mirror of
https://github.com/ggerganov/llama.cpp.git
synced 2025-01-26 03:12:23 +01:00
CUDA GPU acceleration for LoRAs + f16 models (#1970)
This commit is contained in:
parent
cfa0750bc9
commit
7f9753fa12
@ -416,13 +416,6 @@ bool gpt_params_parse(int argc, char ** argv, gpt_params & params) {
|
||||
exit(1);
|
||||
}
|
||||
|
||||
#ifdef GGML_USE_CUBLAS
|
||||
if (!params.lora_adapter.empty() && params.n_gpu_layers > 0) {
|
||||
fprintf(stderr, "%s: error: the simultaneous use of LoRAs and GPU acceleration is not supported", __func__);
|
||||
exit(1);
|
||||
}
|
||||
#endif // GGML_USE_CUBLAS
|
||||
|
||||
if (escape_prompt) {
|
||||
process_escapes(params.prompt);
|
||||
}
|
||||
|
53
ggml-cuda.cu
53
ggml-cuda.cu
@ -223,6 +223,15 @@ static __global__ void add_f32(const float * x, const float * y, float * dst, co
|
||||
dst[i] = x[i] + y[i];
|
||||
}
|
||||
|
||||
static __global__ void add_f16_f32_f16(const half * x, const float * y, half * dst, const int k) {
|
||||
const int i = blockDim.x*blockIdx.x + threadIdx.x;
|
||||
|
||||
if (i >= k) {
|
||||
return;
|
||||
}
|
||||
dst[i] = __hadd(x[i], __float2half(y[i]));
|
||||
}
|
||||
|
||||
static __global__ void mul_f32(const float * x, const float * y, float * dst, const int kx, const int ky) {
|
||||
const int i = blockDim.x*blockIdx.x + threadIdx.x;
|
||||
|
||||
@ -1459,6 +1468,11 @@ static void add_f32_cuda(const float * x, const float * y, float * dst, const in
|
||||
add_f32<<<num_blocks, CUDA_ADD_BLOCK_SIZE, 0, stream>>>(x, y, dst, k);
|
||||
}
|
||||
|
||||
static void add_f16_f32_f16_cuda(const half * x, const float * y, half * dst, const int k, cudaStream_t stream) {
|
||||
const int num_blocks = (k + CUDA_ADD_BLOCK_SIZE - 1) / CUDA_ADD_BLOCK_SIZE;
|
||||
add_f16_f32_f16<<<num_blocks, CUDA_ADD_BLOCK_SIZE, 0, stream>>>(x, y, dst, k);
|
||||
}
|
||||
|
||||
static void mul_f32_cuda(const float * x, const float * y, float * dst, const int kx, const int ky, cudaStream_t stream) {
|
||||
const int num_blocks = (kx + CUDA_MUL_BLOCK_SIZE - 1) / CUDA_MUL_BLOCK_SIZE;
|
||||
mul_f32<<<num_blocks, CUDA_MUL_BLOCK_SIZE, 0, stream>>>(x, y, dst, kx, ky);
|
||||
@ -1941,7 +1955,7 @@ inline void ggml_cuda_op_add(
|
||||
float * src0_ddf_i, float * src1_ddf_i, float * dst_ddf_i, int64_t i02, int64_t i01_low, int64_t i01_high, int i1,
|
||||
cudaStream_t & cudaStream_main){
|
||||
|
||||
GGML_ASSERT(src0_ddf_i != nullptr);
|
||||
GGML_ASSERT(src0_ddq_i != nullptr || src0_ddf_i != nullptr);
|
||||
GGML_ASSERT(src1_ddf_i != nullptr);
|
||||
GGML_ASSERT(dst_ddf_i != nullptr);
|
||||
|
||||
@ -1949,7 +1963,13 @@ inline void ggml_cuda_op_add(
|
||||
const int64_t i01_diff = i01_high - i01_low;
|
||||
|
||||
// compute
|
||||
add_f32_cuda(src0_ddf_i, src1_ddf_i, dst_ddf_i, ne0*i01_diff, cudaStream_main);
|
||||
if (src0->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32) {
|
||||
add_f32_cuda(src0_ddf_i, src1_ddf_i, dst_ddf_i, ne0*i01_diff, cudaStream_main);
|
||||
} else if (src0->type == GGML_TYPE_F16 && dst->type == GGML_TYPE_F16) {
|
||||
add_f16_f32_f16_cuda((half *) src0_ddq_i, src1_ddf_i, (half *) dst_ddf_i, ne0*i01_diff, cudaStream_main);
|
||||
} else {
|
||||
GGML_ASSERT(false);
|
||||
}
|
||||
CUDA_CHECK(cudaGetLastError());
|
||||
|
||||
(void) src1;
|
||||
@ -2547,8 +2567,14 @@ static void ggml_cuda_op(const ggml_tensor * src0, const ggml_tensor * src1, ggm
|
||||
}
|
||||
|
||||
void ggml_cuda_add(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
|
||||
GGML_ASSERT(src0->type == GGML_TYPE_F32 && src1->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32);
|
||||
ggml_cuda_op(src0, src1, dst, ggml_cuda_op_add, true, true);
|
||||
// ggml_cuda_add permits f16 dst even though this could in theory cause problems with the pointer arithmetic in ggml_cuda_op.
|
||||
// Due to flatten_rows == true this does in practice not make a difference however.
|
||||
// Better solution would be nice but right now that would require disproportionate changes.
|
||||
GGML_ASSERT(
|
||||
(src0->type == GGML_TYPE_F32 || src0->type == GGML_TYPE_F16) &&
|
||||
src1->type == GGML_TYPE_F32 &&
|
||||
(dst->type == GGML_TYPE_F32 || dst->type == GGML_TYPE_F16));
|
||||
ggml_cuda_op(src0, src1, dst, ggml_cuda_op_add, false, true);
|
||||
}
|
||||
|
||||
void ggml_cuda_mul(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
|
||||
@ -2801,7 +2827,7 @@ void ggml_cuda_free_data(struct ggml_tensor * tensor) {
|
||||
delete extra;
|
||||
}
|
||||
|
||||
void ggml_cuda_assign_buffers_impl(struct ggml_tensor * tensor, bool scratch) {
|
||||
void ggml_cuda_assign_buffers_impl(struct ggml_tensor * tensor, bool scratch, bool force_inplace) {
|
||||
if (scratch && g_scratch_size == 0) {
|
||||
return;
|
||||
}
|
||||
@ -2810,11 +2836,11 @@ void ggml_cuda_assign_buffers_impl(struct ggml_tensor * tensor, bool scratch) {
|
||||
if (tensor->src0 != nullptr && tensor->src0->backend == GGML_BACKEND_CPU) {
|
||||
const ggml_op src0_op = tensor->src0->op;
|
||||
if (src0_op == GGML_OP_RESHAPE || src0_op == GGML_OP_TRANSPOSE || src0_op == GGML_OP_VIEW) {
|
||||
ggml_cuda_assign_buffers_impl(tensor->src0, scratch);
|
||||
ggml_cuda_assign_buffers_impl(tensor->src0, scratch, force_inplace);
|
||||
}
|
||||
}
|
||||
if (tensor->op == GGML_OP_CPY && tensor->src1->backend == GGML_BACKEND_CPU) {
|
||||
ggml_cuda_assign_buffers_impl(tensor->src1, scratch);
|
||||
ggml_cuda_assign_buffers_impl(tensor->src1, scratch, force_inplace);
|
||||
}
|
||||
|
||||
tensor->backend = GGML_BACKEND_GPU;
|
||||
@ -2822,11 +2848,12 @@ void ggml_cuda_assign_buffers_impl(struct ggml_tensor * tensor, bool scratch) {
|
||||
memset(extra, 0, sizeof(*extra));
|
||||
|
||||
const bool inplace = (tensor->src0 != nullptr && tensor->src0->data == tensor->data) ||
|
||||
tensor->op == GGML_OP_VIEW;
|
||||
tensor->op == GGML_OP_VIEW ||
|
||||
force_inplace;
|
||||
const size_t size = ggml_nbytes(tensor);
|
||||
|
||||
CUDA_CHECK(cudaSetDevice(g_main_device));
|
||||
if (inplace && tensor->src0->backend == GGML_BACKEND_GPU) {
|
||||
if (inplace && (tensor->src0->backend == GGML_BACKEND_GPU || tensor->src0->backend == GGML_BACKEND_GPU_SPLIT)) {
|
||||
struct ggml_tensor_extra_gpu * src0_extra = (ggml_tensor_extra_gpu * ) tensor->src0->extra;
|
||||
char * src0_ddc = (char *) src0_extra->data_device[g_main_device];
|
||||
size_t offset = 0;
|
||||
@ -2865,11 +2892,15 @@ void ggml_cuda_assign_buffers_impl(struct ggml_tensor * tensor, bool scratch) {
|
||||
}
|
||||
|
||||
void ggml_cuda_assign_buffers(struct ggml_tensor * tensor) {
|
||||
ggml_cuda_assign_buffers_impl(tensor, true);
|
||||
ggml_cuda_assign_buffers_impl(tensor, true, false);
|
||||
}
|
||||
|
||||
void ggml_cuda_assign_buffers_no_scratch(struct ggml_tensor * tensor) {
|
||||
ggml_cuda_assign_buffers_impl(tensor, false);
|
||||
ggml_cuda_assign_buffers_impl(tensor, false, false);
|
||||
}
|
||||
|
||||
void ggml_cuda_assign_buffers_force_inplace(struct ggml_tensor * tensor) {
|
||||
ggml_cuda_assign_buffers_impl(tensor, false, true);
|
||||
}
|
||||
|
||||
void ggml_cuda_set_main_device(int main_device) {
|
||||
|
@ -29,6 +29,7 @@ void ggml_cuda_transform_tensor(void * data, struct ggml_tensor * tensor);
|
||||
void ggml_cuda_free_data(struct ggml_tensor * tensor);
|
||||
void ggml_cuda_assign_buffers(struct ggml_tensor * tensor);
|
||||
void ggml_cuda_assign_buffers_no_scratch(struct ggml_tensor * tensor);
|
||||
void ggml_cuda_assign_buffers_force_inplace(struct ggml_tensor * tensor);
|
||||
void ggml_cuda_set_main_device(int main_device);
|
||||
void ggml_cuda_set_scratch_size(size_t scratch_size);
|
||||
void ggml_cuda_free_scratch(void);
|
||||
|
36
llama.cpp
36
llama.cpp
@ -2976,7 +2976,7 @@ int llama_apply_lora_from_file_internal(const struct llama_model & model, const
|
||||
return false;
|
||||
}
|
||||
}
|
||||
ggml_tensor* lora_tensor;
|
||||
ggml_tensor * lora_tensor;
|
||||
if (n_dims == 2) {
|
||||
lora_tensor = ggml_new_tensor_2d(lora_ctx, wtype, ne[0], ne[1]);
|
||||
}
|
||||
@ -2984,6 +2984,7 @@ int llama_apply_lora_from_file_internal(const struct llama_model & model, const
|
||||
fprintf(stderr, "%s: unsupported tensor dimension %d\n", __func__, n_dims);
|
||||
return 1;
|
||||
}
|
||||
ggml_set_name(lora_tensor, "lora_tensor");
|
||||
|
||||
// load tensor data
|
||||
size_t offset = fin.tellg();
|
||||
@ -2999,6 +3000,21 @@ int llama_apply_lora_from_file_internal(const struct llama_model & model, const
|
||||
lora_tensors.find(base_name + ".loraB") != lora_tensors.end()) {
|
||||
|
||||
ggml_tensor * dest_t = model_tensors[base_name];
|
||||
|
||||
offload_func_t offload_func = llama_nop;
|
||||
offload_func_t offload_func_force_inplace = llama_nop;
|
||||
|
||||
#ifdef GGML_USE_CUBLAS
|
||||
if (dest_t->backend == GGML_BACKEND_GPU || dest_t->backend == GGML_BACKEND_GPU_SPLIT) {
|
||||
if (dest_t->type != GGML_TYPE_F16) {
|
||||
throw std::runtime_error(format(
|
||||
"%s: error: the simultaneous use of LoRAs and GPU acceleration is only supported for f16 models", __func__));
|
||||
}
|
||||
offload_func = ggml_cuda_assign_buffers;
|
||||
offload_func_force_inplace = ggml_cuda_assign_buffers_force_inplace;
|
||||
}
|
||||
#endif // GGML_USE_CUBLAS
|
||||
|
||||
ggml_tensor * base_t;
|
||||
if (model_loader) {
|
||||
// load from base model
|
||||
@ -3026,7 +3042,12 @@ int llama_apply_lora_from_file_internal(const struct llama_model & model, const
|
||||
}
|
||||
|
||||
ggml_tensor * loraA = lora_tensors[base_name + ".loraA"];
|
||||
GGML_ASSERT(loraA->type == GGML_TYPE_F32);
|
||||
ggml_set_name(loraA, "loraA");
|
||||
|
||||
ggml_tensor * loraB = lora_tensors[base_name + ".loraB"];
|
||||
GGML_ASSERT(loraB->type == GGML_TYPE_F32);
|
||||
ggml_set_name(loraB, "loraB");
|
||||
|
||||
if (base_t->ne[0] != loraA->ne[1] || base_t->ne[1] != loraB->ne[1]) {
|
||||
fprintf(stderr, "%s: incompatible tensor dimensions (%" PRId64 " and %" PRId64 ");"
|
||||
@ -3036,19 +3057,32 @@ int llama_apply_lora_from_file_internal(const struct llama_model & model, const
|
||||
|
||||
// w = w + BA*s
|
||||
ggml_tensor * BA = ggml_mul_mat(lora_ctx, loraA, loraB);
|
||||
offload_func(BA);
|
||||
ggml_set_name(BA, "BA");
|
||||
|
||||
if (scaling != 1.0f) {
|
||||
ggml_tensor * scale_tensor = ggml_new_f32(lora_ctx, scaling);
|
||||
ggml_set_name(scale_tensor, "scale_tensor");
|
||||
|
||||
BA = ggml_scale_inplace(lora_ctx, BA, scale_tensor);
|
||||
offload_func(BA);
|
||||
ggml_set_name(BA, "BA_scaled");
|
||||
}
|
||||
|
||||
ggml_tensor * r;
|
||||
if (base_t == dest_t) {
|
||||
r = ggml_add_inplace(lora_ctx, dest_t, BA);
|
||||
offload_func_force_inplace(r);
|
||||
ggml_set_name(r, "r_add_inplace");
|
||||
}
|
||||
else {
|
||||
r = ggml_add(lora_ctx, base_t, BA);
|
||||
offload_func(r);
|
||||
ggml_set_name(r, "r_add");
|
||||
|
||||
r = ggml_cpy(lora_ctx, r, dest_t);
|
||||
offload_func(r);
|
||||
ggml_set_name(r, "r_cpy");
|
||||
}
|
||||
|
||||
struct ggml_cgraph gf = ggml_build_forward(r);
|
||||
|
Loading…
Reference in New Issue
Block a user