_sum_rows(ctx0, weights)); // [n_tokens, num_experts_per_tok, 1]
// compute expert outputs // compute expert outputs