ggml : use 8-bit precision for Q4_1 intermediate results (#1047)

* ggml : use 8-bit precision for Q4_1 intermediate results (ARM)

* ggml : optimize ggml_vec_dot_q4_1_q8_0() via vmalq_n_f32

56 ms/token with Q4_1 !

* ggml : AVX2 implementation of ggml_vec_dot_q4_1_q8_0 (#1051)

* gitignore : ignore ppl-*.txt files

---------

Co-authored-by: slaren <2141330+slaren@users.noreply.github.com>
This commit is contained in:
Georgi Gerganov 2023-04-19 20:10:08 +03:00 committed by GitHub
parent 7cd5c4a3e9
commit 884e7d7a2b
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
2 changed files with 192 additions and 194 deletions

15
.gitignore vendored
View File

@ -1,11 +1,15 @@
*.o
*.a
.DS_Store
.build/
.cache/
.direnv/
.envrc
.swiftpm
.venv
.vs/
.vscode/
.DS_Store
.build/
build/
build-em/
build-debug/
@ -30,12 +34,9 @@ models/*
arm_neon.h
compile_commands.json
.envrc
.direnv/
.venv
__pycache__
.swiftpm
zig-out/
zig-cache/
ppl-*.txt

371
ggml.c
View File

@ -550,6 +550,18 @@ inline static uint16_t vaddvq_u8(uint8x16_t v) {
(uint16_t)vgetq_lane_u8(v, 14) + (uint16_t)vgetq_lane_u8(v, 15);
}
inline static int16_t vaddvq_s8(int8x16_t v) {
return
(int16_t)vgetq_lane_s8(v, 0) + (int16_t)vgetq_lane_s8(v, 1) +
(int16_t)vgetq_lane_s8(v, 2) + (int16_t)vgetq_lane_s8(v, 3) +
(int16_t)vgetq_lane_s8(v, 4) + (int16_t)vgetq_lane_s8(v, 5) +
(int16_t)vgetq_lane_s8(v, 6) + (int16_t)vgetq_lane_s8(v, 7) +
(int16_t)vgetq_lane_s8(v, 8) + (int16_t)vgetq_lane_s8(v, 9) +
(int16_t)vgetq_lane_s8(v, 10) + (int16_t)vgetq_lane_s8(v, 11) +
(int16_t)vgetq_lane_s8(v, 12) + (int16_t)vgetq_lane_s8(v, 13) +
(int16_t)vgetq_lane_s8(v, 14) + (int16_t)vgetq_lane_s8(v, 15);
}
inline static int32_t vaddvq_s16(int16x8_t v) {
return
(int32_t)vgetq_lane_s16(v, 0) + (int32_t)vgetq_lane_s16(v, 1) +
@ -1535,9 +1547,8 @@ static void dequantize_row_q4_2(const void * restrict vx, float * restrict y, in
}
}
static void ggml_vec_dot_q4_1(const int n, float * restrict s, const void * restrict vx, const void * restrict vy);
static void ggml_vec_dot_q4_0_q8_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy);
//static void ggml_vec_dot_q4_1_q8_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy);
static void ggml_vec_dot_q4_1_q8_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy);
static void ggml_vec_dot_q4_2_q8_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy);
static const quantize_fns_t quantize_fns[GGML_TYPE_COUNT] = {
@ -1552,8 +1563,8 @@ static const quantize_fns_t quantize_fns[GGML_TYPE_COUNT] = {
.dequantize_row_q = dequantize_row_q4_1,
.quantize_row_q = quantize_row_q4_1,
.quantize_row_q_reference = (quantize_row_q_t) quantize_row_q4_1_reference,
.quantize_row_q_dot = quantize_row_q4_1,
.vec_dot_q = ggml_vec_dot_q4_1,
.quantize_row_q_dot = quantize_row_q8_0,
.vec_dot_q = ggml_vec_dot_q4_1_q8_0,
},
[GGML_TYPE_Q4_2] = {
.dequantize_row_q = dequantize_row_q4_2,
@ -2170,189 +2181,6 @@ inline static void ggml_vec_dot_f16(const int n, float * restrict s, ggml_fp16_t
*s = sumf;
}
static void ggml_vec_dot_q4_1(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) {
const int nb = n / QK4_1;
const block_q4_1 * restrict x = vx;
const block_q4_1 * restrict y = vy;
float sumf = 0.0;
#if defined(__AVX2__)
// Initialize accumulator with zeros
__m256 acc = _mm256_setzero_ps();
// Accumulator for constant offsets
float acc_offset = 0.0f;
// Main loop
for (int i = 0; i < nb; ++i) {
const float * d0 = &x[i].d;
const float * d1 = &y[i].d;
const float * m0 = &x[i].m;
const float * m1 = &y[i].m;
const __m256 d0v = _mm256_broadcast_ss( d0 );
const __m256 d1v = _mm256_broadcast_ss( d1 );
const __m256 m0v = _mm256_broadcast_ss( m0 );
const __m256 m1v = _mm256_broadcast_ss( m1 );
// Compute combined scale for the block
const __m256 scale_01 = _mm256_mul_ps( d0v, d1v );
// Compute cross scales for the block
const __m256 scale_0 = _mm256_mul_ps( d0v, m1v );
const __m256 scale_1 = _mm256_mul_ps( m0v, d1v );
const __m256 cross_scales = _mm256_blend_ps( scale_0, scale_1, 0xAA /* 0b10101010 */ );
// Load 16 bytes, and unpack 4 bit fields into bytes, making 32 bytes
__m256i bx = bytesFromNibbles( x[i].qs );
__m256i by = bytesFromNibbles( y[i].qs );
// Now we have a vector with bytes in [ 0 .. 15 ] interval.
// Sign-extend first 16 signed bytes into int16_t
__m256i x16 = _mm256_cvtepi8_epi16( _mm256_castsi256_si128( bx ) );
__m256i y16 = _mm256_cvtepi8_epi16( _mm256_castsi256_si128( by ) );
// Compute products of int16_t integers, add pairwise
__m256i i32 = _mm256_madd_epi16( x16, y16 );
// Sign-extend last 16 signed bytes into int16_t vectors
__m256i x16_h = _mm256_cvtepi8_epi16( _mm256_extracti128_si256( bx, 1 ) );
__m256i y16_h = _mm256_cvtepi8_epi16( _mm256_extracti128_si256( by, 1 ) );
// Accumulate products of int16_t integers
i32 = _mm256_add_epi32( i32, _mm256_madd_epi16( x16_h, y16_h ) );
// compute sums of unsigned bytes in bx, by in blocks of 8.
// This results in a layout like X100 0000 X200 0000 X300 0000 X400 0000,
// which we then interleave as X100 Y100 X200 Y200 X300 Y300 X400 Y400.
// so if we then cast to 8 singles, we get 8 floats like [ x0_7, y0_7, x8_15, y8_15, x16_23, y16_23, x24_31, y24_31 ]
__m256i xsumi = _mm256_sad_epu8( bx, _mm256_setzero_si256() );
__m256i ysumi = _mm256_sad_epu8( by, _mm256_setzero_si256() );
__m256i sumsi = _mm256_or_si256( xsumi, _mm256_slli_si256( ysumi, 4 ) );
__m256 sums = _mm256_cvtepi32_ps( sumsi );
// Convert int32_t to float
__m256 p = _mm256_cvtepi32_ps( i32 );
// Apply the scale, and accumulate
// acc += d0*d1*x*y + d0*m1*x + d1*m0*y
acc = _mm256_fmadd_ps( scale_01, p, acc );
acc = _mm256_fmadd_ps( cross_scales, sums, acc );
// acc_offset += m0*m1 (for each entry in the block)
acc_offset += (*m0)*(*m1);
}
// Return horizontal sum of the acc vector
__m128 res = _mm256_extractf128_ps( acc, 1 );
res = _mm_add_ps( res, _mm256_castps256_ps128( acc ) );
res = _mm_add_ps( res, _mm_movehl_ps( res, res ) );
res = _mm_add_ss( res, _mm_movehdup_ps( res ) );
sumf = _mm_cvtss_f32( res ) + acc_offset * QK4_1;
#elif defined(__ARM_NEON)
float sum00 = 0.0f;
float sum01 = 0.0f;
float sum10 = 0.0f;
float sum11 = 0.0f;
for (int i = 0; i < nb; i += 2) {
const block_q4_1 * restrict x0 = &x[i + 0];
const block_q4_1 * restrict y0 = &y[i + 0];
const block_q4_1 * restrict x1 = &x[i + 1];
const block_q4_1 * restrict y1 = &y[i + 1];
const uint8x16_t m4b = vdupq_n_u8(0xf);
const uint8x16_t v0_0 = vld1q_u8(x0->qs);
const uint8x16_t v1_0 = vld1q_u8(y0->qs);
const uint8x16_t v0_1 = vld1q_u8(x1->qs);
const uint8x16_t v1_1 = vld1q_u8(y1->qs);
// 4-bit -> 8-bit
const uint8x16_t v0_0l = vandq_u8(v0_0, m4b);
const uint8x16_t v1_0l = vandq_u8(v1_0, m4b);
const uint8x16_t v0_0h = vshrq_n_u8(v0_0, 4);
const uint8x16_t v1_0h = vshrq_n_u8(v1_0, 4);
const uint8x16_t v0_1l = vandq_u8(v0_1, m4b);
const uint8x16_t v1_1l = vandq_u8(v1_1, m4b);
const uint8x16_t v0_1h = vshrq_n_u8(v0_1, 4);
const uint8x16_t v1_1h = vshrq_n_u8(v1_1, 4);
sum00 += x0->m*y0->m;
sum01 += y0->m*x0->d*((uint16_t)vaddvq_u8(v0_0l) + (uint16_t)vaddvq_u8(v0_0h));
sum10 += x0->m*y0->d*((uint16_t)vaddvq_u8(v1_0l) + (uint16_t)vaddvq_u8(v1_0h));
sum00 += x1->m*y1->m;
sum01 += y1->m*x1->d*((uint16_t)vaddvq_u8(v0_1l) + (uint16_t)vaddvq_u8(v0_1h));
sum10 += x1->m*y1->d*((uint16_t)vaddvq_u8(v1_1l) + (uint16_t)vaddvq_u8(v1_1h));
#if defined(__ARM_FEATURE_DOTPROD)
// dot product into int32x4_t
uint32x4_t p_0 = vdotq_u32(vdupq_n_u32(0), v0_0l, v1_0l);
uint32x4_t p_1 = vdotq_u32(vdupq_n_u32(0), v0_1l, v1_1l);
p_0 = vdotq_u32(p_0, v0_0h, v1_0h);
p_1 = vdotq_u32(p_1, v0_1h, v1_1h);
sum11 += x0->d*y0->d*vaddvq_u32(p_0);
sum11 += x1->d*y1->d*vaddvq_u32(p_1);
#else
const uint16x8_t pl0l = vmull_u8(vget_low_u8 (v0_0l), vget_low_u8 (v1_0l));
const uint16x8_t pl0h = vmull_u8(vget_high_u8(v0_0l), vget_high_u8(v1_0l));
const uint16x8_t ph0l = vmull_u8(vget_low_u8 (v0_0h), vget_low_u8 (v1_0h));
const uint16x8_t ph0h = vmull_u8(vget_high_u8(v0_0h), vget_high_u8(v1_0h));
const uint16x8_t pl1l = vmull_u8(vget_low_u8 (v0_1l), vget_low_u8 (v1_1l));
const uint16x8_t pl1h = vmull_u8(vget_high_u8(v0_1l), vget_high_u8(v1_1l));
const uint16x8_t ph1l = vmull_u8(vget_low_u8 (v0_1h), vget_low_u8 (v1_1h));
const uint16x8_t ph1h = vmull_u8(vget_high_u8(v0_1h), vget_high_u8(v1_1h));
const uint16x8_t pl_0 = vaddq_u16(pl0l, pl0h);
const uint16x8_t ph_0 = vaddq_u16(ph0l, ph0h);
const uint16x8_t pl_1 = vaddq_u16(pl1l, pl1h);
const uint16x8_t ph_1 = vaddq_u16(ph1l, ph1h);
const uint16x8_t p_0 = vaddq_u16(pl_0, ph_0);
const uint16x8_t p_1 = vaddq_u16(pl_1, ph_1);
sum11 += x0->d*y0->d*vaddvq_u16(p_0);
sum11 += x1->d*y1->d*vaddvq_u16(p_1);
#endif
}
sumf = QK4_1*sum00 + sum01 + sum10 + sum11;
#else
// scalar
for (int i = 0; i < nb; i++) {
const float d0 = x[i].d;
const float d1 = y[i].d;
const float m0 = x[i].m;
const float m1 = y[i].m;
const uint8_t * restrict p0 = x[i].qs;
const uint8_t * restrict p1 = y[i].qs;
for (int j = 0; j < QK4_1/2; j++) {
const uint8_t v0 = p0[j];
const uint8_t v1 = p1[j];
const float f0 = d0*(v0 & 0xf) + m0;
const float f1 = d0*(v0 >> 4) + m0;
const float f2 = d1*(v1 & 0xf) + m1;
const float f3 = d1*(v1 >> 4) + m1;
sumf += f0*f2 + f1*f3;
}
}
#endif
*s = sumf;
}
static void ggml_vec_dot_q4_0_q8_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) {
const int nb = n / QK8_0;
@ -2549,6 +2377,175 @@ static void ggml_vec_dot_q4_0_q8_0(const int n, float * restrict s, const void *
*s = sumf;
}
static void ggml_vec_dot_q4_1_q8_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) {
const int nb = n / QK8_0;
assert(n % QK8_0 == 0);
assert(nb % 2 == 0);
const block_q4_1 * restrict x = vx;
const block_q8_0 * restrict y = vy;
float sumf = 0.0;
// TODO: add AVX / WASM SIMD / etc
#if defined(__ARM_NEON)
float32x4_t sumv0 = vdupq_n_f32(0.0f);
float32x4_t sumv1 = vdupq_n_f32(0.0f);
for (int i = 0; i < nb; i += 2) {
const block_q4_1 * restrict x0 = &x[i + 0];
const block_q4_1 * restrict x1 = &x[i + 1];
const block_q8_0 * restrict y0 = &y[i + 0];
const block_q8_0 * restrict y1 = &y[i + 1];
const uint8x16_t m4b = vdupq_n_u8(0xf);
const uint8x16_t v0_0 = vld1q_u8(x0->qs);
const uint8x16_t v0_1 = vld1q_u8(x1->qs);
// 4-bit -> 8-bit
const int8x16_t v0_0l = vreinterpretq_s8_u8(vandq_u8 (v0_0, m4b));
const int8x16_t v0_0h = vreinterpretq_s8_u8(vshrq_n_u8(v0_0, 4));
const int8x16_t v0_1l = vreinterpretq_s8_u8(vandq_u8 (v0_1, m4b));
const int8x16_t v0_1h = vreinterpretq_s8_u8(vshrq_n_u8(v0_1, 4));
// load y
const int8x16_t v1_0l = vld1q_s8(y0->qs);
const int8x16_t v1_0h = vld1q_s8(y0->qs + 16);
const int8x16_t v1_1l = vld1q_s8(y1->qs);
const int8x16_t v1_1h = vld1q_s8(y1->qs + 16);
// interleave
const int8x16_t v1_0ls = vuzp1q_s8(v1_0l, v1_0h);
const int8x16_t v1_0hs = vuzp2q_s8(v1_0l, v1_0h);
const int8x16_t v1_1ls = vuzp1q_s8(v1_1l, v1_1h);
const int8x16_t v1_1hs = vuzp2q_s8(v1_1l, v1_1h);
const int16x8_t s0i = vaddq_s16(
vaddq_s16(vmovl_s8(vget_low_s8(v1_0ls)), vmovl_s8(vget_high_s8(v1_0ls))),
vaddq_s16(vmovl_s8(vget_low_s8(v1_0hs)), vmovl_s8(vget_high_s8(v1_0hs))));
const int16x8_t s1i = vaddq_s16(
vaddq_s16(vmovl_s8(vget_low_s8(v1_1ls)), vmovl_s8(vget_high_s8(v1_1ls))),
vaddq_s16(vmovl_s8(vget_low_s8(v1_1hs)), vmovl_s8(vget_high_s8(v1_1hs))));
sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddl_s16(vget_low_s16(s0i), vget_high_s16(s0i))), x0->m*y0->d);
sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddl_s16(vget_low_s16(s1i), vget_high_s16(s1i))), x1->m*y1->d);
#if defined(__ARM_FEATURE_DOTPROD)
// dot product into int32x4_t
const int32x4_t p_0 = vdotq_s32(vdotq_s32(vdupq_n_s32(0), v0_0l, v1_0ls), v0_0h, v1_0hs);
const int32x4_t p_1 = vdotq_s32(vdotq_s32(vdupq_n_s32(0), v0_1l, v1_1ls), v0_1h, v1_1hs);
sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(p_0), x0->d*y0->d);
sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(p_1), x1->d*y1->d);
#else
const int16x8_t pl0l = vmull_s8(vget_low_s8 (v0_0l), vget_low_s8 (v1_0ls));
const int16x8_t pl0h = vmull_s8(vget_high_s8(v0_0l), vget_high_s8(v1_0ls));
const int16x8_t ph0l = vmull_s8(vget_low_s8 (v0_0h), vget_low_s8 (v1_0hs));
const int16x8_t ph0h = vmull_s8(vget_high_s8(v0_0h), vget_high_s8(v1_0hs));
const int16x8_t pl1l = vmull_s8(vget_low_s8 (v0_1l), vget_low_s8 (v1_1ls));
const int16x8_t pl1h = vmull_s8(vget_high_s8(v0_1l), vget_high_s8(v1_1ls));
const int16x8_t ph1l = vmull_s8(vget_low_s8 (v0_1h), vget_low_s8 (v1_1hs));
const int16x8_t ph1h = vmull_s8(vget_high_s8(v0_1h), vget_high_s8(v1_1hs));
const int32x4_t pl0 = vaddq_s32(vpaddlq_s16(pl0l), vpaddlq_s16(pl0h));
const int32x4_t ph0 = vaddq_s32(vpaddlq_s16(ph0l), vpaddlq_s16(ph0h));
const int32x4_t pl1 = vaddq_s32(vpaddlq_s16(pl1l), vpaddlq_s16(pl1h));
const int32x4_t ph1 = vaddq_s32(vpaddlq_s16(ph1l), vpaddlq_s16(ph1h));
sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(pl0, ph0)), x0->d*y0->d);
sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(pl1, ph1)), x1->d*y1->d);
#endif
}
sumf = vaddvq_f32(sumv0) + vaddvq_f32(sumv1);
#elif defined(__AVX2__)
// Initialize accumulator with zeros
__m256 acc = _mm256_setzero_ps();
// Main loop
for (int i = 0; i < nb; ++i) {
const float * d0 = &x[i].d;
const float * d1 = &y[i].d;
const float * m0 = &x[i].m;
const __m256 d0v = _mm256_broadcast_ss( d0 );
const __m256 d1v = _mm256_broadcast_ss( d1 );
const __m256 m0v = _mm256_broadcast_ss( m0 );
// Compute combined scales
const __m256 d0d1 = _mm256_mul_ps( d0v, d1v );
const __m256 d1m0 = _mm256_mul_ps( d1v, m0v );
// Load 16 bytes, and unpack 4 bit fields into bytes, making 32 bytes
const __m256i bx = bytesFromNibbles( x[i].qs );
const __m256i by = _mm256_loadu_si256( (const __m256i *)y[i].qs );
// Get absolute values of x vectors
const __m256i ax = _mm256_sign_epi8( bx, bx );
// Sign the values of the y vectors
const __m256i sy = _mm256_sign_epi8( by, bx );
// Perform multiplication and create 16-bit values
const __m256i dot = _mm256_maddubs_epi16( ax, sy );
const __m256i ones = _mm256_set1_epi16( 1 );
const __m256i xy_q = _mm256_madd_epi16( ones, dot );
// Convert to vector of 8 int32_t to 8 floats
const __m256 xy = _mm256_cvtepi32_ps( xy_q );
// Accumulate d0*d1*x*y
acc = _mm256_fmadd_ps( d0d1, xy, acc );
// Compute sum of y values
const __m256i y16_l = _mm256_cvtepi8_epi16( _mm256_castsi256_si128( by ) );
const __m256i y16_h = _mm256_cvtepi8_epi16( _mm256_extracti128_si256( by, 1 ) );
const __m256i ysumi = _mm256_madd_epi16( _mm256_add_epi16(y16_l, y16_h), ones );
const __m256 ysum = _mm256_cvtepi32_ps( ysumi );
// Accumulate d1*m0*y
acc = _mm256_fmadd_ps( d1m0, ysum, acc );
}
// Return horizontal sum of the acc vector
__m128 res = _mm256_extractf128_ps( acc, 1 );
res = _mm_add_ps( res, _mm256_castps256_ps128( acc ) );
res = _mm_add_ps( res, _mm_movehl_ps( res, res ) );
res = _mm_add_ss( res, _mm_movehdup_ps( res ) );
sumf = _mm_cvtss_f32( res );
#else
// scalar
for (int i = 0; i < nb; i++) {
const float d0 = x[i].d;
const float m0 = x[i].m;
const float d1 = y[i].d;
const uint8_t * restrict p0 = x[i].qs;
const int8_t * restrict p1 = y[i].qs;
// TODO: this is very slow ..
for (int j = 0; j < QK8_0/2; j++) {
const uint8_t v0 = p0[j];
const float f0 = d0*(v0 & 0xf) + m0;
const float f1 = d0*(v0 >> 4) + m0;
const float f2 = d1*p1[2*j + 0];
const float f3 = d1*p1[2*j + 1];
sumf += f0*f2 + f1*f3;
}
}
#endif
*s = sumf;
}
static void ggml_vec_dot_q4_2_q8_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) {
const int nb = n / QK8_0;