minicpm working without uhd

This commit is contained in:
Xuan Son Nguyen 2025-01-23 12:14:06 +01:00
parent c0d93dd509
commit 8586d23c8a
9 changed files with 77 additions and 2 deletions

View File

@ -2339,6 +2339,7 @@ class MiniCPMVModel(Qwen2Model):
model_arch = gguf.MODEL_ARCH.QWEN2
proj_type: gguf.constants.CLIPProjectorType | None
resampler_n_embd = 0
tok_embd_tensor: Tensor | None = None
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
@ -2361,6 +2362,8 @@ class MiniCPMVModel(Qwen2Model):
for tname, tensor in self.get_tensors():
if tname == "resampler.ln_post.bias":
self.resampler_n_embd = tensor.shape[0]
if tname.endswith("embed_tokens.weight"):
self.tok_embd_tensor = tensor
if self.resampler_n_embd < 2:
raise ValueError("Failed to detect resampler embedding size")
else:
@ -2372,6 +2375,16 @@ class MiniCPMVModel(Qwen2Model):
self.hparams["vision_feature_layer"] = 0
self.v_tensor_map = gguf.get_tensor_name_map(self.vision_arch, self.vparams["num_hidden_layers"])
def get_embd_of_tokens(self, map_token_to_tensor_name: Iterable[tuple[str, str]]) -> Iterable[tuple[str, Tensor]]:
if self.tok_embd_tensor is None:
raise ValueError("Token embedding tensor not found")
from transformers import AutoTokenizer
tokenizer = AutoTokenizer.from_pretrained(self.dir_model, trust_remote_code=True)
for token, tensor_name in map_token_to_tensor_name:
tok_id = tokenizer.get_vocab()[token]
row = self.tok_embd_tensor[tok_id]
yield tensor_name, row
def set_gguf_parameters(self):
super().set_gguf_parameters()
# For vision model
@ -2388,6 +2401,14 @@ class MiniCPMVModel(Qwen2Model):
self.format_tensor_name(gguf.MODEL_TENSOR.V_RESMPL_POS_EMBD_K, is_vision=True),
torch.from_numpy(self._get_2d_sincos_pos_embed(self.resampler_n_embd, (70, 70)))
)
added_tokens = [
("<image>", gguf.TENSOR_NAMES[gguf.MODEL_TENSOR.V_TOK_EMBD_IMAGE ] + ".weight"),
("</image>", gguf.TENSOR_NAMES[gguf.MODEL_TENSOR.V_TOK_EMBD_END_IMAGE] + ".weight"),
("<slice>", gguf.TENSOR_NAMES[gguf.MODEL_TENSOR.V_TOK_EMBD_SLICE ] + ".weight"),
("</slice>", gguf.TENSOR_NAMES[gguf.MODEL_TENSOR.V_TOK_EMBD_END_SLICE] + ".weight"),
]
for tensor_name, tensor in self.get_embd_of_tokens(added_tokens):
yield tensor_name, tensor
def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
del bid # unused
@ -2404,6 +2425,7 @@ class MiniCPMVModel(Qwen2Model):
name_k = name.replace("in_proj_", "in_proj_k.") # in_proj_k.(weight|bias)
name_v = name.replace("in_proj_", "in_proj_v.") # in_proj_v.(weight|bias)
return [
# TODO: permute these
(self.map_tensor_name(name_q), split_tensor[0]),
(self.map_tensor_name(name_k), split_tensor[1]),
(self.map_tensor_name(name_v), split_tensor[2]),
@ -2413,6 +2435,9 @@ class MiniCPMVModel(Qwen2Model):
if name == "resampler.proj" or name == "resampler.query":
name += ".weight"
if name.startswith("resampler.proj"):
data_torch = data_torch.transpose(-1, -2).contiguous()
if "post_layernorm" in name:
return [] # skip post_layernorm

View File

@ -100,7 +100,7 @@ int main(int argc, char ** argv) {
// default prompt for llava 1.5
//params.prompt = "A chat between a curious human and an artificial intelligence assistant. The assistant gives helpful, detailed, and polite answers to the human's questions.\nUSER:<img_placement>\nwhat did you see?\nASSISTANT:";
// default prompt for minicpmv 2.6
params.prompt = "<|im_start|>system\nYou are a helpful assistant.<|im_end|>\n<|im_start|>user\nwhat did you see?\n<image><img_placement></image><|im_end|>\n<|im_start|>assistant\n";
params.prompt = "<|im_start|>system\nYou are a helpful assistant.<|im_end|>\n<|im_start|>user\nwhat did you see?\n<img_placement><|im_end|>\n<|im_start|>assistant\n";
params.n_predict = 64;
params.n_batch = 2048;
params.n_ubatch = 1024;

View File

@ -467,6 +467,10 @@ class MODEL_TENSOR(IntEnum):
V_RESMPL_Q_NORM = auto() # minicpmv
V_RESMPL_PROJ = auto() # minicpmv
V_RESMPL_QUERY = auto() # minicpmv
V_TOK_EMBD_IMAGE = auto() # embedding for <image> token
V_TOK_EMBD_END_IMAGE = auto() # embedding for </image> token
V_TOK_EMBD_SLICE = auto() # embedding for <slice> token
V_TOK_EMBD_END_SLICE = auto() # embedding for </slice> token
MODEL_ARCH_NAMES: dict[MODEL_ARCH, str] = {
@ -686,6 +690,10 @@ TENSOR_NAMES: dict[MODEL_TENSOR, str] = {
MODEL_TENSOR.V_RESMPL_Q_NORM: "v.resmpl.q_norm",
MODEL_TENSOR.V_RESMPL_PROJ: "v.resmpl.proj",
MODEL_TENSOR.V_RESMPL_QUERY: "v.resmpl.query",
MODEL_TENSOR.V_TOK_EMBD_IMAGE: "v.tok_embd.image",
MODEL_TENSOR.V_TOK_EMBD_END_IMAGE: "v.tok_embd.end_image",
MODEL_TENSOR.V_TOK_EMBD_SLICE: "v.tok_embd.slice",
MODEL_TENSOR.V_TOK_EMBD_END_SLICE: "v.tok_embd.end_slice",
}
MODEL_TENSORS: dict[MODEL_ARCH, list[MODEL_TENSOR]] = {
@ -1682,6 +1690,10 @@ MODEL_TENSORS: dict[MODEL_ARCH, list[MODEL_TENSOR]] = {
MODEL_TENSOR.V_RESMPL_Q_NORM,
MODEL_TENSOR.V_RESMPL_PROJ,
MODEL_TENSOR.V_RESMPL_QUERY,
MODEL_TENSOR.V_TOK_EMBD_IMAGE,
MODEL_TENSOR.V_TOK_EMBD_END_IMAGE,
MODEL_TENSOR.V_TOK_EMBD_SLICE,
MODEL_TENSOR.V_TOK_EMBD_END_SLICE,
],
# TODO
}

View File

@ -907,6 +907,22 @@ class TensorNameMap:
MODEL_TENSOR.V_RESMPL_QUERY: (
"resampler.query",
),
MODEL_TENSOR.V_TOK_EMBD_IMAGE:(
"v.tok_embd.image", # tensor generated from token embeddings
),
MODEL_TENSOR.V_TOK_EMBD_END_IMAGE:(
"v.tok_embd.end_image", # tensor generated from token embeddings
),
MODEL_TENSOR.V_TOK_EMBD_SLICE:(
"v.tok_embd.slice", # tensor generated from token embeddings
),
MODEL_TENSOR.V_TOK_EMBD_END_SLICE:(
"v.tok_embd.end_slice", # tensor generated from token embeddings
),
}
# architecture-specific block mappings

View File

@ -1382,6 +1382,10 @@ static const std::map<llm_arch, std::map<llm_tensor, const char *>> LLM_TENSOR_N
{ LLM_TENSOR_V_RESMPL_Q_NORM, "v.resmpl.q_norm" },
{ LLM_TENSOR_V_RESMPL_PROJ, "v.resmpl.proj" },
{ LLM_TENSOR_V_RESMPL_QUERY, "v.resmpl.query" },
{ LLM_TENSOR_V_TOK_EMBD_IMAGE, "v.tok_embd.image" },
{ LLM_TENSOR_V_TOK_EMBD_END_IMAGE, "v.tok_embd.end_image" },
{ LLM_TENSOR_V_TOK_EMBD_SLICE, "v.tok_embd.slice" },
{ LLM_TENSOR_V_TOK_EMBD_END_SLICE, "v.tok_embd.end_slice" },
}
},
{

View File

@ -381,6 +381,10 @@ enum llm_tensor {
LLM_TENSOR_V_RESMPL_Q_NORM,
LLM_TENSOR_V_RESMPL_PROJ,
LLM_TENSOR_V_RESMPL_QUERY,
LLM_TENSOR_V_TOK_EMBD_IMAGE,
LLM_TENSOR_V_TOK_EMBD_END_IMAGE,
LLM_TENSOR_V_TOK_EMBD_SLICE,
LLM_TENSOR_V_TOK_EMBD_END_SLICE,
};
enum llm_tensor_layer {

View File

@ -3549,6 +3549,12 @@ bool llama_model::load_tensors(llama_model_loader & ml) {
vit.mm_model_ln_post_w = ml.create_tensor(ctx_vision, tn(LLM_TENSOR_V_RESMPL_POST_NORM, "weight"), {rs_n_embd});
vit.mm_model_ln_post_b = ml.create_tensor(ctx_vision, tn(LLM_TENSOR_V_RESMPL_POST_NORM, "bias" ), {rs_n_embd});
// tok embd
vit.mm_tok_embd_image = ml.create_tensor(ctx_vision, tn(LLM_TENSOR_V_TOK_EMBD_IMAGE, "weight"), {n_embd});
vit.mm_tok_embd_end_image = ml.create_tensor(ctx_vision, tn(LLM_TENSOR_V_TOK_EMBD_END_IMAGE, "weight"), {n_embd});
vit.mm_tok_embd_slice = ml.create_tensor(ctx_vision, tn(LLM_TENSOR_V_TOK_EMBD_SLICE, "weight"), {n_embd});
vit.mm_tok_embd_end_slice = ml.create_tensor(ctx_vision, tn(LLM_TENSOR_V_TOK_EMBD_END_SLICE, "weight"), {n_embd});
for (int i = 0; i < n_vlayer; ++i) {
auto & layer = vit.layers[i];

View File

@ -895,6 +895,10 @@ struct llama_vision_graph_builder {
cur = ggml_mul_mat(ctx0, model.mm_model_proj, cur);
}
// add <image> and </image> token embeddings
cur = ggml_concat(ctx0, model.mm_tok_embd_image, cur, 1);
cur = ggml_concat(ctx0, cur, model.mm_tok_embd_end_image, 1);
ggml_set_name(cur, "output");
ggml_build_forward_expand(gf, cur);

View File

@ -129,7 +129,11 @@ struct llama_vision_model {
struct ggml_tensor * mm_model_ln_post_w = nullptr;
struct ggml_tensor * mm_model_ln_post_b = nullptr;
struct ggml_tensor * image_newline = nullptr;
// special tokens
struct ggml_tensor * mm_tok_embd_image = nullptr;
struct ggml_tensor * mm_tok_embd_end_image = nullptr;
struct ggml_tensor * mm_tok_embd_slice = nullptr;
struct ggml_tensor * mm_tok_embd_end_slice = nullptr;
};
struct llama_vision_context {