llama : mmap

ggml-ci
This commit is contained in:
Georgi Gerganov 2024-12-22 16:41:46 +02:00
parent 4c5b321042
commit 7eb858aab4
No known key found for this signature in database
GPG Key ID: 449E073F9DC10735
11 changed files with 676 additions and 619 deletions

View File

@ -434,12 +434,12 @@ static void print_matrix(struct ggml_tensor * probs) {
} }
} }
struct llama_file { struct my_llama_file {
// use FILE * so we don't have to re-open the file to mmap // use FILE * so we don't have to re-open the file to mmap
FILE * fp; FILE * fp;
size_t size; size_t size;
llama_file(const char * fname, const char * mode) { my_llama_file(const char * fname, const char * mode) {
fp = std::fopen(fname, mode); fp = std::fopen(fname, mode);
if (fp == NULL) { if (fp == NULL) {
size = 0; size = 0;
@ -500,7 +500,7 @@ struct llama_file {
return std::string(chars.data(), len); return std::string(chars.data(), len);
} }
~llama_file() { ~my_llama_file() {
if (fp) { if (fp) {
std::fclose(fp); std::fclose(fp);
} }
@ -508,7 +508,7 @@ struct llama_file {
}; };
static bool is_ggml_file(const char * filename) { static bool is_ggml_file(const char * filename) {
llama_file file(filename, "rb"); my_llama_file file(filename, "rb");
if (file.size < 4) { if (file.size < 4) {
return false; return false;
} }
@ -576,7 +576,7 @@ static void load_vocab(const char * filename, const Config * config, struct my_l
} else { } else {
// assume llama2.c vocabulary // assume llama2.c vocabulary
LOG_INF("%s: Assuming llama2.c vocabulary since %s is not a gguf file\n", __func__, filename); LOG_INF("%s: Assuming llama2.c vocabulary since %s is not a gguf file\n", __func__, filename);
llama_file file(filename, "rb"); my_llama_file file(filename, "rb");
if (!file.fp) { if (!file.fp) {
die_fmt("%s: %s", strerror(errno), filename); die_fmt("%s: %s", strerror(errno), filename);
} }

View File

@ -7,6 +7,7 @@
#include <vector> #include <vector>
#include <map> #include <map>
#include <algorithm>
// //
// llama_adapter_vec // llama_adapter_vec

View File

@ -1,6 +1,7 @@
#pragma once #pragma once
#include <map> #include <map>
#include <string>
// //
// gguf constants (sync with gguf.py) // gguf constants (sync with gguf.py)

View File

@ -3,6 +3,8 @@
#include "llama.h" #include "llama.h"
#include <vector> #include <vector>
#include <cstring>
#include <algorithm>
// very similar to llama_batch, // very similar to llama_batch,
// but has more metadata about sequences // but has more metadata about sequences

View File

@ -799,7 +799,7 @@ static bool llama_state_load_file_internal(struct llama_context * ctx, const cha
// restore the context state // restore the context state
{ {
const size_t n_state_size_cur = file.size - file.tell(); const size_t n_state_size_cur = file.size() - file.tell();
llama_data_read_file data_ctx(&file); llama_data_read_file data_ctx(&file);
const size_t n_read = llama_state_set_data_internal(ctx, data_ctx); const size_t n_read = llama_state_set_data_internal(ctx, data_ctx);
@ -936,7 +936,7 @@ static size_t llama_state_seq_load_file_internal(struct llama_context * ctx, con
// restore the context state // restore the context state
{ {
const size_t state_size = file.size - file.tell(); const size_t state_size = file.size() - file.tell();
llama_data_read_file data_ctx(&file); llama_data_read_file data_ctx(&file);
const size_t nread = llama_state_seq_set_data_internal(ctx, data_ctx, dest_seq_id); const size_t nread = llama_state_seq_set_data_internal(ctx, data_ctx, dest_seq_id);
if (!nread) { if (!nread) {

View File

@ -24,6 +24,7 @@ LLAMA_ATTRIBUTE_FORMAT(2, 3)
void llama_log_internal (ggml_log_level level, const char * format, ...); void llama_log_internal (ggml_log_level level, const char * format, ...);
void llama_log_callback_default(ggml_log_level level, const char * text, void * user_data); void llama_log_callback_default(ggml_log_level level, const char * text, void * user_data);
// TODO: rename to llama_format ?
LLAMA_ATTRIBUTE_FORMAT(1, 2) LLAMA_ATTRIBUTE_FORMAT(1, 2)
std::string format(const char * fmt, ...); std::string format(const char * fmt, ...);

View File

@ -8,6 +8,7 @@
#include <set> #include <set>
#include <vector> #include <vector>
#include <limits>
struct llama_kv_cell { struct llama_kv_cell {
llama_pos pos = -1; llama_pos pos = -1;

View File

@ -1,3 +1,584 @@
#include "llama-mmap.h" #include "llama-mmap.h"
#include "llama-impl.h"
#include "ggml.h"
#include <cstring>
#include <climits>
#ifdef __has_include
#if __has_include(<unistd.h>)
#include <unistd.h>
#if defined(_POSIX_MAPPED_FILES)
#include <sys/mman.h>
#include <fcntl.h>
#endif
#if defined(_POSIX_MEMLOCK_RANGE)
#include <sys/resource.h>
#endif
#endif
#endif
#if defined(_WIN32)
#define WIN32_LEAN_AND_MEAN
#ifndef NOMINMAX
#define NOMINMAX
#endif
#include <windows.h>
#ifndef PATH_MAX
#define PATH_MAX MAX_PATH
#endif
#include <io.h>
#endif
// TODO: consider moving to llama-impl.h if needed in more places
#if defined(_WIN32)
std::string llama_format_win_err(DWORD err) {
LPSTR buf;
size_t size = FormatMessageA(FORMAT_MESSAGE_ALLOCATE_BUFFER | FORMAT_MESSAGE_FROM_SYSTEM | FORMAT_MESSAGE_IGNORE_INSERTS,
NULL, err, MAKELANGID(LANG_NEUTRAL, SUBLANG_DEFAULT), (LPSTR)&buf, 0, NULL);
if (!size) {
return "FormatMessageA failed";
}
std::string ret(buf, size);
LocalFree(buf);
return ret;
}
#endif
// llama_file
struct llama_file::impl {
#if defined(_WIN32)
HANDLE fp_win32;
std::string GetErrorMessageWin32(DWORD error_code) const {
std::string ret;
LPSTR lpMsgBuf = NULL;
DWORD bufLen = FormatMessageA(FORMAT_MESSAGE_ALLOCATE_BUFFER | FORMAT_MESSAGE_FROM_SYSTEM | FORMAT_MESSAGE_IGNORE_INSERTS,
NULL, error_code, MAKELANGID(LANG_NEUTRAL, SUBLANG_DEFAULT), (LPSTR)&lpMsgBuf, 0, NULL);
if (!bufLen) {
ret = format("Win32 error code: %lx", error_code);
} else {
ret = lpMsgBuf;
LocalFree(lpMsgBuf);
}
return ret;
}
impl(const char * fname, const char * mode) {
fp = ggml_fopen(fname, mode);
if (fp == NULL) {
throw std::runtime_error(format("failed to open %s: %s", fname, strerror(errno)));
}
fp_win32 = (HANDLE) _get_osfhandle(_fileno(fp));
seek(0, SEEK_END);
size = tell();
seek(0, SEEK_SET);
}
size_t tell() const {
LARGE_INTEGER li;
li.QuadPart = 0;
BOOL ret = SetFilePointerEx(fp_win32, li, &li, FILE_CURRENT);
if (!ret) {
throw std::runtime_error(format("read error: %s", GetErrorMessageWin32(GetLastError()).c_str()));
}
return li.QuadPart;
}
void seek(size_t offset, int whence) const {
static_assert(SEEK_SET == FILE_BEGIN, "SEEK_SET != FILE_BEGIN");
static_assert(SEEK_CUR == FILE_CURRENT, "SEEK_CUR != FILE_CURRENT");
static_assert(SEEK_END == FILE_END, "SEEK_END != FILE_END");
LARGE_INTEGER li;
li.QuadPart = offset;
BOOL ret = SetFilePointerEx(fp_win32, li, NULL, whence);
if (!ret) {
throw std::runtime_error(format("read error: %s", GetErrorMessageWin32(GetLastError()).c_str()));
}
}
void read_raw(void * ptr, size_t len) const {
size_t bytes_read = 0;
while (bytes_read < len) {
size_t chunk_size = std::min<size_t>(len - bytes_read, 64*1024*1024);
DWORD chunk_read = 0;
BOOL result = ReadFile(fp_win32, reinterpret_cast<char*>(ptr) + bytes_read, chunk_size, &chunk_read, NULL);
if (!result) {
throw std::runtime_error(format("read error: %s", GetErrorMessageWin32(GetLastError()).c_str()));
}
if (chunk_read < chunk_size || chunk_read == 0) {
throw std::runtime_error("unexpectedly reached end of file");
}
bytes_read += chunk_read;
}
}
uint32_t read_u32() const {
uint32_t val;
read_raw(&val, sizeof(val));
return val;
}
void write_raw(const void * ptr, size_t len) const {
size_t bytes_written = 0;
while (bytes_written < len) {
size_t chunk_size = std::min<size_t>(len - bytes_written, 64*1024*1024);
DWORD chunk_written = 0;
BOOL result = WriteFile(fp_win32, reinterpret_cast<char const*>(ptr) + bytes_written, chunk_size, &chunk_written, NULL);
if (!result) {
throw std::runtime_error(format("write error: %s", GetErrorMessageWin32(GetLastError()).c_str()));
}
if (chunk_written < chunk_size || chunk_written == 0) {
throw std::runtime_error("unexpectedly failed to write bytes");
}
bytes_written += chunk_written;
}
}
void write_u32(uint32_t val) const {
write_raw(&val, sizeof(val));
}
~impl() {
if (fp) {
std::fclose(fp);
}
}
#else
impl(const char * fname, const char * mode) {
fp = ggml_fopen(fname, mode);
if (fp == NULL) {
throw std::runtime_error(format("failed to open %s: %s", fname, strerror(errno)));
}
seek(0, SEEK_END);
size = tell();
seek(0, SEEK_SET);
}
size_t tell() const {
// TODO: this ifdef is never true?
#ifdef _WIN32
__int64 ret = _ftelli64(fp);
#else
long ret = std::ftell(fp);
#endif
if (ret == -1) {
throw std::runtime_error(format("ftell error: %s", strerror(errno)));
}
return (size_t) ret;
}
void seek(size_t offset, int whence) const {
// TODO: this ifdef is never true?
#ifdef _WIN32
int ret = _fseeki64(fp, (__int64) offset, whence);
#else
int ret = std::fseek(fp, (long) offset, whence);
#endif
if (ret != 0) {
throw std::runtime_error(format("seek error: %s", strerror(errno)));
}
}
void read_raw(void * ptr, size_t len) const {
if (len == 0) {
return;
}
errno = 0;
std::size_t ret = std::fread(ptr, len, 1, fp);
if (ferror(fp)) {
throw std::runtime_error(format("read error: %s", strerror(errno)));
}
if (ret != 1) {
throw std::runtime_error("unexpectedly reached end of file");
}
}
uint32_t read_u32() const {
uint32_t ret;
read_raw(&ret, sizeof(ret));
return ret;
}
void write_raw(const void * ptr, size_t len) const {
if (len == 0) {
return;
}
errno = 0;
size_t ret = std::fwrite(ptr, len, 1, fp);
if (ret != 1) {
throw std::runtime_error(format("write error: %s", strerror(errno)));
}
}
void write_u32(uint32_t val) const {
write_raw(&val, sizeof(val));
}
~impl() {
if (fp) {
std::fclose(fp);
}
}
#endif
FILE * fp;
size_t size;
};
llama_file::llama_file(const char * fname, const char * mode) : pimpl(std::make_unique<impl>(fname, mode)) {}
llama_file::~llama_file() = default;
size_t llama_file::tell() const { return pimpl->tell(); }
size_t llama_file::size() const { return pimpl->size; }
int llama_file::fileno() const {
#ifdef _WIN32
return _fileno(pimpl->fp);
#else
return ::fileno(pimpl->fp);
#endif
}
void llama_file::seek(size_t offset, int whence) const { pimpl->seek(offset, whence); }
void llama_file::read_raw(void * ptr, size_t len) const { pimpl->read_raw(ptr, len); }
uint32_t llama_file::read_u32() const { return pimpl->read_u32(); }
void llama_file::write_raw(const void * ptr, size_t len) const { pimpl->write_raw(ptr, len); }
void llama_file::write_u32(uint32_t val) const { pimpl->write_u32(val); }
// llama_mmap
struct llama_mmap::impl {
#ifdef _POSIX_MAPPED_FILES
std::vector<std::pair<size_t, size_t>> mapped_fragments;
impl(struct llama_file * file, size_t prefetch, bool numa) {
size = file->size();
int fd = file->fileno();
int flags = MAP_SHARED;
if (numa) { prefetch = 0; }
#ifdef __linux__
if (posix_fadvise(fd, 0, 0, POSIX_FADV_SEQUENTIAL)) {
LLAMA_LOG_WARN("warning: posix_fadvise(.., POSIX_FADV_SEQUENTIAL) failed: %s\n",
strerror(errno));
}
if (prefetch) { flags |= MAP_POPULATE; }
#endif
addr = mmap(NULL, file->size(), PROT_READ, flags, fd, 0);
if (addr == MAP_FAILED) {
throw std::runtime_error(format("mmap failed: %s", strerror(errno)));
}
if (prefetch > 0) {
if (posix_madvise(addr, std::min(file->size(), prefetch), POSIX_MADV_WILLNEED)) {
LLAMA_LOG_WARN("warning: posix_madvise(.., POSIX_MADV_WILLNEED) failed: %s\n",
strerror(errno));
}
}
if (numa) {
if (posix_madvise(addr, file->size(), POSIX_MADV_RANDOM)) {
LLAMA_LOG_WARN("warning: posix_madvise(.., POSIX_MADV_RANDOM) failed: %s\n",
strerror(errno));
}
}
mapped_fragments.emplace_back(0, file->size());
}
static void align_range(size_t * first, size_t * last, size_t page_size) {
size_t offset_in_page = *first & (page_size - 1);
size_t offset_to_page = offset_in_page == 0 ? 0 : page_size - offset_in_page;
*first += offset_to_page;
*last = *last & ~(page_size - 1);
if (*last <= *first) {
*last = *first;
}
}
void unmap_fragment(size_t first, size_t last) {
int page_size = sysconf(_SC_PAGESIZE);
align_range(&first, &last, page_size);
size_t len = last - first;
if (len == 0) {
return;
}
GGML_ASSERT(first % page_size == 0);
GGML_ASSERT(last % page_size == 0);
GGML_ASSERT(last > first);
void * next_page_start = (uint8_t *) addr + first;
if (munmap(next_page_start, len)) {
LLAMA_LOG_WARN("warning: munmap failed: %s\n", strerror(errno));
}
std::vector<std::pair<size_t, size_t>> new_mapped_fragments;
for (const auto & frag : mapped_fragments) {
if (frag.first < first && frag.second > last) {
new_mapped_fragments.emplace_back(frag.first, first);
new_mapped_fragments.emplace_back(last, frag.second);
} else if (frag.first < first && frag.second > first) {
new_mapped_fragments.emplace_back(frag.first, first);
} else if (frag.first < last && frag.second > last) {
new_mapped_fragments.emplace_back(last, frag.second);
} else if (frag.first >= first && frag.second <= last) {
} else {
new_mapped_fragments.push_back(frag);
}
}
mapped_fragments = std::move(new_mapped_fragments);
}
~impl() {
for (const auto & frag : mapped_fragments) {
if (munmap((char *) addr + frag.first, frag.second - frag.first)) {
LLAMA_LOG_WARN("warning: munmap failed: %s\n", strerror(errno));
}
}
}
#elif defined(_WIN32)
impl(struct llama_file * file, size_t prefetch, bool numa) {
GGML_UNUSED(numa);
size = file->size();
HANDLE hFile = (HANDLE) _get_osfhandle(file->fileno());
HANDLE hMapping = CreateFileMappingA(hFile, NULL, PAGE_READONLY, 0, 0, NULL);
if (hMapping == NULL) {
DWORD error = GetLastError();
throw std::runtime_error(format("CreateFileMappingA failed: %s", llama_format_win_err(error).c_str()));
}
addr = MapViewOfFile(hMapping, FILE_MAP_READ, 0, 0, 0);
DWORD error = GetLastError();
CloseHandle(hMapping);
if (addr == NULL) {
throw std::runtime_error(format("MapViewOfFile failed: %s", llama_format_win_err(error).c_str()));
}
if (prefetch > 0) {
#if _WIN32_WINNT >= 0x602
BOOL (WINAPI *pPrefetchVirtualMemory) (HANDLE, ULONG_PTR, PWIN32_MEMORY_RANGE_ENTRY, ULONG);
HMODULE hKernel32 = GetModuleHandleW(L"kernel32.dll");
pPrefetchVirtualMemory = (decltype(pPrefetchVirtualMemory))(void *) GetProcAddress(hKernel32, "PrefetchVirtualMemory");
if (pPrefetchVirtualMemory) {
WIN32_MEMORY_RANGE_ENTRY range;
range.VirtualAddress = addr;
range.NumberOfBytes = (SIZE_T) std::min(size, prefetch);
if (!pPrefetchVirtualMemory(GetCurrentProcess(), 1, &range, 0)) {
LLAMA_LOG_WARN("warning: PrefetchVirtualMemory failed: %s\n",
llama_format_win_err(GetLastError()).c_str());
}
}
#else
throw std::runtime_error("PrefetchVirtualMemory unavailable");
#endif
}
}
void unmap_fragment(size_t first, size_t last) {
GGML_UNUSED(first);
GGML_UNUSED(last);
}
~impl() {
if (!UnmapViewOfFile(addr)) {
LLAMA_LOG_WARN("warning: UnmapViewOfFile failed: %s\n",
llama_format_win_err(GetLastError()).c_str());
}
}
#else
impl(struct llama_file * file, size_t prefetch, bool numa) {
GGML_UNUSED(file);
GGML_UNUSED(prefetch);
GGML_UNUSED(numa);
throw std::runtime_error("mmap not supported");
}
void unmap_fragment(size_t first, size_t last) {
GGML_UNUSED(first);
GGML_UNUSED(last);
throw std::runtime_error("mmap not supported");
}
#endif
void * addr;
size_t size;
};
llama_mmap::llama_mmap(struct llama_file * file, size_t prefetch, bool numa) : pimpl(std::make_unique<impl>(file, prefetch, numa)) {}
llama_mmap::~llama_mmap() = default;
size_t llama_mmap::size() const { return pimpl->size; }
void * llama_mmap::addr() const { return pimpl->addr; }
void llama_mmap::unmap_fragment(size_t first, size_t last) { pimpl->unmap_fragment(first, last); }
#if defined(_POSIX_MEMLOCK_RANGE) || defined(_WIN32)
const bool llama_mmap::SUPPORTED = true;
#else
const bool llama_mmap::SUPPORTED = false;
#endif
// llama_mlock
struct llama_mlock::impl {
#ifdef _POSIX_MEMLOCK_RANGE
static size_t lock_granularity() {
return (size_t) sysconf(_SC_PAGESIZE);
}
bool raw_lock(const void * addr, size_t size) const {
if (!mlock(addr, size)) {
return true;
}
#ifdef __APPLE__
#define MLOCK_SUGGESTION \
"Try increasing the sysctl values 'vm.user_wire_limit' and 'vm.global_user_wire_limit' and/or " \
"decreasing 'vm.global_no_user_wire_amount'. Also try increasing RLIMIT_MEMLOCK (ulimit -l).\n"
#else
#define MLOCK_SUGGESTION \
"Try increasing RLIMIT_MEMLOCK ('ulimit -l' as root).\n"
#endif
char* errmsg = std::strerror(errno);
bool suggest = (errno == ENOMEM);
struct rlimit lock_limit;
if (suggest && getrlimit(RLIMIT_MEMLOCK, &lock_limit)) {
suggest = false;
}
if (suggest && (lock_limit.rlim_max > lock_limit.rlim_cur + size)) {
suggest = false;
}
LLAMA_LOG_WARN("warning: failed to mlock %zu-byte buffer (after previously locking %zu bytes): %s\n%s",
size, this->size, errmsg, suggest ? MLOCK_SUGGESTION : "");
return false;
}
static void raw_unlock(void * addr, size_t size) {
if (munlock(addr, size)) {
LLAMA_LOG_WARN("warning: failed to munlock buffer: %s\n", std::strerror(errno));
}
}
#elif defined(_WIN32)
static size_t lock_granularity() {
SYSTEM_INFO si;
GetSystemInfo(&si);
return (size_t) si.dwPageSize;
}
bool raw_lock(void * ptr, size_t len) const {
for (int tries = 1; ; tries++) {
if (VirtualLock(ptr, len)) {
return true;
}
if (tries == 2) {
LLAMA_LOG_WARN("warning: failed to VirtualLock %zu-byte buffer (after previously locking %zu bytes): %s\n",
len, size, llama_format_win_err(GetLastError()).c_str());
return false;
}
SIZE_T min_ws_size, max_ws_size;
if (!GetProcessWorkingSetSize(GetCurrentProcess(), &min_ws_size, &max_ws_size)) {
LLAMA_LOG_WARN("warning: GetProcessWorkingSetSize failed: %s\n",
llama_format_win_err(GetLastError()).c_str());
return false;
}
size_t increment = len + 1048576;
min_ws_size += increment;
max_ws_size += increment;
if (!SetProcessWorkingSetSize(GetCurrentProcess(), min_ws_size, max_ws_size)) {
LLAMA_LOG_WARN("warning: SetProcessWorkingSetSize failed: %s\n",
llama_format_win_err(GetLastError()).c_str());
return false;
}
}
}
static void raw_unlock(void * ptr, size_t len) {
if (!VirtualUnlock(ptr, len)) {
LLAMA_LOG_WARN("warning: failed to VirtualUnlock buffer: %s\n",
llama_format_win_err(GetLastError()).c_str());
}
}
#else
static size_t lock_granularity() {
return (size_t) 65536;
}
bool raw_lock(const void * addr, size_t len) const {
LLAMA_LOG_WARN("warning: mlock not supported on this system\n");
return false;
}
static void raw_unlock(const void * addr, size_t len) {}
#endif
impl() : addr(NULL), size(0), failed_already(false) {}
void init(void * ptr) {
GGML_ASSERT(addr == NULL && size == 0);
addr = ptr;
}
void grow_to(size_t target_size) {
GGML_ASSERT(addr);
if (failed_already) {
return;
}
size_t granularity = lock_granularity();
target_size = (target_size + granularity - 1) & ~(granularity - 1);
if (target_size > size) {
if (raw_lock((uint8_t *) addr + size, target_size - size)) {
size = target_size;
} else {
failed_already = true;
}
}
}
void * addr;
size_t size;
bool failed_already;
};
llama_mlock::llama_mlock() : pimpl(std::make_unique<impl>()) {}
llama_mlock::~llama_mlock() = default;
void llama_mlock::init(void * ptr) { pimpl->init(ptr); }
void llama_mlock::grow_to(size_t target_size) { pimpl->grow_to(target_size); }
#if defined(_POSIX_MEMLOCK_RANGE) || defined(_WIN32)
const bool llama_mlock::SUPPORTED = true;
#else
const bool llama_mlock::SUPPORTED = false;
#endif
size_t llama_path_max() {
return PATH_MAX;
}

View File

@ -1,585 +1,67 @@
#pragma once #pragma once
#include "llama-impl.h" #include <memory>
#include <vector>
#include "ggml.h" struct llama_file;
struct llama_mmap;
struct llama_mlock;
#ifdef __has_include using llama_files = std::vector<std::unique_ptr<llama_file>>;
#if __has_include(<unistd.h>) using llama_mmaps = std::vector<std::unique_ptr<llama_mmap>>;
#include <unistd.h>
#if defined(_POSIX_MAPPED_FILES)
#include <sys/mman.h>
#include <fcntl.h>
#endif
#if defined(_POSIX_MEMLOCK_RANGE)
#include <sys/resource.h>
#endif
#endif
#endif
#if defined(_WIN32)
#define WIN32_LEAN_AND_MEAN
#ifndef NOMINMAX
#define NOMINMAX
#endif
#include <windows.h>
#ifndef PATH_MAX
#define PATH_MAX MAX_PATH
#endif
#include <io.h>
#endif
struct llama_file {
#if defined(_WIN32)
// use FILE * so we don't have to re-open the file to mmap
FILE * fp;
HANDLE fp_win32;
size_t size;
private:
std::string GetErrorMessageWin32(DWORD error_code) const {
std::string ret;
LPSTR lpMsgBuf = NULL;
DWORD bufLen = FormatMessageA(FORMAT_MESSAGE_ALLOCATE_BUFFER | FORMAT_MESSAGE_FROM_SYSTEM | FORMAT_MESSAGE_IGNORE_INSERTS,
NULL, error_code, MAKELANGID(LANG_NEUTRAL, SUBLANG_DEFAULT), (LPSTR)&lpMsgBuf, 0, NULL);
if (!bufLen) {
ret = format("Win32 error code: %lx", error_code);
} else {
ret = lpMsgBuf;
LocalFree(lpMsgBuf);
}
return ret;
}
public:
llama_file(const char * fname, const char * mode) {
fp = ggml_fopen(fname, mode);
if (fp == NULL) {
throw std::runtime_error(format("failed to open %s: %s", fname, strerror(errno)));
}
fp_win32 = (HANDLE) _get_osfhandle(_fileno(fp));
seek(0, SEEK_END);
size = tell();
seek(0, SEEK_SET);
}
size_t tell() const {
// SetFilePointerEx returns the current position when seeking relative 0 bytes
LARGE_INTEGER li;
li.QuadPart = 0;
BOOL ret = SetFilePointerEx(fp_win32, li, &li, FILE_CURRENT);
if (!ret) {
throw std::runtime_error(format("read error: %s", GetErrorMessageWin32(GetLastError()).c_str()));
}
return li.QuadPart;
}
void seek(size_t offset, int whence) const {
// no need to convert SEEK_* to FILE_*. The enums are the same.
// Still, keep static asserts to avoid failures in the future.
static_assert(SEEK_SET == FILE_BEGIN, "SEEK_SET != FILE_BEGIN");
static_assert(SEEK_CUR == FILE_CURRENT, "SEEK_CUR != FILE_CURRENT");
static_assert(SEEK_END == FILE_END, "SEEK_END != FILE_END");
LARGE_INTEGER li;
li.QuadPart = offset;
BOOL ret = SetFilePointerEx(fp_win32, li, NULL, whence);
if (!ret) {
throw std::runtime_error(format("read error: %s", GetErrorMessageWin32(GetLastError()).c_str()));
}
}
void read_raw(void * ptr, size_t len) const {
// On Win32 ReadFile is significant faster than fread which is again significant faster than std::fstream. Thus
// use the Win32 API to do file io instead of the C/C++ library functions.
// There are conditions under which ReadFile cannot read chunks >64MB.
// Thus split the operation into smaller chunks if len exceeds this limit.
size_t bytes_read = 0;
while (bytes_read < len) {
size_t chunk_size = std::min<size_t>(len - bytes_read, 64*1024*1024);
DWORD chunk_read = 0;
BOOL result = ReadFile(fp_win32, reinterpret_cast<char*>(ptr) + bytes_read, chunk_size, &chunk_read, NULL);
if (!result) {
throw std::runtime_error(format("read error: %s", GetErrorMessageWin32(GetLastError()).c_str()));
}
if (chunk_read < chunk_size || chunk_read == 0) {
throw std::runtime_error("unexpectedly reached end of file");
}
bytes_read += chunk_read;
} ;
}
uint32_t read_u32() const {
uint32_t val;
read_raw(&val, sizeof(val));
return val;
}
void write_raw(const void * ptr, size_t len) const {
// There are conditions under which WriteFile cannot write chunks >64MB.
// Thus split the operation into smaller chunks if len exceeds this limit.
size_t bytes_written = 0;
while (bytes_written < len) {
size_t chunk_size = std::min<size_t>(len - bytes_written, 64*1024*1024);
DWORD chunk_written = 0;
BOOL result = WriteFile(fp_win32, reinterpret_cast<char const*>(ptr) + bytes_written, chunk_size, &chunk_written, NULL);
if (!result) {
throw std::runtime_error(format("write error: %s", GetErrorMessageWin32(GetLastError()).c_str()));
}
if (chunk_written < chunk_size || chunk_written == 0) {
throw std::runtime_error("unexpectedly failed to write bytes");
}
bytes_written += chunk_written;
}
}
void write_u32(std::uint32_t val) const {
write_raw(&val, sizeof(val));
}
~llama_file() {
if (fp) {
std::fclose(fp);
}
}
#else
// use FILE * so we don't have to re-open the file to mmap
FILE * fp;
size_t size;
llama_file(const char * fname, const char * mode) {
fp = ggml_fopen(fname, mode);
if (fp == NULL) {
throw std::runtime_error(format("failed to open %s: %s", fname, strerror(errno)));
}
seek(0, SEEK_END);
size = tell();
seek(0, SEEK_SET);
}
size_t tell() const {
#ifdef _WIN32
__int64 ret = _ftelli64(fp);
#else
long ret = std::ftell(fp);
#endif
if (ret == -1) {
throw std::runtime_error(format("ftell error: %s", strerror(errno)));
}
return (size_t) ret;
}
void seek(size_t offset, int whence) const {
#ifdef _WIN32
int ret = _fseeki64(fp, (__int64) offset, whence);
#else
int ret = std::fseek(fp, (long) offset, whence);
#endif
if (ret != 0) {
throw std::runtime_error(format("seek error: %s", strerror(errno)));
}
}
void read_raw(void * ptr, size_t len) const {
if (len == 0) {
return;
}
errno = 0;
std::size_t ret = std::fread(ptr, len, 1, fp);
if (ferror(fp)) {
throw std::runtime_error(format("read error: %s", strerror(errno)));
}
if (ret != 1) {
throw std::runtime_error("unexpectedly reached end of file");
}
}
uint32_t read_u32() const {
uint32_t ret;
read_raw(&ret, sizeof(ret));
return ret;
}
void write_raw(const void * ptr, size_t len) const {
if (len == 0) {
return;
}
errno = 0;
size_t ret = std::fwrite(ptr, len, 1, fp);
if (ret != 1) {
throw std::runtime_error(format("write error: %s", strerror(errno)));
}
}
void write_u32(std::uint32_t val) const {
write_raw(&val, sizeof(val));
}
~llama_file() {
if (fp) {
std::fclose(fp);
}
}
#endif
};
using llama_files = std::vector<std::unique_ptr<llama_file>>;
struct llama_mmap {
void * addr;
size_t size;
llama_mmap(const llama_mmap &) = delete;
#ifdef _POSIX_MAPPED_FILES
static constexpr bool SUPPORTED = true;
// list of mapped fragments (first_offset, last_offset)
std::vector<std::pair<size_t, size_t>> mapped_fragments;
llama_mmap(struct llama_file * file, size_t prefetch = (size_t) -1 /* -1 = max value */, bool numa = false) {
size = file->size;
int fd = fileno(file->fp);
int flags = MAP_SHARED;
// prefetch/readahead impairs performance on NUMA systems
if (numa) { prefetch = 0; }
#ifdef __linux__
// advise the kernel to read the file sequentially (increases readahead)
if (posix_fadvise(fd, 0, 0, POSIX_FADV_SEQUENTIAL)) {
LLAMA_LOG_WARN("warning: posix_fadvise(.., POSIX_FADV_SEQUENTIAL) failed: %s\n",
strerror(errno));
}
if (prefetch) { flags |= MAP_POPULATE; }
#endif
addr = mmap(NULL, file->size, PROT_READ, flags, fd, 0);
if (addr == MAP_FAILED) { // NOLINT
throw std::runtime_error(format("mmap failed: %s", strerror(errno)));
}
if (prefetch > 0) {
// advise the kernel to preload the mapped memory
if (posix_madvise(addr, std::min(file->size, prefetch), POSIX_MADV_WILLNEED)) {
LLAMA_LOG_WARN("warning: posix_madvise(.., POSIX_MADV_WILLNEED) failed: %s\n",
strerror(errno));
}
}
if (numa) {
// advise the kernel not to use readahead
// (because the next page might not belong on the same node)
if (posix_madvise(addr, file->size, POSIX_MADV_RANDOM)) {
LLAMA_LOG_WARN("warning: posix_madvise(.., POSIX_MADV_RANDOM) failed: %s\n",
strerror(errno));
}
}
// initialize list of mapped_fragments
mapped_fragments.emplace_back(0, file->size);
}
static void align_range(size_t * first, size_t * last, size_t page_size) {
// align first to the next page
size_t offset_in_page = *first & (page_size - 1);
size_t offset_to_page = offset_in_page == 0 ? 0 : page_size - offset_in_page;
*first += offset_to_page;
// align last to the previous page
*last = *last & ~(page_size - 1);
if (*last <= *first) {
*last = *first;
}
}
// partially unmap the file in the range [first, last)
void unmap_fragment(size_t first, size_t last) {
// note: this function must not be called multiple times with overlapping ranges
// otherwise, there is a risk of invalidating addresses that have been repurposed for other mappings
int page_size = sysconf(_SC_PAGESIZE);
align_range(&first, &last, page_size);
size_t len = last - first;
if (len == 0) {
return;
}
GGML_ASSERT(first % page_size == 0);
GGML_ASSERT(last % page_size == 0);
GGML_ASSERT(last > first);
void * next_page_start = (uint8_t *) addr + first;
// unmap the range
if (munmap(next_page_start, len)) {
LLAMA_LOG_WARN("warning: munmap failed: %s\n", strerror(errno));
}
// update the list of mapped fragments to avoid unmapping the same range again in the destructor
std::vector<std::pair<size_t, size_t>> new_mapped_fragments;
for (const auto & frag : mapped_fragments) {
if (frag.first < first && frag.second > last) {
// the range is in the middle of the fragment, split it
new_mapped_fragments.emplace_back(frag.first, first);
new_mapped_fragments.emplace_back(last, frag.second);
} else if (frag.first < first && frag.second > first) {
// the range starts in the middle of the fragment
new_mapped_fragments.emplace_back(frag.first, first);
} else if (frag.first < last && frag.second > last) {
// the range ends in the middle of the fragment
new_mapped_fragments.emplace_back(last, frag.second);
} else if (frag.first >= first && frag.second <= last) {
// the range covers the entire fragment
} else {
// the range is outside the fragment
new_mapped_fragments.push_back(frag);
}
}
mapped_fragments = std::move(new_mapped_fragments);
}
~llama_mmap() {
for (const auto & frag : mapped_fragments) {
if (munmap((char *) addr + frag.first, frag.second - frag.first)) {
LLAMA_LOG_WARN("warning: munmap failed: %s\n", strerror(errno));
}
}
}
#elif defined(_WIN32)
static constexpr bool SUPPORTED = true;
llama_mmap(struct llama_file * file, size_t prefetch = (size_t) -1, bool numa = false) {
GGML_UNUSED(numa);
size = file->size;
HANDLE hFile = (HANDLE) _get_osfhandle(_fileno(file->fp));
HANDLE hMapping = CreateFileMappingA(hFile, NULL, PAGE_READONLY, 0, 0, NULL);
if (hMapping == NULL) {
DWORD error = GetLastError();
throw std::runtime_error(format("CreateFileMappingA failed: %s", llama_format_win_err(error).c_str()));
}
addr = MapViewOfFile(hMapping, FILE_MAP_READ, 0, 0, 0);
DWORD error = GetLastError();
CloseHandle(hMapping);
if (addr == NULL) {
throw std::runtime_error(format("MapViewOfFile failed: %s", llama_format_win_err(error).c_str()));
}
if (prefetch > 0) {
#if _WIN32_WINNT >= 0x602
// PrefetchVirtualMemory is only present on Windows 8 and above, so we dynamically load it
BOOL (WINAPI *pPrefetchVirtualMemory) (HANDLE, ULONG_PTR, PWIN32_MEMORY_RANGE_ENTRY, ULONG);
HMODULE hKernel32 = GetModuleHandleW(L"kernel32.dll");
// may fail on pre-Windows 8 systems
pPrefetchVirtualMemory = (decltype(pPrefetchVirtualMemory))(void *) GetProcAddress(hKernel32, "PrefetchVirtualMemory");
if (pPrefetchVirtualMemory) {
// advise the kernel to preload the mapped memory
WIN32_MEMORY_RANGE_ENTRY range;
range.VirtualAddress = addr;
range.NumberOfBytes = (SIZE_T) std::min(size, prefetch);
if (!pPrefetchVirtualMemory(GetCurrentProcess(), 1, &range, 0)) {
LLAMA_LOG_WARN("warning: PrefetchVirtualMemory failed: %s\n",
llama_format_win_err(GetLastError()).c_str());
}
}
#else
throw std::runtime_error("PrefetchVirtualMemory unavailable");
#endif
}
}
void unmap_fragment(size_t first, size_t last) {
// not supported
GGML_UNUSED(first);
GGML_UNUSED(last);
}
~llama_mmap() {
if (!UnmapViewOfFile(addr)) {
LLAMA_LOG_WARN("warning: UnmapViewOfFile failed: %s\n",
llama_format_win_err(GetLastError()).c_str());
}
}
#else
static constexpr bool SUPPORTED = false;
llama_mmap(struct llama_file * file, size_t prefetch = -1, bool numa = false) {
GGML_UNUSED(file);
GGML_UNUSED(prefetch);
GGML_UNUSED(numa);
throw std::runtime_error("mmap not supported");
}
void unmap_fragment(size_t first, size_t last) {
GGML_UNUSED(first);
GGML_UNUSED(last);
throw std::runtime_error("mmap not supported");
}
#endif
};
using llama_mmaps = std::vector<std::unique_ptr<llama_mmap>>;
// Represents some region of memory being locked using mlock or VirtualLock;
// will automatically unlock on destruction.
struct llama_mlock {
void * addr = NULL;
size_t size = 0;
bool failed_already = false;
llama_mlock() {}
llama_mlock(const llama_mlock &) = delete;
~llama_mlock() {
if (size) {
raw_unlock(addr, size);
}
}
void init(void * ptr) {
GGML_ASSERT(addr == NULL && size == 0); // NOLINT
addr = ptr;
}
void grow_to(size_t target_size) {
GGML_ASSERT(addr);
if (failed_already) {
return;
}
size_t granularity = lock_granularity();
target_size = (target_size + granularity - 1) & ~(granularity - 1);
if (target_size > size) {
if (raw_lock((uint8_t *) addr + size, target_size - size)) {
size = target_size;
} else {
failed_already = true;
}
}
}
#ifdef _POSIX_MEMLOCK_RANGE
static constexpr bool SUPPORTED = true;
static size_t lock_granularity() {
return (size_t) sysconf(_SC_PAGESIZE);
}
#ifdef __APPLE__
#define MLOCK_SUGGESTION \
"Try increasing the sysctl values 'vm.user_wire_limit' and 'vm.global_user_wire_limit' and/or " \
"decreasing 'vm.global_no_user_wire_amount'. Also try increasing RLIMIT_MEMLOCK (ulimit -l).\n"
#else
#define MLOCK_SUGGESTION \
"Try increasing RLIMIT_MEMLOCK ('ulimit -l' as root).\n"
#endif
bool raw_lock(const void * addr, size_t size) const {
if (!mlock(addr, size)) {
return true;
}
char* errmsg = std::strerror(errno);
bool suggest = (errno == ENOMEM);
// Check if the resource limit is fine after all
struct rlimit lock_limit;
if (suggest && getrlimit(RLIMIT_MEMLOCK, &lock_limit)) {
suggest = false;
}
if (suggest && (lock_limit.rlim_max > lock_limit.rlim_cur + size)) {
suggest = false;
}
LLAMA_LOG_WARN("warning: failed to mlock %zu-byte buffer (after previously locking %zu bytes): %s\n%s",
size, this->size, errmsg, suggest ? MLOCK_SUGGESTION : "");
return false;
}
#undef MLOCK_SUGGESTION
static void raw_unlock(void * addr, size_t size) {
if (munlock(addr, size)) {
LLAMA_LOG_WARN("warning: failed to munlock buffer: %s\n", std::strerror(errno));
}
}
#elif defined(_WIN32)
static constexpr bool SUPPORTED = true;
static size_t lock_granularity() {
SYSTEM_INFO si;
GetSystemInfo(&si);
return (size_t) si.dwPageSize;
}
bool raw_lock(void * ptr, size_t len) const {
for (int tries = 1; ; tries++) {
if (VirtualLock(ptr, len)) {
return true;
}
if (tries == 2) {
LLAMA_LOG_WARN("warning: failed to VirtualLock %zu-byte buffer (after previously locking %zu bytes): %s\n",
len, size, llama_format_win_err(GetLastError()).c_str());
return false;
}
// It failed but this was only the first try; increase the working
// set size and try again.
SIZE_T min_ws_size, max_ws_size;
if (!GetProcessWorkingSetSize(GetCurrentProcess(), &min_ws_size, &max_ws_size)) {
LLAMA_LOG_WARN("warning: GetProcessWorkingSetSize failed: %s\n",
llama_format_win_err(GetLastError()).c_str());
return false;
}
// Per MSDN: "The maximum number of pages that a process can lock
// is equal to the number of pages in its minimum working set minus
// a small overhead."
// Hopefully a megabyte is enough overhead:
size_t increment = len + 1048576;
// The minimum must be <= the maximum, so we need to increase both:
min_ws_size += increment;
max_ws_size += increment;
if (!SetProcessWorkingSetSize(GetCurrentProcess(), min_ws_size, max_ws_size)) {
LLAMA_LOG_WARN("warning: SetProcessWorkingSetSize failed: %s\n",
llama_format_win_err(GetLastError()).c_str());
return false;
}
}
}
static void raw_unlock(void * ptr, size_t len) {
if (!VirtualUnlock(ptr, len)) {
LLAMA_LOG_WARN("warning: failed to VirtualUnlock buffer: %s\n",
llama_format_win_err(GetLastError()).c_str());
}
}
#else
static constexpr bool SUPPORTED = false;
static size_t lock_granularity() {
return (size_t) 65536;
}
bool raw_lock(const void * addr, size_t len) const {
LLAMA_LOG_WARN("warning: mlock not supported on this system\n");
return false;
}
static void raw_unlock(const void * addr, size_t len) {}
#endif
};
using llama_mlocks = std::vector<std::unique_ptr<llama_mlock>>; using llama_mlocks = std::vector<std::unique_ptr<llama_mlock>>;
struct llama_file {
llama_file(const char * fname, const char * mode);
~llama_file();
size_t tell() const;
size_t size() const;
int fileno() const;
void seek(size_t offset, int whence) const;
void read_raw(void * ptr, size_t len) const;
uint32_t read_u32() const;
void write_raw(const void * ptr, size_t len) const;
void write_u32(uint32_t val) const;
private:
struct impl;
std::unique_ptr<impl> pimpl;
};
struct llama_mmap {
llama_mmap(const llama_mmap &) = delete;
llama_mmap(struct llama_file * file, size_t prefetch = (size_t) -1, bool numa = false);
~llama_mmap();
size_t size() const;
void * addr() const;
void unmap_fragment(size_t first, size_t last);
static const bool SUPPORTED;
private:
struct impl;
std::unique_ptr<impl> pimpl;
};
struct llama_mlock {
llama_mlock();
~llama_mlock();
void init(void * ptr);
void grow_to(size_t target_size);
static const bool SUPPORTED;
private:
struct impl;
std::unique_ptr<impl> pimpl;
};
size_t llama_path_max();

View File

@ -5,6 +5,8 @@
#include "llama-vocab.h" #include "llama-vocab.h"
#include "llama-mmap.h" #include "llama-mmap.h"
#include "llama-impl.h"
#include "ggml-cpp.h" #include "ggml-cpp.h"
#include <array> #include <array>

View File

@ -193,20 +193,6 @@ static std::string gguf_kv_to_str(const struct gguf_context * ctx_gguf, int i) {
// llama helpers // llama helpers
// //
#if defined(_WIN32)
static std::string llama_format_win_err(DWORD err) {
LPSTR buf;
size_t size = FormatMessageA(FORMAT_MESSAGE_ALLOCATE_BUFFER | FORMAT_MESSAGE_FROM_SYSTEM | FORMAT_MESSAGE_IGNORE_INSERTS,
NULL, err, MAKELANGID(LANG_NEUTRAL, SUBLANG_DEFAULT), (LPSTR)&buf, 0, NULL);
if (!size) {
return "FormatMessageA failed";
}
std::string ret(buf, size);
LocalFree(buf);
return ret;
}
#endif
template <typename T> template <typename T>
struct no_init { struct no_init {
T value; T value;
@ -490,7 +476,7 @@ struct llama_model_loader {
} }
offs = gguf_get_data_offset(gguf_ctx) + gguf_get_tensor_offset(gguf_ctx, tensor_idx); offs = gguf_get_data_offset(gguf_ctx) + gguf_get_tensor_offset(gguf_ctx, tensor_idx);
if (offs + ggml_nbytes(tensor) < offs || offs + ggml_nbytes(tensor) > file->size) { if (offs + ggml_nbytes(tensor) < offs || offs + ggml_nbytes(tensor) > file->size()) {
throw std::runtime_error(format("tensor '%s' data is not within the file bounds, model is corrupted or incomplete", ggml_get_name(tensor))); throw std::runtime_error(format("tensor '%s' data is not within the file bounds, model is corrupted or incomplete", ggml_get_name(tensor)));
} }
} }
@ -572,8 +558,8 @@ struct llama_model_loader {
throw std::runtime_error(format("illegal split file: %d, model must be loaded with the first split", idx)); throw std::runtime_error(format("illegal split file: %d, model must be loaded with the first split", idx));
} }
char split_prefix[PATH_MAX] = {0}; std::vector<char> split_prefix(llama_path_max(), 0);
if (!llama_split_prefix(split_prefix, sizeof(split_prefix), fname.c_str(), idx, n_split)) { if (!llama_split_prefix(split_prefix.data(), split_prefix.size(), fname.c_str(), idx, n_split)) {
throw std::runtime_error(format("invalid split file: %s", fname.c_str())); throw std::runtime_error(format("invalid split file: %s", fname.c_str()));
} }
@ -581,20 +567,20 @@ struct llama_model_loader {
LLAMA_LOG_INFO("%s: loading additional %d GGUFs\n", __func__, n_split); LLAMA_LOG_INFO("%s: loading additional %d GGUFs\n", __func__, n_split);
} }
char split_path[PATH_MAX] = {0}; std::vector<char> split_path(llama_path_max(), 0);
for (idx = 1; idx < n_split; idx++) { for (idx = 1; idx < n_split; idx++) {
llama_split_path(split_path, sizeof(split_path), split_prefix, idx, n_split); llama_split_path(split_path.data(), split_path.size(), split_prefix.data(), idx, n_split);
struct gguf_init_params split_params = { struct gguf_init_params split_params = {
/*.no_alloc = */ true, /*.no_alloc = */ true,
/*.ctx = */ &ctx, /*.ctx = */ &ctx,
}; };
gguf_context_ptr ctx_gguf { gguf_init_from_file(split_path, split_params) }; gguf_context_ptr ctx_gguf { gguf_init_from_file(split_path.data(), split_params) };
if (!ctx_gguf) { if (!ctx_gguf) {
throw std::runtime_error(format("%s: failed to load GGUF split from %s\n", __func__, split_path)); throw std::runtime_error(format("%s: failed to load GGUF split from %s\n", __func__, split_path.data()));
} }
files.emplace_back(new llama_file(split_path, "rb")); files.emplace_back(new llama_file(split_path.data(), "rb"));
contexts.emplace_back(ctx); contexts.emplace_back(ctx);
// Save tensors data offset info of the shard. // Save tensors data offset info of the shard.
@ -1036,10 +1022,10 @@ struct llama_model_loader {
auto * reg = ggml_backend_dev_backend_reg(ggml_backend_dev_by_type(GGML_BACKEND_DEVICE_TYPE_CPU)); auto * reg = ggml_backend_dev_backend_reg(ggml_backend_dev_by_type(GGML_BACKEND_DEVICE_TYPE_CPU));
auto * is_numa_fn = (decltype(ggml_is_numa) *) ggml_backend_reg_get_proc_address(reg, "ggml_backend_cpu_is_numa"); auto * is_numa_fn = (decltype(ggml_is_numa) *) ggml_backend_reg_get_proc_address(reg, "ggml_backend_cpu_is_numa");
std::unique_ptr<llama_mmap> mapping(new llama_mmap(file.get(), prefetch ? -1 : 0, is_numa_fn())); std::unique_ptr<llama_mmap> mapping(new llama_mmap(file.get(), prefetch ? -1 : 0, is_numa_fn()));
mmaps_used.emplace_back(mapping->size, 0); mmaps_used.emplace_back(mapping->size(), 0);
if (mlock_mmaps) { if (mlock_mmaps) {
std::unique_ptr<llama_mlock> mlock_mmap(new llama_mlock()); std::unique_ptr<llama_mlock> mlock_mmap(new llama_mlock());
mlock_mmap->init(mapping->addr); mlock_mmap->init(mapping->addr());
mlock_mmaps->emplace_back(std::move(mlock_mmap)); mlock_mmaps->emplace_back(std::move(mlock_mmap));
} }
mappings.emplace_back(std::move(mapping)); mappings.emplace_back(std::move(mapping));
@ -1056,9 +1042,9 @@ struct llama_model_loader {
GGML_ASSERT(!mappings.empty()); GGML_ASSERT(!mappings.empty());
const auto & mapping = mappings.at(idx); const auto & mapping = mappings.at(idx);
*first = mapping->size; *first = mapping->size();
*last = 0; *last = 0;
*addr = mapping->addr; *addr = mapping->addr();
for (ggml_tensor * tensor = ggml_get_first_tensor(ctx); tensor; tensor = ggml_get_next_tensor(ctx, tensor)) { for (ggml_tensor * tensor = ggml_get_first_tensor(ctx); tensor; tensor = ggml_get_next_tensor(ctx, tensor)) {
const auto * weight = get_weight(ggml_get_name(tensor)); const auto * weight = get_weight(ggml_get_name(tensor));
if (!weight || weight->idx != idx) { if (!weight || weight->idx != idx) {
@ -1076,9 +1062,9 @@ struct llama_model_loader {
if (use_mmap) { if (use_mmap) {
const auto & mapping = mappings.at(w.idx); const auto & mapping = mappings.at(w.idx);
if (cur->data == nullptr) { if (cur->data == nullptr) {
cur->data = (uint8_t *)mapping->addr + w.offs; cur->data = (uint8_t *)mapping->addr() + w.offs;
} else { } else {
memcpy(cur->data, (uint8_t *)mapping->addr + w.offs, ggml_nbytes(cur)); memcpy(cur->data, (uint8_t *)mapping->addr() + w.offs, ggml_nbytes(cur));
} }
} else { } else {
GGML_ASSERT(cur->data != nullptr); GGML_ASSERT(cur->data != nullptr);
@ -1219,7 +1205,7 @@ struct llama_model_loader {
if (bufs.count(weight->idx)) { if (bufs.count(weight->idx)) {
buf_mmap = bufs.at(weight->idx); buf_mmap = bufs.at(weight->idx);
} }
uint8_t * data = (uint8_t *) mapping->addr + weight->offs; uint8_t * data = (uint8_t *) mapping->addr() + weight->offs;
if (check_tensors) { if (check_tensors) {
validation_result.emplace_back(std::async(std::launch::async, [cur, data, n_size] { validation_result.emplace_back(std::async(std::launch::async, [cur, data, n_size] {
@ -1317,7 +1303,7 @@ struct llama_model_loader {
auto & mapping = mappings.at(idx); auto & mapping = mappings.at(idx);
mapping->unmap_fragment(0, mmap_used.first); mapping->unmap_fragment(0, mmap_used.first);
if (mmap_used.second != 0) { if (mmap_used.second != 0) {
mapping->unmap_fragment(mmap_used.second, mapping->size); mapping->unmap_fragment(mmap_used.second, mapping->size());
} }
} }
} }
@ -15650,9 +15636,9 @@ static void llama_model_quantize_internal(const std::string & fname_inp, const s
GGML_ASSERT(ctx_outs[cur_split] && "Find uninitialized gguf_context"); GGML_ASSERT(ctx_outs[cur_split] && "Find uninitialized gguf_context");
std::string fname = fname_out; std::string fname = fname_out;
if (params->keep_split) { if (params->keep_split) {
char split_path[PATH_MAX] = {0}; std::vector<char> split_path(llama_path_max(), 0);
llama_split_path(split_path, sizeof(split_path), fname_out.c_str(), cur_split, n_split); llama_split_path(split_path.data(), split_path.size(), fname_out.c_str(), cur_split, n_split);
fname = std::string(split_path); fname = std::string(split_path.data());
} }
fout = std::ofstream(fname, std::ios::binary); fout = std::ofstream(fname, std::ios::binary);