From 83e633c27efdf0eb0ba54249e784b0ea760b1007 Mon Sep 17 00:00:00 2001 From: postmasters Date: Tue, 2 Jan 2024 03:51:28 -0800 Subject: [PATCH] llama : differentiate the KV dims in the attention (#4657) * Add n_key_dim and n_value_dim Some models use values that are not derived from `n_embd`. Also remove `n_embd_head` and `n_embd_gqa` because it is not clear which "head" is referred to (key or value). Fix issue #4648. * Fix `llm_build_kqv` to use `n_value_gqa` * Rebase * Rename variables * Fix llm_build_kqv to be more generic wrt n_embd_head_k * Update default values for n_embd_head_k and n_embd_head_v Co-authored-by: Georgi Gerganov * Fix llm_load_tensors: the asserts were not backcompat --------- Co-authored-by: Georgi Gerganov --- gguf-py/gguf/constants.py | 2 + gguf-py/gguf/gguf_writer.py | 6 + llama.cpp | 271 +++++++++++++++++++++++++----------- 3 files changed, 201 insertions(+), 78 deletions(-) diff --git a/gguf-py/gguf/constants.py b/gguf-py/gguf/constants.py index ae62cc575..f0a1c51f8 100644 --- a/gguf-py/gguf/constants.py +++ b/gguf-py/gguf/constants.py @@ -46,6 +46,8 @@ class Keys: HEAD_COUNT_KV = "{arch}.attention.head_count_kv" MAX_ALIBI_BIAS = "{arch}.attention.max_alibi_bias" CLAMP_KQV = "{arch}.attention.clamp_kqv" + KEY_LENGTH = "{arch}.attention.key_length" + VALUE_LENGTH = "{arch}.attention.value_length" LAYERNORM_EPS = "{arch}.attention.layer_norm_epsilon" LAYERNORM_RMS_EPS = "{arch}.attention.layer_norm_rms_epsilon" diff --git a/gguf-py/gguf/gguf_writer.py b/gguf-py/gguf/gguf_writer.py index 73e021607..d93aaa877 100644 --- a/gguf-py/gguf/gguf_writer.py +++ b/gguf-py/gguf/gguf_writer.py @@ -333,6 +333,12 @@ class GGUFWriter: def add_head_count_kv(self, count: int) -> None: self.add_uint32(Keys.Attention.HEAD_COUNT_KV.format(arch=self.arch), count) + def add_key_length(self, length: int) -> None: + self.add_uint32(Keys.Attention.KEY_LENGTH.format(arch=self.arch), length) + + def add_value_length(self, length: int) -> None: + self.add_uint32(Keys.Attention.VALUE_LENGTH.format(arch=self.arch), length) + def add_max_alibi_bias(self, bias: float) -> None: self.add_float32(Keys.Attention.MAX_ALIBI_BIAS.format(arch=self.arch), bias) diff --git a/llama.cpp b/llama.cpp index a833d4c15..704464039 100644 --- a/llama.cpp +++ b/llama.cpp @@ -245,6 +245,8 @@ enum llm_kv { LLM_KV_ATTENTION_HEAD_COUNT_KV, LLM_KV_ATTENTION_MAX_ALIBI_BIAS, LLM_KV_ATTENTION_CLAMP_KQV, + LLM_KV_ATTENTION_KEY_LENGTH, + LLM_KV_ATTENTION_VALUE_LENGTH, LLM_KV_ATTENTION_LAYERNORM_EPS, LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, @@ -297,6 +299,8 @@ static std::map LLM_KV_NAMES = { { LLM_KV_ATTENTION_HEAD_COUNT_KV, "%s.attention.head_count_kv" }, { LLM_KV_ATTENTION_MAX_ALIBI_BIAS, "%s.attention.max_alibi_bias" }, { LLM_KV_ATTENTION_CLAMP_KQV, "%s.attention.clamp_kqv" }, + { LLM_KV_ATTENTION_KEY_LENGTH, "%s.attention.key_length" }, + { LLM_KV_ATTENTION_VALUE_LENGTH, "%s.attention.value_length" }, { LLM_KV_ATTENTION_LAYERNORM_EPS, "%s.attention.layer_norm_epsilon" }, { LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, "%s.attention.layer_norm_rms_epsilon" }, @@ -1284,6 +1288,8 @@ struct llama_hparams { uint32_t n_head_kv; uint32_t n_layer; uint32_t n_rot; + uint32_t n_embd_head_k; // dimension of keys (d_k). d_q is assumed to be the same, but there are n_head q heads, and only n_head_kv k-v heads + uint32_t n_embd_head_v; // dimension of values (d_v) aka n_embd_head uint32_t n_ff; uint32_t n_expert = 0; uint32_t n_expert_used = 0; @@ -1310,6 +1316,8 @@ struct llama_hparams { if (this->n_head_kv != other.n_head_kv) return true; if (this->n_layer != other.n_layer) return true; if (this->n_rot != other.n_rot) return true; + if (this->n_embd_head_k != other.n_embd_head_k) return true; + if (this->n_embd_head_v != other.n_embd_head_v) return true; if (this->n_ff != other.n_ff) return true; if (this->n_expert != other.n_expert) return true; if (this->n_expert_used != other.n_expert_used) return true; @@ -1331,12 +1339,12 @@ struct llama_hparams { return n_head/n_head_kv; } - uint32_t n_embd_head() const { - return n_embd/n_head; + uint32_t n_embd_k_gqa() const { // dimension of key embeddings across all k-v heads + return n_embd_head_k * n_head_kv; } - uint32_t n_embd_gqa() const { - return n_embd/n_gqa(); + uint32_t n_embd_v_gqa() const { // dimension of value embeddings across all k-v heads + return n_embd_head_v * n_head_kv; } }; @@ -1645,8 +1653,9 @@ static bool llama_kv_cache_init( uint32_t n_ctx, int n_gpu_layers, bool offload) { - const uint32_t n_embd = hparams.n_embd_gqa(); - const uint32_t n_layer = hparams.n_layer; + const uint32_t n_embd_k_gqa = hparams.n_embd_k_gqa(); + const uint32_t n_embd_v_gqa = hparams.n_embd_v_gqa(); + const uint32_t n_layer = hparams.n_layer; cache.has_shift = false; @@ -1677,8 +1686,8 @@ static bool llama_kv_cache_init( const int i_gpu_start = (int) n_layer - n_gpu_layers; for (int i = 0; i < (int) n_layer; i++) { - ggml_tensor * k = ggml_new_tensor_1d(cache.ctx, ktype, n_embd*n_ctx); - ggml_tensor * v = ggml_new_tensor_1d(cache.ctx, vtype, n_embd*n_ctx); + ggml_tensor * k = ggml_new_tensor_1d(cache.ctx, ktype, n_embd_k_gqa*n_ctx); + ggml_tensor * v = ggml_new_tensor_1d(cache.ctx, vtype, n_embd_v_gqa*n_ctx); ggml_format_name(k, "cache_k_l%d", i); ggml_format_name(v, "cache_v_l%d", i); cache.k_l.push_back(k); @@ -2672,6 +2681,12 @@ static void llm_load_hparams( // gpt-j n_rot = rotary_dim } + hparams.n_embd_head_k = hparams.n_embd / hparams.n_head; + ml.get_key(LLM_KV_ATTENTION_KEY_LENGTH, hparams.n_embd_head_k, false); + + hparams.n_embd_head_v = hparams.n_embd / hparams.n_head; + ml.get_key(LLM_KV_ATTENTION_VALUE_LENGTH, hparams.n_embd_head_v, false); + // arch-specific KVs switch (model.arch) { case LLM_ARCH_LLAMA: @@ -3082,8 +3097,12 @@ static void llm_load_print_meta(llama_model_loader & ml, llama_model & model) { LLAMA_LOG_INFO("%s: n_head = %u\n", __func__, hparams.n_head); LLAMA_LOG_INFO("%s: n_head_kv = %u\n", __func__, hparams.n_head_kv); LLAMA_LOG_INFO("%s: n_layer = %u\n", __func__, hparams.n_layer); - LLAMA_LOG_INFO("%s: n_rot = %u\n", __func__, hparams.n_rot); // a.k.a. n_embd_head, n_head_dim + LLAMA_LOG_INFO("%s: n_rot = %u\n", __func__, hparams.n_rot); + LLAMA_LOG_INFO("%s: n_embd_head_k = %u\n", __func__, hparams.n_embd_head_k); + LLAMA_LOG_INFO("%s: n_embd_head_v = %u\n", __func__, hparams.n_embd_head_v); LLAMA_LOG_INFO("%s: n_gqa = %u\n", __func__, hparams.n_gqa()); + LLAMA_LOG_INFO("%s: n_embd_k_gqa = %u\n", __func__, hparams.n_embd_k_gqa()); + LLAMA_LOG_INFO("%s: n_embd_v_gqa = %u\n", __func__, hparams.n_embd_v_gqa()); LLAMA_LOG_INFO("%s: f_norm_eps = %.1e\n", __func__, hparams.f_norm_eps); LLAMA_LOG_INFO("%s: f_norm_rms_eps = %.1e\n", __func__, hparams.f_norm_rms_eps); LLAMA_LOG_INFO("%s: f_clamp_kqv = %.1e\n", __func__, hparams.f_clamp_kqv); @@ -3173,10 +3192,11 @@ static bool llm_load_tensors( // create tensors for the weights { - const int64_t n_embd = hparams.n_embd; - const int64_t n_embd_gqa = hparams.n_embd_gqa(); - const int64_t n_layer = hparams.n_layer; - const int64_t n_vocab = hparams.n_vocab; + const int64_t n_embd = hparams.n_embd; + const int64_t n_embd_k_gqa = hparams.n_embd_k_gqa(); + const int64_t n_embd_v_gqa = hparams.n_embd_v_gqa(); + const int64_t n_layer = hparams.n_layer; + const int64_t n_vocab = hparams.n_vocab; const auto tn = LLM_TN(model.arch); switch (model.arch) { @@ -3202,7 +3222,10 @@ static bool llm_load_tensors( model.output = ml.create_tensor(ctx, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, backend_output); } - const uint32_t n_ff = hparams.n_ff; + const uint32_t n_ff = hparams.n_ff; + const int64_t n_embd_gqa = n_embd_v_gqa; + GGML_ASSERT(n_embd_gqa == n_embd / hparams.n_gqa()); + GGML_ASSERT(n_embd_gqa == n_embd_k_gqa); const int i_gpu_start = n_layer - n_gpu_layers; @@ -3270,7 +3293,10 @@ static bool llm_load_tensors( model.output = ml.create_tensor(ctx, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, backend_output); } - const uint32_t n_ff = hparams.n_ff; + const uint32_t n_ff = hparams.n_ff; + const int64_t n_embd_gqa = n_embd_v_gqa; + GGML_ASSERT(n_embd_gqa == n_embd / hparams.n_gqa()); + GGML_ASSERT(n_embd_gqa == n_embd_k_gqa); const int i_gpu_start = n_layer - n_gpu_layers; @@ -3318,7 +3344,10 @@ static bool llm_load_tensors( model.output = ml.create_tensor(ctx, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, backend_output); } - const uint32_t n_ff = hparams.n_ff; + const uint32_t n_ff = hparams.n_ff; + const int64_t n_embd_gqa = n_embd_v_gqa; + GGML_ASSERT(n_embd_gqa == n_embd / hparams.n_gqa()); + GGML_ASSERT(n_embd_gqa == n_embd_k_gqa); const int i_gpu_start = n_layer - n_gpu_layers; @@ -3368,7 +3397,10 @@ static bool llm_load_tensors( model.output = ml.create_tensor(ctx, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, backend_output); } - const uint32_t n_ff = hparams.n_ff; + const uint32_t n_ff = hparams.n_ff; + const int64_t n_embd_gqa = n_embd_v_gqa; + GGML_ASSERT(n_embd_gqa == n_embd / hparams.n_gqa()); + GGML_ASSERT(n_embd_gqa == n_embd_k_gqa); const int i_gpu_start = n_layer - n_gpu_layers; @@ -3420,7 +3452,11 @@ static bool llm_load_tensors( model.output = ml.create_tensor(ctx, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, backend_output); } - const uint32_t n_ff = hparams.n_ff; + const uint32_t n_ff = hparams.n_ff; + const int64_t n_embd_gqa = n_embd_v_gqa; + GGML_ASSERT(n_embd_gqa == n_embd / hparams.n_gqa()); + GGML_ASSERT(n_embd_gqa == n_embd_k_gqa); + const int i_gpu_start = n_layer - n_gpu_layers; model.layers.resize(n_layer); for (uint32_t i = 0; i < n_layer; ++i) { @@ -3469,7 +3505,10 @@ static bool llm_load_tensors( model.output = ml.create_tensor(ctx, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, backend_output); } - const uint32_t n_ff = hparams.n_ff; + const uint32_t n_ff = hparams.n_ff; + const int64_t n_embd_gqa = n_embd_v_gqa; + GGML_ASSERT(n_embd_gqa == n_embd / hparams.n_gqa()); + GGML_ASSERT(n_embd_gqa == n_embd_k_gqa); const int i_gpu_start = n_layer - n_gpu_layers; @@ -3520,7 +3559,10 @@ static bool llm_load_tensors( model.output = ml.create_tensor(ctx, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, backend_output); } - const uint32_t n_ff = hparams.n_ff; + const uint32_t n_ff = hparams.n_ff; + const int64_t n_embd_gqa = n_embd_v_gqa; + GGML_ASSERT(n_embd_gqa == n_embd / hparams.n_gqa()); + GGML_ASSERT(n_embd_gqa == n_embd_k_gqa); const int i_gpu_start = n_layer - n_gpu_layers; @@ -3567,7 +3609,10 @@ static bool llm_load_tensors( model.output = ml.create_tensor(ctx, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, backend_output); } - const uint32_t n_ff = hparams.n_ff; + const uint32_t n_ff = hparams.n_ff; + const int64_t n_embd_gqa = n_embd_v_gqa; + GGML_ASSERT(n_embd_gqa == n_embd / hparams.n_gqa()); + GGML_ASSERT(n_embd_gqa == n_embd_k_gqa); const int i_gpu_start = n_layer - n_gpu_layers; @@ -3665,7 +3710,10 @@ static bool llm_load_tensors( model.output_b = ml.create_tensor(ctx, tn(LLM_TENSOR_OUTPUT, "bias"), {n_vocab}, backend_output); } - const uint32_t n_ff = hparams.n_ff; + const uint32_t n_ff = hparams.n_ff; + const int64_t n_embd_gqa = n_embd_v_gqa; + GGML_ASSERT(n_embd_gqa == n_embd / hparams.n_gqa()); + GGML_ASSERT(n_embd_gqa == n_embd_k_gqa); const int i_gpu_start = n_layer - n_gpu_layers; @@ -3714,7 +3762,10 @@ static bool llm_load_tensors( model.output = ml.create_tensor(ctx, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, backend_output); } - const uint32_t n_ff = hparams.n_ff; + const uint32_t n_ff = hparams.n_ff; + const int64_t n_embd_gqa = n_embd_v_gqa; + GGML_ASSERT(n_embd_gqa == n_embd / hparams.n_gqa()); + GGML_ASSERT(n_embd_gqa == n_embd_k_gqa); const int i_gpu_start = n_layer - n_gpu_layers; @@ -3761,7 +3812,10 @@ static bool llm_load_tensors( model.output = ml.create_tensor(ctx, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, backend_output); } - const uint32_t n_ff = hparams.n_ff; + const uint32_t n_ff = hparams.n_ff; + const int64_t n_embd_gqa = n_embd_v_gqa; + GGML_ASSERT(n_embd_gqa == n_embd / hparams.n_gqa()); + GGML_ASSERT(n_embd_gqa == n_embd_k_gqa); const int i_gpu_start = n_layer - n_gpu_layers; @@ -4000,8 +4054,8 @@ static struct ggml_tensor * llm_build_inp_embd( return inpL; } -// Persimmon: n_rot = n_embd_head/2 -// Other: n_rot = n_embd_head +// Persimmon: n_rot = n_embd_head_k/2 +// Other: n_rot = n_embd_head_k static void llm_build_k_shift( struct ggml_context * ctx, const llama_hparams & hparams, @@ -4014,17 +4068,17 @@ static void llm_build_k_shift( float freq_base, float freq_scale, const llm_build_cb & cb) { - const int64_t n_layer = hparams.n_layer; - const int64_t n_head_kv = hparams.n_head_kv; - const int64_t n_embd_gqa = hparams.n_embd_gqa(); - const int64_t n_embd_head = hparams.n_embd_head(); - const int32_t n_orig_ctx = cparams.n_yarn_orig_ctx; - const float ext_factor = cparams.yarn_ext_factor; - const float attn_factor = cparams.yarn_attn_factor; - const float beta_fast = cparams.yarn_beta_fast; - const float beta_slow = cparams.yarn_beta_slow; + const int64_t n_layer = hparams.n_layer; + const int64_t n_head_kv = hparams.n_head_kv; + const int64_t n_embd_head_k = hparams.n_embd_head_k; + const int64_t n_embd_k_gqa = hparams.n_embd_k_gqa(); + const int32_t n_orig_ctx = cparams.n_yarn_orig_ctx; + const float ext_factor = cparams.yarn_ext_factor; + const float attn_factor = cparams.yarn_attn_factor; + const float beta_fast = cparams.yarn_beta_fast; + const float beta_slow = cparams.yarn_beta_slow; - GGML_ASSERT(n_embd_head % n_rot == 0); + GGML_ASSERT(n_embd_head_k % n_rot == 0); struct ggml_tensor * K_shift = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, n_ctx); cb(K_shift, "K_shift", -1); @@ -4042,9 +4096,9 @@ static void llm_build_k_shift( // we rotate only the first n_rot dimensions ggml_rope_custom_inplace(ctx, ggml_view_3d(ctx, kv.k_l[il], - n_embd_head, n_head_kv, n_ctx, - ggml_row_size(kv.k_l[il]->type, n_embd_head), - ggml_row_size(kv.k_l[il]->type, n_embd_gqa), + n_embd_head_k, n_head_kv, n_ctx, + ggml_row_size(kv.k_l[il]->type, n_embd_head_k), + ggml_row_size(kv.k_l[il]->type, n_embd_k_gqa), 0), K_shift, n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow); @@ -4065,18 +4119,19 @@ static void llm_build_kv_store( int32_t kv_head, const llm_build_cb & cb, int64_t il) { - const int64_t n_embd_gqa = hparams.n_embd_gqa(); + const int64_t n_embd_k_gqa = hparams.n_embd_k_gqa(); + const int64_t n_embd_v_gqa = hparams.n_embd_v_gqa(); // compute the transposed [n_tokens, n_embd] V matrix - struct ggml_tensor * v_cur_t = ggml_transpose(ctx, ggml_reshape_2d(ctx, v_cur, n_embd_gqa, n_tokens)); + struct ggml_tensor * v_cur_t = ggml_transpose(ctx, ggml_reshape_2d(ctx, v_cur, n_embd_v_gqa, n_tokens)); //struct ggml_tensor * v_cur_t = ggml_transpose(ctx, v_cur); // TODO: reshape above is likely not needed cb(v_cur_t, "v_cur_t", il); - struct ggml_tensor * k_cache_view = ggml_view_1d(ctx, kv.k_l[il], n_tokens*n_embd_gqa, - (ggml_row_size(kv.k_l[il]->type, n_embd_gqa))*kv_head); + struct ggml_tensor * k_cache_view = ggml_view_1d(ctx, kv.k_l[il], n_tokens*n_embd_k_gqa, + (ggml_row_size(kv.k_l[il]->type, n_embd_k_gqa))*kv_head); cb(k_cache_view, "k_cache_view", il); - struct ggml_tensor * v_cache_view = ggml_view_2d(ctx, kv.v_l[il], n_tokens, n_embd_gqa, + struct ggml_tensor * v_cache_view = ggml_view_2d(ctx, kv.v_l[il], n_tokens, n_embd_v_gqa, ( n_ctx)*ggml_element_size(kv.v_l[il]), (kv_head)*ggml_element_size(kv.v_l[il])); cb(v_cache_view, "v_cache_view", il); @@ -4226,20 +4281,20 @@ static struct ggml_tensor * llm_build_kqv( float kq_scale, const llm_build_cb & cb, int il) { - const int64_t n_embd = hparams.n_embd; - const int64_t n_head = hparams.n_head; - const int64_t n_head_kv = hparams.n_head_kv; - const int64_t n_embd_head = hparams.n_embd_head(); - const int64_t n_embd_gqa = hparams.n_embd_gqa(); + const int64_t n_head = hparams.n_head; + const int64_t n_head_kv = hparams.n_head_kv; + const int64_t n_embd_head_k = hparams.n_embd_head_k; + const int64_t n_embd_k_gqa = hparams.n_embd_k_gqa(); + const int64_t n_embd_head_v = hparams.n_embd_head_v; struct ggml_tensor * q = ggml_permute(ctx, q_cur, 0, 2, 1, 3); cb(q, "q", il); struct ggml_tensor * k = ggml_view_3d(ctx, kv.k_l[il], - n_embd_head, n_kv, n_head_kv, - ggml_row_size(kv.k_l[il]->type, n_embd_gqa), - ggml_row_size(kv.k_l[il]->type, n_embd_head), + n_embd_head_k, n_kv, n_head_kv, + ggml_row_size(kv.k_l[il]->type, n_embd_k_gqa), + ggml_row_size(kv.k_l[il]->type, n_embd_head_k), 0); cb(k, "k", il); @@ -4278,9 +4333,9 @@ static struct ggml_tensor * llm_build_kqv( // split cached v into n_head heads struct ggml_tensor * v = ggml_view_3d(ctx, kv.v_l[il], - n_kv, n_embd_head, n_head_kv, + n_kv, n_embd_head_v, n_head_kv, ggml_element_size(kv.v_l[il])*n_ctx, - ggml_element_size(kv.v_l[il])*n_ctx*n_embd_head, + ggml_element_size(kv.v_l[il])*n_ctx*n_embd_head_v, 0); cb(v, "v", il); @@ -4290,7 +4345,7 @@ static struct ggml_tensor * llm_build_kqv( struct ggml_tensor * kqv_merged = ggml_permute(ctx, kqv, 0, 2, 1, 3); cb(kqv_merged, "kqv_merged", il); - struct ggml_tensor * cur = ggml_cont_2d(ctx, kqv_merged, n_embd, n_tokens); + struct ggml_tensor * cur = ggml_cont_2d(ctx, kqv_merged, n_embd_head_k*n_head, n_tokens); cb(cur, "kqv_merged_cont", il); cur = ggml_mul_mat(ctx, wo, cur); @@ -4317,8 +4372,10 @@ struct llm_build_context { const int64_t n_ctx; // user-specified context size (can be different from n_ctx_train) const int64_t n_head; const int64_t n_head_kv; - const int64_t n_embd_head; - const int64_t n_embd_gqa; + const int64_t n_embd_head_k; + const int64_t n_embd_k_gqa; + const int64_t n_embd_head_v; + const int64_t n_embd_v_gqa; const int64_t n_expert; const int64_t n_expert_used; @@ -4360,8 +4417,10 @@ struct llm_build_context { n_ctx (cparams.n_ctx), n_head (hparams.n_head), n_head_kv (hparams.n_head_kv), - n_embd_head (hparams.n_embd_head()), - n_embd_gqa (hparams.n_embd_gqa()), + n_embd_head_k (hparams.n_embd_head_k), + n_embd_k_gqa (hparams.n_embd_k_gqa()), + n_embd_head_v (hparams.n_embd_head_v), + n_embd_v_gqa (hparams.n_embd_v_gqa()), n_expert (hparams.n_expert), n_expert_used (hparams.n_expert_used), freq_base (cparams.rope_freq_base), @@ -4404,6 +4463,8 @@ struct llm_build_context { struct ggml_cgraph * build_llama() { struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false); + const int64_t n_embd_head = hparams.n_embd_head_v; + GGML_ASSERT(n_embd_head == hparams.n_embd_head_k); GGML_ASSERT(n_embd_head == hparams.n_rot); struct ggml_tensor * cur; @@ -4588,6 +4649,9 @@ struct llm_build_context { struct ggml_cgraph * build_baichuan() { struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false); + const int64_t n_embd_head = hparams.n_embd_head_v; + GGML_ASSERT(n_embd_head == hparams.n_embd_head_k); + struct ggml_tensor * cur; struct ggml_tensor * inpL; @@ -4705,6 +4769,11 @@ struct llm_build_context { struct ggml_cgraph * build_falcon() { struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false); + const int64_t n_embd_head = hparams.n_embd_head_v; + const int64_t n_embd_gqa = hparams.n_embd_v_gqa(); + GGML_ASSERT(n_embd_head == hparams.n_embd_head_k); + GGML_ASSERT(n_embd_gqa == n_embd); + struct ggml_tensor * cur; struct ggml_tensor * inpL; @@ -4824,6 +4893,11 @@ struct llm_build_context { struct ggml_cgraph * build_starcoder() { struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false); + const int64_t n_embd_head = hparams.n_embd_head_v; + const int64_t n_embd_gqa = hparams.n_embd_v_gqa(); + GGML_ASSERT(n_embd_head == hparams.n_embd_head_k); + GGML_ASSERT(n_embd_gqa == n_embd); + struct ggml_tensor * cur; struct ggml_tensor * pos; struct ggml_tensor * inpL; @@ -4920,7 +4994,12 @@ struct llm_build_context { struct ggml_cgraph * build_persimmon() { struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false); - const int64_t n_rot = n_embd_head / 2; + const int64_t n_embd_head = hparams.n_embd_head_v; + const int64_t n_embd_gqa = hparams.n_embd_v_gqa(); + GGML_ASSERT(n_embd_head == hparams.n_embd_head_k); + GGML_ASSERT(n_embd_gqa == n_embd); + + const int64_t n_rot = n_embd_head_k / 2; struct ggml_tensor * cur; struct ggml_tensor * inpL; @@ -5129,6 +5208,11 @@ struct llm_build_context { struct ggml_cgraph * build_refact() { struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false); + const int64_t n_embd_head = hparams.n_embd_head_v; + const int64_t n_embd_gqa = hparams.n_embd_v_gqa(); + GGML_ASSERT(n_embd_head == hparams.n_embd_head_k); + GGML_ASSERT(n_embd_gqa == n_embd); + struct ggml_tensor * cur; struct ggml_tensor * inpL; @@ -5217,6 +5301,11 @@ struct llm_build_context { struct ggml_cgraph * build_bloom() { struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false); + const int64_t n_embd_head = hparams.n_embd_head_v; + const int64_t n_embd_gqa = hparams.n_embd_v_gqa(); + GGML_ASSERT(n_embd_head == hparams.n_embd_head_k); + GGML_ASSERT(n_embd_gqa == n_embd); + struct ggml_tensor * cur; struct ggml_tensor * inpL; @@ -5308,6 +5397,11 @@ struct llm_build_context { struct ggml_cgraph * build_mpt() { struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false); + const int64_t n_embd_head = hparams.n_embd_head_v; + const int64_t n_embd_gqa = hparams.n_embd_v_gqa(); + GGML_ASSERT(n_embd_head == hparams.n_embd_head_k); + GGML_ASSERT(n_embd_gqa == n_embd); + struct ggml_tensor * cur; struct ggml_tensor * inpL; @@ -5403,6 +5497,9 @@ struct llm_build_context { struct ggml_cgraph * build_stablelm() { struct ggml_cgraph * gf = ggml_new_graph(ctx0); + const int64_t n_embd_head = hparams.n_embd_head_v; + GGML_ASSERT(n_embd_head == hparams.n_embd_head_k); + struct ggml_tensor * cur; struct ggml_tensor * inpL; @@ -5513,6 +5610,9 @@ struct llm_build_context { struct ggml_cgraph * build_qwen() { struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false); + const int64_t n_embd_head = hparams.n_embd_head_v; + GGML_ASSERT(n_embd_head == hparams.n_embd_head_k); + struct ggml_tensor * cur; struct ggml_tensor * inpL; @@ -5624,6 +5724,11 @@ struct llm_build_context { struct ggml_cgraph * build_phi2() { struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false); + const int64_t n_embd_head = hparams.n_embd_head_v; + const int64_t n_embd_gqa = hparams.n_embd_v_gqa(); + GGML_ASSERT(n_embd_head == hparams.n_embd_head_k); + GGML_ASSERT(n_embd_gqa == n_embd); + struct ggml_tensor * cur; struct ggml_tensor * attn_norm_output; struct ggml_tensor * ffn_output; @@ -5736,6 +5841,9 @@ struct llm_build_context { struct ggml_cgraph * build_plamo() { struct ggml_cgraph * gf = ggml_new_graph(ctx0); + const int64_t n_embd_head = hparams.n_embd_head_v; + GGML_ASSERT(n_embd_head == hparams.n_embd_head_k); + struct ggml_tensor * cur; struct ggml_tensor * inpL; @@ -5840,6 +5948,11 @@ struct llm_build_context { struct ggml_cgraph * build_gpt2() { struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false); + const int64_t n_embd_head = hparams.n_embd_head_v; + const int64_t n_embd_gqa = hparams.n_embd_v_gqa(); + GGML_ASSERT(n_embd_head == hparams.n_embd_head_k); + GGML_ASSERT(n_embd_gqa == n_embd); + struct ggml_tensor * cur; struct ggml_tensor * pos; struct ggml_tensor * inpL; @@ -9627,8 +9740,8 @@ struct llama_context * llama_new_context_with_model( const ggml_type type_k = params.type_k; const ggml_type type_v = params.type_v; - GGML_ASSERT(hparams.n_embd_head() % ggml_blck_size(type_k) == 0); - GGML_ASSERT(hparams.n_embd_head() % ggml_blck_size(type_v) == 0); + GGML_ASSERT(hparams.n_embd_head_k % ggml_blck_size(type_k) == 0); + GGML_ASSERT(hparams.n_embd_head_v % ggml_blck_size(type_v) == 0); // reserve memory for context buffers if (!hparams.vocab_only) { @@ -10172,9 +10285,10 @@ static void llama_copy_state_data_internal(struct llama_context * ctx, llama_dat const auto & hparams = ctx->model.hparams; const auto & cparams = ctx->cparams; - const auto n_layer = hparams.n_layer; - const auto n_embd = hparams.n_embd_gqa(); - const auto n_ctx = cparams.n_ctx; + const auto n_layer = hparams.n_layer; + const auto n_embd_k_gqa = hparams.n_embd_k_gqa(); + const auto n_embd_v_gqa = hparams.n_embd_v_gqa(); + const auto n_ctx = cparams.n_ctx; const size_t kv_buf_size = ggml_backend_buffer_get_size(kv_self.buf); const uint32_t kv_head = kv_self.head; @@ -10196,15 +10310,15 @@ static void llama_copy_state_data_internal(struct llama_context * ctx, llama_dat std::vector vout2d(n_layer); for (int il = 0; il < (int) n_layer; ++il) { - kout2d[il] = ggml_new_tensor_2d(cpy_ctx, kv_self.k_l[il]->type, n_embd, kv_head); - vout2d[il] = ggml_new_tensor_2d(cpy_ctx, kv_self.v_l[il]->type, kv_head, n_embd); + kout2d[il] = ggml_new_tensor_2d(cpy_ctx, kv_self.k_l[il]->type, n_embd_k_gqa, kv_head); + vout2d[il] = ggml_new_tensor_2d(cpy_ctx, kv_self.v_l[il]->type, kv_head, n_embd_v_gqa); ggml_tensor * k2d = ggml_view_2d(cpy_ctx, kv_self.k_l[il], - n_embd, kv_head, - elt_size*n_embd, 0); + n_embd_k_gqa, kv_head, + elt_size*n_embd_k_gqa, 0); ggml_tensor * v2d = ggml_view_2d(cpy_ctx, kv_self.v_l[il], - kv_head, n_embd, + kv_head, n_embd_v_gqa, elt_size*n_ctx, 0); ggml_build_forward_expand(gf, ggml_cpy(cpy_ctx, k2d, kout2d[il])); @@ -10311,9 +10425,10 @@ size_t llama_set_state_data(struct llama_context * ctx, uint8_t * src) { const auto & hparams = ctx->model.hparams; const auto & cparams = ctx->cparams; - const int n_layer = hparams.n_layer; - const int n_embd = hparams.n_embd_gqa(); - const int n_ctx = cparams.n_ctx; + const int n_layer = hparams.n_layer; + const int n_embd_k_gqa = hparams.n_embd_k_gqa(); + const int n_embd_v_gqa = hparams.n_embd_v_gqa(); + const int n_ctx = cparams.n_ctx; size_t kv_buf_size; uint32_t kv_head; @@ -10337,15 +10452,15 @@ size_t llama_set_state_data(struct llama_context * ctx, uint8_t * src) { std::vector vin2d(n_layer); for (int il = 0; il < n_layer; ++il) { - kin2d[il] = ggml_new_tensor_2d(cpy_ctx, kv_self.k_l[il]->type, n_embd, kv_head); - vin2d[il] = ggml_new_tensor_2d(cpy_ctx, kv_self.v_l[il]->type, kv_head, n_embd); + kin2d[il] = ggml_new_tensor_2d(cpy_ctx, kv_self.k_l[il]->type, n_embd_k_gqa, kv_head); + vin2d[il] = ggml_new_tensor_2d(cpy_ctx, kv_self.v_l[il]->type, kv_head, n_embd_v_gqa); ggml_tensor * k2d = ggml_view_2d(cpy_ctx, kv_self.k_l[il], - n_embd, kv_head, - elt_size*n_embd, 0); + n_embd_k_gqa, kv_head, + elt_size*n_embd_k_gqa, 0); ggml_tensor * v2d = ggml_view_2d(cpy_ctx, kv_self.v_l[il], - kv_head, n_embd, + kv_head, n_embd_v_gqa, elt_size*n_ctx, 0); ggml_build_forward_expand(gf, ggml_cpy(cpy_ctx, kin2d[il], k2d));