mirror of
https://github.com/ggerganov/llama.cpp.git
synced 2025-01-12 13:27:21 +01:00
py : add Gemma conversion from HF models (#5647)
* py : add gemma conversion from HF models * Update convert-hf-to-gguf.py Co-authored-by: Aarni Koskela <akx@iki.fi> * Update convert-hf-to-gguf.py Co-authored-by: Aarni Koskela <akx@iki.fi> * Update convert-hf-to-gguf.py Co-authored-by: Jared Van Bortel <jared@nomic.ai> --------- Co-authored-by: Aarni Koskela <akx@iki.fi> Co-authored-by: Jared Van Bortel <jared@nomic.ai>
This commit is contained in:
parent
7e4f339c40
commit
847eedbdb2
@ -218,6 +218,8 @@ class Model:
|
|||||||
return BertModel
|
return BertModel
|
||||||
if model_architecture == "NomicBertModel":
|
if model_architecture == "NomicBertModel":
|
||||||
return NomicBertModel
|
return NomicBertModel
|
||||||
|
if model_architecture == "GemmaForCausalLM":
|
||||||
|
return GemmaModel
|
||||||
return Model
|
return Model
|
||||||
|
|
||||||
def _is_model_safetensors(self) -> bool:
|
def _is_model_safetensors(self) -> bool:
|
||||||
@ -277,6 +279,8 @@ class Model:
|
|||||||
return gguf.MODEL_ARCH.BERT
|
return gguf.MODEL_ARCH.BERT
|
||||||
if arch == "NomicBertModel":
|
if arch == "NomicBertModel":
|
||||||
return gguf.MODEL_ARCH.NOMIC_BERT
|
return gguf.MODEL_ARCH.NOMIC_BERT
|
||||||
|
if arch == "GemmaForCausalLM":
|
||||||
|
return gguf.MODEL_ARCH.GEMMA
|
||||||
|
|
||||||
raise NotImplementedError(f'Architecture "{arch}" not supported!')
|
raise NotImplementedError(f'Architecture "{arch}" not supported!')
|
||||||
|
|
||||||
@ -1786,6 +1790,62 @@ class NomicBertModel(BertModel):
|
|||||||
yield name, data
|
yield name, data
|
||||||
|
|
||||||
|
|
||||||
|
class GemmaModel(Model):
|
||||||
|
def set_vocab(self):
|
||||||
|
self._set_vocab_sentencepiece()
|
||||||
|
|
||||||
|
def set_gguf_parameters(self):
|
||||||
|
hparams = self.hparams
|
||||||
|
block_count = hparams["num_hidden_layers"]
|
||||||
|
|
||||||
|
self.gguf_writer.add_name(self.dir_model.name)
|
||||||
|
self.gguf_writer.add_context_length(hparams["max_position_embeddings"])
|
||||||
|
self.gguf_writer.add_embedding_length(hparams["hidden_size"])
|
||||||
|
self.gguf_writer.add_block_count(block_count)
|
||||||
|
self.gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
|
||||||
|
self.gguf_writer.add_head_count(hparams["num_attention_heads"])
|
||||||
|
self.gguf_writer.add_head_count_kv(self.hparams["num_key_value_heads"] if "num_key_value_heads" in hparams else hparams["num_attention_heads"])
|
||||||
|
self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
|
||||||
|
self.gguf_writer.add_key_length(hparams["head_dim"])
|
||||||
|
self.gguf_writer.add_value_length(hparams["head_dim"])
|
||||||
|
|
||||||
|
def write_tensors(self):
|
||||||
|
block_count = self.hparams.get("n_layers", self.hparams.get("num_hidden_layers", self.hparams.get("n_layer")))
|
||||||
|
tensor_map = gguf.get_tensor_name_map(self.model_arch, block_count)
|
||||||
|
|
||||||
|
for name, data_torch in self.get_tensors():
|
||||||
|
# ref: https://github.com/huggingface/transformers/blob/fc37f38915372c15992b540dfcbbe00a916d4fc6/src/transformers/models/gemma/modeling_gemma.py#L89
|
||||||
|
if name.endswith("norm.weight"):
|
||||||
|
data_torch = data_torch + 1
|
||||||
|
|
||||||
|
old_dtype = data_torch.dtype
|
||||||
|
|
||||||
|
# convert any unsupported data types to float32
|
||||||
|
if data_torch.dtype not in (torch.float16, torch.float32):
|
||||||
|
data_torch = data_torch.to(torch.float32)
|
||||||
|
|
||||||
|
data = data_torch.squeeze().numpy()
|
||||||
|
|
||||||
|
# map tensor names
|
||||||
|
new_name = tensor_map.get_name(name, try_suffixes=(".weight", ".bias"))
|
||||||
|
if new_name is None:
|
||||||
|
print(f"Can not map tensor {name!r}")
|
||||||
|
sys.exit()
|
||||||
|
|
||||||
|
n_dims = len(data.shape)
|
||||||
|
data_dtype = data.dtype
|
||||||
|
|
||||||
|
data = data.astype(np.float32)
|
||||||
|
|
||||||
|
# if f16 desired, convert any float32 2-dim weight tensors to float16
|
||||||
|
if self.ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and n_dims == 2:
|
||||||
|
data = data.astype(np.float16)
|
||||||
|
|
||||||
|
print(f"{new_name}, n_dims = {n_dims}, {old_dtype} --> {data.dtype}")
|
||||||
|
|
||||||
|
self.gguf_writer.add_tensor(new_name, data)
|
||||||
|
|
||||||
|
|
||||||
###### CONVERSION LOGIC ######
|
###### CONVERSION LOGIC ######
|
||||||
|
|
||||||
|
|
||||||
|
@ -7450,6 +7450,7 @@ struct llm_build_context {
|
|||||||
|
|
||||||
inpL = llm_build_inp_embd(ctx0, hparams, batch, model.tok_embd, lctx.inp_tokens, lctx.inp_embd, cb);
|
inpL = llm_build_inp_embd(ctx0, hparams, batch, model.tok_embd, lctx.inp_tokens, lctx.inp_embd, cb);
|
||||||
cb(inpL, "inp_embd", -1);
|
cb(inpL, "inp_embd", -1);
|
||||||
|
|
||||||
inpL = ggml_scale(ctx0, inpL, sqrtf(n_embd));
|
inpL = ggml_scale(ctx0, inpL, sqrtf(n_embd));
|
||||||
cb(inpL, "inp_scaled", -1);
|
cb(inpL, "inp_scaled", -1);
|
||||||
|
|
||||||
@ -7491,6 +7492,7 @@ struct llm_build_context {
|
|||||||
n_embd_head_k, 2, 0, n_orig_ctx, freq_base, freq_scale,
|
n_embd_head_k, 2, 0, n_orig_ctx, freq_base, freq_scale,
|
||||||
ext_factor, attn_factor, beta_fast, beta_slow);
|
ext_factor, attn_factor, beta_fast, beta_slow);
|
||||||
cb(Qcur, "Qcur", il);
|
cb(Qcur, "Qcur", il);
|
||||||
|
|
||||||
Qcur = ggml_scale(ctx0, Qcur, 1.0f / sqrtf(float(n_embd_head_k)));
|
Qcur = ggml_scale(ctx0, Qcur, 1.0f / sqrtf(float(n_embd_head_k)));
|
||||||
cb(Qcur, "Qcur_scaled", il);
|
cb(Qcur, "Qcur_scaled", il);
|
||||||
|
|
||||||
@ -7505,6 +7507,7 @@ struct llm_build_context {
|
|||||||
Kcur, Vcur, Qcur, KQ_mask, nullptr, n_ctx, n_tokens, kv_head, n_kv, 1.0f, cb, il);
|
Kcur, Vcur, Qcur, KQ_mask, nullptr, n_ctx, n_tokens, kv_head, n_kv, 1.0f, cb, il);
|
||||||
cb(cur, "kqv_out", il);
|
cb(cur, "kqv_out", il);
|
||||||
}
|
}
|
||||||
|
|
||||||
struct ggml_tensor * sa_out = ggml_add(ctx0, cur, inpL);
|
struct ggml_tensor * sa_out = ggml_add(ctx0, cur, inpL);
|
||||||
cb(sa_out, "sa_out", il);
|
cb(sa_out, "sa_out", il);
|
||||||
|
|
||||||
|
Loading…
x
Reference in New Issue
Block a user