gguf : deduplicate (#2629)

* gguf : better type names

* dedup : CPU + Metal is working

* ggml : fix warnings about unused results

* llama.cpp : fix line feed and compiler warning

* llama : fix strncpy warning + note token_to_str does not write null

* llama : restore the original load/save session implementation

Will migrate this to GGUF in the future

* convert-llama-h5-to-gguf.py : support alt ctx param name

* ggml : assert when using ggml_mul with non-F32 src1

* examples : dedup simple

---------

Co-authored-by: klosax <131523366+klosax@users.noreply.github.com>
This commit is contained in:
Georgi Gerganov 2023-08-16 19:25:29 +03:00 committed by GitHub
parent 758ff1bbb5
commit 88b5769487
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
21 changed files with 1630 additions and 7398 deletions

View File

@ -529,7 +529,6 @@ endif()
add_library(llama add_library(llama
llama.cpp llama.cpp
llama.h llama.h
llama-util.h
) )
target_include_directories(llama PUBLIC .) target_include_directories(llama PUBLIC .)

View File

@ -1,5 +1,5 @@
# Define the default target now so that it is always the first target # Define the default target now so that it is always the first target
BUILD_TARGETS = main quantize quantize-stats perplexity embedding vdot train-text-from-scratch convert-llama2c-to-ggml simple server embd-input-test gguf gguf-llama-simple gptneox-main BUILD_TARGETS = main quantize quantize-stats perplexity embedding vdot train-text-from-scratch convert-llama2c-to-ggml simple server embd-input-test gguf gptneox-main
# Binaries only useful for tests # Binaries only useful for tests
TEST_TARGETS = tests/test-grammar-parser tests/test-double-float tests/test-grad0 tests/test-opt tests/test-quantize-fns tests/test-quantize-perf tests/test-sampling tests/test-tokenizer-0 TEST_TARGETS = tests/test-grammar-parser tests/test-double-float tests/test-grad0 tests/test-opt tests/test-quantize-fns tests/test-quantize-perf tests/test-sampling tests/test-tokenizer-0
@ -329,10 +329,7 @@ ggml-alloc.o: ggml-alloc.c ggml.h ggml-alloc.h
OBJS += ggml-alloc.o OBJS += ggml-alloc.o
llama.o: llama.cpp ggml.h ggml-alloc.h ggml-cuda.h ggml-metal.h llama.h llama-util.h llama.o: llama.cpp ggml.h ggml-alloc.h ggml-cuda.h ggml-metal.h llama.h
$(CXX) $(CXXFLAGS) -c $< -o $@
gguf-llama.o: gguf-llama.cpp ggml.h ggml-alloc.h ggml-cuda.h ggml-metal.h gguf-llama.h
$(CXX) $(CXXFLAGS) -c $< -o $@ $(CXX) $(CXXFLAGS) -c $< -o $@
common.o: examples/common.cpp examples/common.h common.o: examples/common.cpp examples/common.h
@ -388,10 +385,7 @@ $(LIB_PRE)embdinput$(DSO_EXT): examples/embd-input/embd-input.h examples/embd-in
embd-input-test: $(LIB_PRE)embdinput$(DSO_EXT) examples/embd-input/embd-input-test.cpp build-info.h ggml.o llama.o common.o $(OBJS) embd-input-test: $(LIB_PRE)embdinput$(DSO_EXT) examples/embd-input/embd-input-test.cpp build-info.h ggml.o llama.o common.o $(OBJS)
$(CXX) $(CXXFLAGS) $(filter-out %$(DSO_EXT),$(filter-out %.h,$(filter-out %.hpp,$^))) -o $@ $(LDFLAGS) -L. -lembdinput $(CXX) $(CXXFLAGS) $(filter-out %$(DSO_EXT),$(filter-out %.h,$(filter-out %.hpp,$^))) -o $@ $(LDFLAGS) -L. -lembdinput
gguf: examples/gguf/gguf.cpp build-info.h ggml.o gguf-llama.o $(OBJS) gguf: examples/gguf/gguf.cpp build-info.h ggml.o llama.o $(OBJS)
$(CXX) $(CXXFLAGS) $(filter-out %.h,$^) -o $@ $(LDFLAGS)
gguf-llama-simple: examples/gguf/gguf-llama-simple.cpp build-info.h ggml.o gguf-llama.o common.o $(OBJS)
$(CXX) $(CXXFLAGS) $(filter-out %.h,$^) -o $@ $(LDFLAGS) $(CXX) $(CXXFLAGS) $(filter-out %.h,$^) -o $@ $(LDFLAGS)
gptneox-main: gptneox-main.cpp ggml.o $(OBJS) gptneox-main: gptneox-main.cpp ggml.o $(OBJS)

View File

@ -132,7 +132,7 @@ if Path(dir_model + "/tokenizer.model").is_file():
toktype = 1 # defualt to normal token type toktype = 1 # defualt to normal token type
if tokenizer.is_unknown(i): toktype = 2 if tokenizer.is_unknown(i): toktype = 2
if tokenizer.is_control(i): toktype = 3 if tokenizer.is_control(i): toktype = 3
# TODO: How to determinate if a token is user defined? # TODO: How to determinate if a token is user defined?
# ref: https://github.com/google/sentencepiece/blob/master/src/sentencepiece_model.proto # ref: https://github.com/google/sentencepiece/blob/master/src/sentencepiece_model.proto
# if tokenizer.is_user_defined(i): toktype = 4 # if tokenizer.is_user_defined(i): toktype = 4
@ -223,7 +223,7 @@ for part_name in part_names:
sys.exit() sys.exit()
n_dims = len(data.shape) n_dims = len(data.shape)
data_dtype = data.dtype data_dtype = data.dtype
# if f32 desired, convert any float16 to float32 # if f32 desired, convert any float16 to float32
if ftype == 0 and data.dtype == np.float16: if ftype == 0 and data.dtype == np.float16:
@ -261,7 +261,6 @@ for part_name in part_names:
for name in model_part.keys(): for name in model_part.keys():
data = model_part[name] data = model_part[name]
old_dtype = data.dtype old_dtype = data.dtype
# we don't need these # we don't need these
@ -284,7 +283,7 @@ for part_name in part_names:
sys.exit() sys.exit()
n_dims = len(data.shape) n_dims = len(data.shape)
data_dtype = data.dtype data_dtype = data.dtype
# if f32 desired, convert any float16 to float32 # if f32 desired, convert any float16 to float32
if ftype == 0 and data.dtype == np.float16: if ftype == 0 and data.dtype == np.float16:

View File

@ -95,12 +95,21 @@ if "_name_or_path" in hparams:
else: else:
hf_repo="" hf_repo=""
if "max_sequence_length" in hparams:
ctx_length = hparams["max_sequence_length"]
elif "max_position_embeddings" in hparams:
ctx_length = hparams["max_position_embeddings"]
else:
print("gguf: can not find ctx length parameter.")
sys.exit()
gguf_writer.add_architecture(llm_arch) gguf_writer.add_architecture(llm_arch)
gguf_writer.add_name(last_dir) gguf_writer.add_name(last_dir)
gguf_writer.add_file_type("All tensors F32" if ftype == 0 else "Most tensors F16, some F32") gguf_writer.add_file_type("All tensors F32" if ftype == 0 else "Most tensors F16, some F32")
gguf_writer.add_source_hf_repo(hf_repo) gguf_writer.add_source_hf_repo(hf_repo)
gguf_writer.add_tensor_data_layout(llm_arch, "Meta AI original pth") gguf_writer.add_tensor_data_layout(llm_arch, "Meta AI original pth")
gguf_writer.add_context_length(llm_arch, hparams["max_position_embeddings"]) gguf_writer.add_context_length(llm_arch, ctx_length)
gguf_writer.add_embedding_length(llm_arch, hparams["hidden_size"]) gguf_writer.add_embedding_length(llm_arch, hparams["hidden_size"])
gguf_writer.add_block_count(llm_arch, block_count) gguf_writer.add_block_count(llm_arch, block_count)
gguf_writer.add_feed_forward_length(llm_arch, hparams["intermediate_size"]) gguf_writer.add_feed_forward_length(llm_arch, hparams["intermediate_size"])
@ -318,7 +327,7 @@ for part_name in part_names:
if ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and n_dims == 2: if ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and n_dims == 2:
data = data.astype(np.float16) data = data.astype(np.float16)
print( name + ", shape " + str(len(data.shape)) + ", " + str(old_dtype) + " --> " + str(data.dtype)) print(name + ", shape " + str(len(data.shape)) + ", " + str(old_dtype) + " --> " + str(data.dtype))
gguf_writer.write_tensor_to_file(data) gguf_writer.write_tensor_to_file(data)

View File

@ -170,18 +170,6 @@ bool gpt_params_parse(int argc, char ** argv, gpt_params & params) {
break; break;
} }
params.n_ctx = std::stoi(argv[i]); params.n_ctx = std::stoi(argv[i]);
} else if (arg == "-gqa" || arg == "--gqa") {
if (++i >= argc) {
invalid_param = true;
break;
}
params.n_gqa = std::stoi(argv[i]);
} else if (arg == "-eps" || arg == "--rms-norm-eps") {
if (++i >= argc) {
invalid_param = true;
break;
}
params.rms_norm_eps = std::stof(argv[i]);
} else if (arg == "--rope-freq-base") { } else if (arg == "--rope-freq-base") {
if (++i >= argc) { if (++i >= argc) {
invalid_param = true; invalid_param = true;
@ -546,8 +534,6 @@ void gpt_print_usage(int /*argc*/, char ** argv, const gpt_params & params) {
fprintf(stdout, " -n N, --n-predict N number of tokens to predict (default: %d, -1 = infinity, -2 = until context filled)\n", params.n_predict); fprintf(stdout, " -n N, --n-predict N number of tokens to predict (default: %d, -1 = infinity, -2 = until context filled)\n", params.n_predict);
fprintf(stdout, " -c N, --ctx-size N size of the prompt context (default: %d)\n", params.n_ctx); fprintf(stdout, " -c N, --ctx-size N size of the prompt context (default: %d)\n", params.n_ctx);
fprintf(stdout, " -b N, --batch-size N batch size for prompt processing (default: %d)\n", params.n_batch); fprintf(stdout, " -b N, --batch-size N batch size for prompt processing (default: %d)\n", params.n_batch);
fprintf(stdout, " -gqa N, --gqa N grouped-query attention factor (TEMP!!! use 8 for LLaMAv2 70B) (default: %d)\n", params.n_gqa);
fprintf(stdout, " -eps N, --rms-norm-eps N rms norm eps (TEMP!!! use 1e-5 for LLaMAv2) (default: %.1e)\n", params.rms_norm_eps);
fprintf(stdout, " --top-k N top-k sampling (default: %d, 0 = disabled)\n", params.top_k); fprintf(stdout, " --top-k N top-k sampling (default: %d, 0 = disabled)\n", params.top_k);
fprintf(stdout, " --top-p N top-p sampling (default: %.1f, 1.0 = disabled)\n", (double)params.top_p); fprintf(stdout, " --top-p N top-p sampling (default: %.1f, 1.0 = disabled)\n", (double)params.top_p);
fprintf(stdout, " --tfs N tail free sampling, parameter z (default: %.1f, 1.0 = disabled)\n", (double)params.tfs_z); fprintf(stdout, " --tfs N tail free sampling, parameter z (default: %.1f, 1.0 = disabled)\n", (double)params.tfs_z);
@ -638,8 +624,6 @@ struct llama_context_params llama_context_params_from_gpt_params(const gpt_param
lparams.n_ctx = params.n_ctx; lparams.n_ctx = params.n_ctx;
lparams.n_batch = params.n_batch; lparams.n_batch = params.n_batch;
lparams.n_gqa = params.n_gqa;
lparams.rms_norm_eps = params.rms_norm_eps;
lparams.n_gpu_layers = params.n_gpu_layers; lparams.n_gpu_layers = params.n_gpu_layers;
lparams.main_gpu = params.main_gpu; lparams.main_gpu = params.main_gpu;
lparams.tensor_split = params.tensor_split; lparams.tensor_split = params.tensor_split;

View File

@ -23,14 +23,12 @@ struct gpt_params {
int32_t n_predict = -1; // new tokens to predict int32_t n_predict = -1; // new tokens to predict
int32_t n_ctx = 512; // context size int32_t n_ctx = 512; // context size
int32_t n_batch = 512; // batch size for prompt processing (must be >=32 to use BLAS) int32_t n_batch = 512; // batch size for prompt processing (must be >=32 to use BLAS)
int32_t n_gqa = 1; // grouped-query attention factor (TODO: move to hparams)
int32_t n_keep = 0; // number of tokens to keep from initial prompt int32_t n_keep = 0; // number of tokens to keep from initial prompt
int32_t n_chunks = -1; // max number of chunks to process (-1 = unlimited) int32_t n_chunks = -1; // max number of chunks to process (-1 = unlimited)
int32_t n_gpu_layers = 0; // number of layers to store in VRAM int32_t n_gpu_layers = 0; // number of layers to store in VRAM
int32_t main_gpu = 0; // the GPU that is used for scratch and small tensors int32_t main_gpu = 0; // the GPU that is used for scratch and small tensors
float tensor_split[LLAMA_MAX_DEVICES] = {0}; // how split tensors should be distributed across GPUs float tensor_split[LLAMA_MAX_DEVICES] = {0}; // how split tensors should be distributed across GPUs
int32_t n_probs = 0; // if greater than 0, output the probabilities of top n_probs tokens. int32_t n_probs = 0; // if greater than 0, output the probabilities of top n_probs tokens.
float rms_norm_eps = LLAMA_DEFAULT_RMS_EPS; // rms norm epsilon
float rope_freq_base = 10000.0f; // RoPE base frequency float rope_freq_base = 10000.0f; // RoPE base frequency
float rope_freq_scale = 1.0f; // RoPE frequency scaling factor float rope_freq_scale = 1.0f; // RoPE frequency scaling factor

View File

@ -1,5 +1,6 @@
#include "ggml.h" #include "ggml.h"
#include "llama.h" #include "llama.h"
#include <unordered_map> #include <unordered_map>
#include <vector> #include <vector>
#include <cassert> #include <cassert>
@ -502,7 +503,7 @@ bool is_ggml_file(const char *filename) {
return false; return false;
} }
uint32_t magic = file.read_u32(); uint32_t magic = file.read_u32();
return magic == LLAMA_FILE_MAGIC; return magic == GGUF_MAGIC;
} }
void load_vocab(const char *filename, Config *config, struct llama_vocab *vocab) { void load_vocab(const char *filename, Config *config, struct llama_vocab *vocab) {
@ -590,75 +591,80 @@ void save_as_llama_model(struct llama_vocab * vocab, struct my_llama_model * mod
if (file.fp == NULL) { if (file.fp == NULL) {
return; return;
} }
// write_magic
file.write_u32(LLAMA_FILE_MAGIC); // magic
file.write_u32(LLAMA_FILE_VERSION); // version
// write_hparams
file.write_u32(model->hparams.n_vocab);
file.write_u32(model->hparams.n_embd);
file.write_u32(model->hparams.n_mult);
file.write_u32(model->hparams.n_head);
file.write_u32(model->hparams.n_layer);
file.write_u32(model->hparams.n_rot);
file.write_u32(LLAMA_FTYPE_ALL_F32);
// write_vocab - for now we are just writing the existing BPE voc. assuming karpathy's vocabulary is the same. idk. #pragma message("TODO: implement file saving using gguf")
uint32_t n_vocab = model->hparams.n_vocab; (void) vocab;
for (uint32_t i = 0; i < n_vocab; i++) { (void) model;
const auto & token_score = vocab->id_to_token.at(i); (void) w;
file.write_u32((uint32_t) token_score.tok.size()); // // write_magic
file.write_raw(token_score.tok.data(), token_score.tok.size()); // file.write_u32(LLAMA_FILE_MAGIC); // magic
file.write_raw(&token_score.score, sizeof(token_score.score)); // file.write_u32(LLAMA_FILE_VERSION); // version
} // // write_hparams
// file.write_u32(model->hparams.n_vocab);
// stuff AK weights into GG weights one by one. // file.write_u32(model->hparams.n_embd);
// w->token_embedding_table -> model->tok_embeddings // file.write_u32(model->hparams.n_mult);
// float* -> struct ggml_tensor // file.write_u32(model->hparams.n_head);
stuff_karpathy_weights_into_gg(model->tok_embeddings, w->token_embedding_table); // file.write_u32(model->hparams.n_layer);
stuff_karpathy_weights_into_gg(model->output, w->token_embedding_table); // file.write_u32(model->hparams.n_rot);
// file.write_u32(LLAMA_FTYPE_ALL_F32);
stuff_karpathy_weights_into_gg(model->norm, w->rms_final_weight); //
//print_row(model->norm, 0); // // write_vocab - for now we are just writing the existing BPE voc. assuming karpathy's vocabulary is the same. idk.
// uint32_t n_vocab = model->hparams.n_vocab;
// for rms-att-weight // for (uint32_t i = 0; i < n_vocab; i++) {
int row_length = model->hparams.n_embd; // const auto & token_score = vocab->id_to_token.at(i);
const auto & hparams = model->hparams; // file.write_u32((uint32_t) token_score.tok.size());
//int n_ff = model->hparams.n_embd; // file.write_raw(token_score.tok.data(), token_score.tok.size());
int n_ff = get_n_ff(&hparams); // file.write_raw(&token_score.score, sizeof(token_score.score));
// }
for (uint32_t i = 0; i < model->hparams.n_layer; ++i){ //
auto & layer = model->layers[i]; // // stuff AK weights into GG weights one by one.
// 1d // // w->token_embedding_table -> model->tok_embeddings
stuff_karpathy_weights_into_gg(layer.attention_norm, &w->rms_att_weight[i*row_length]); // // float* -> struct ggml_tensor
stuff_karpathy_weights_into_gg(layer.ffn_norm , &w->rms_ffn_weight[i*row_length]); // stuff_karpathy_weights_into_gg(model->tok_embeddings, w->token_embedding_table);
// stuff_karpathy_weights_into_gg(model->output, w->token_embedding_table);
// from 3d matrix layer x dim x dim to 2d matrix dim x dim //
stuff_karpathy_weights_into_gg(layer.wq , &w->wq[i*row_length*row_length]); // stuff_karpathy_weights_into_gg(model->norm, w->rms_final_weight);
stuff_karpathy_weights_into_gg(layer.wk , &w->wk[i*row_length*row_length]); // //print_row(model->norm, 0);
stuff_karpathy_weights_into_gg(layer.wv , &w->wv[i*row_length*row_length]); //
stuff_karpathy_weights_into_gg(layer.wo , &w->wo[i*row_length*row_length]); // // for rms-att-weight
// int row_length = model->hparams.n_embd;
stuff_karpathy_weights_into_gg(layer.w1 , &w->w1[i*row_length*n_ff]); // const auto & hparams = model->hparams;
stuff_karpathy_weights_into_gg(layer.w2 , &w->w2[i*n_ff*row_length]); // //int n_ff = model->hparams.n_embd;
stuff_karpathy_weights_into_gg(layer.w3 , &w->w3[i*row_length*n_ff]); // int n_ff = get_n_ff(&hparams);
} //
// write tensors // for (uint32_t i = 0; i < model->hparams.n_layer; ++i){
write_tensor(&file, model->tok_embeddings); // auto & layer = model->layers[i];
write_tensor(&file, model->norm); // // 1d
write_tensor(&file, model->output); // ? // stuff_karpathy_weights_into_gg(layer.attention_norm, &w->rms_att_weight[i*row_length]);
for (uint32_t i = 0; i < model->hparams.n_layer; ++i) { // stuff_karpathy_weights_into_gg(layer.ffn_norm , &w->rms_ffn_weight[i*row_length]);
auto & layer = model->layers[i]; //
// // from 3d matrix layer x dim x dim to 2d matrix dim x dim
write_tensor(&file, layer.attention_norm); // stuff_karpathy_weights_into_gg(layer.wq , &w->wq[i*row_length*row_length]);
write_tensor(&file, layer.wq); // stuff_karpathy_weights_into_gg(layer.wk , &w->wk[i*row_length*row_length]);
write_tensor(&file, layer.wk); // stuff_karpathy_weights_into_gg(layer.wv , &w->wv[i*row_length*row_length]);
write_tensor(&file, layer.wv); // stuff_karpathy_weights_into_gg(layer.wo , &w->wo[i*row_length*row_length]);
write_tensor(&file, layer.wo); //
write_tensor(&file, layer.ffn_norm); // stuff_karpathy_weights_into_gg(layer.w1 , &w->w1[i*row_length*n_ff]);
write_tensor(&file, layer.w1); // stuff_karpathy_weights_into_gg(layer.w2 , &w->w2[i*n_ff*row_length]);
write_tensor(&file, layer.w2); // stuff_karpathy_weights_into_gg(layer.w3 , &w->w3[i*row_length*n_ff]);
write_tensor(&file, layer.w3); // }
} // // write tensors
// write_tensor(&file, model->tok_embeddings);
// write_tensor(&file, model->norm);
// write_tensor(&file, model->output); // ?
// for (uint32_t i = 0; i < model->hparams.n_layer; ++i) {
// auto & layer = model->layers[i];
//
// write_tensor(&file, layer.attention_norm);
// write_tensor(&file, layer.wq);
// write_tensor(&file, layer.wk);
// write_tensor(&file, layer.wv);
// write_tensor(&file, layer.wo);
// write_tensor(&file, layer.ffn_norm);
// write_tensor(&file, layer.w1);
// write_tensor(&file, layer.w2);
// write_tensor(&file, layer.w3);
// }
} }
struct train_params get_default_train_params() { struct train_params get_default_train_params() {

View File

@ -1,129 +0,0 @@
#ifndef _GNU_SOURCE
#define _GNU_SOURCE
#endif
#include "common.h"
#include "gguf-llama.h"
#include "build-info.h"
#include <cmath>
#include <cstdio>
#include <string>
#include <vector>
int main(int argc, char ** argv) {
gpt_params params;
if (argc == 1 || argv[1][0] == '-') {
printf("usage: %s MODEL_PATH [PROMPT]\n" , argv[0]);
return 1 ;
}
if (argc >= 2) {
params.model = argv[1];
}
if (argc >= 3) {
params.prompt = argv[2];
}
if (params.prompt.empty()) {
params.prompt = "Hello my name is";
}
// init LLM
llama_backend_init(params.numa);
llama_context_params ctx_params = llama_context_default_params();
llama_model * model = llama_load_model_from_file(params.model.c_str(), ctx_params);
if (model == NULL) {
fprintf(stderr , "%s: error: unable to load model\n" , __func__);
return 1;
}
llama_context * ctx = llama_new_context_with_model(model, ctx_params);
// tokenize the prompt
std::vector<llama_token> tokens_list;
tokens_list = ::llama_tokenize(ctx, params.prompt, true);
const int max_context_size = llama_n_ctx(ctx);
const int max_tokens_list_size = max_context_size - 4;
if ((int) tokens_list.size() > max_tokens_list_size) {
fprintf(stderr, "%s: error: prompt too long (%d tokens, max %d)\n", __func__, (int) tokens_list.size(), max_tokens_list_size);
return 1;
}
fprintf(stderr, "\n\n");
for (auto id : tokens_list) {
fprintf(stderr, "%s", llama_token_to_str(ctx, id).c_str());
}
fflush(stderr);
// main loop
// The LLM keeps a contextual cache memory of previous token evaluation.
// Usually, once this cache is full, it is required to recompute a compressed context based on previous
// tokens (see "infinite text generation via context swapping" in the main example), but in this minimalist
// example, we will just stop the loop once this cache is full or once an end of stream is detected.
const int n_gen = std::min(32, max_context_size);
while (llama_get_kv_cache_token_count(ctx) < n_gen) {
// evaluate the transformer
if (llama_eval(ctx, tokens_list.data(), int(tokens_list.size()), llama_get_kv_cache_token_count(ctx), params.n_threads)) {
fprintf(stderr, "%s : failed to eval\n", __func__);
return 1;
}
tokens_list.clear();
// sample the next token
llama_token new_token_id = 0;
auto logits = llama_get_logits(ctx);
auto n_vocab = llama_n_vocab(ctx);
std::vector<llama_token_data> candidates;
candidates.reserve(n_vocab);
for (llama_token token_id = 0; token_id < n_vocab; token_id++) {
candidates.emplace_back(llama_token_data{ token_id, logits[token_id], 0.0f });
}
llama_token_data_array candidates_p = { candidates.data(), candidates.size(), false };
new_token_id = llama_sample_token_greedy(ctx , &candidates_p);
// is it an end of stream ?
if (new_token_id == llama_token_eos()) {
fprintf(stderr, " [end of text]\n");
break;
}
// print the new token :
printf("%s", llama_token_to_str(ctx, new_token_id).c_str());
fflush(stdout);
// push this new token for next evaluation
tokens_list.push_back(new_token_id);
}
llama_free(ctx);
llama_free_model(model);
llama_backend_free();
fprintf(stderr, "\n\n");
return 0;
}

View File

@ -1,5 +1,5 @@
#include "ggml.h" #include "ggml.h"
#include "gguf-llama.h" #include "llama.h"
#include <cstdio> #include <cstdio>
#include <cinttypes> #include <cinttypes>

View File

@ -266,9 +266,6 @@ int main(int argc, char ** argv) {
params.interactive = true; params.interactive = true;
} }
// determine newline token
auto llama_token_newline = ::llama_tokenize(ctx, "\n", false);
if (params.verbose_prompt) { if (params.verbose_prompt) {
fprintf(stderr, "\n"); fprintf(stderr, "\n");
fprintf(stderr, "%s: prompt: '%s'\n", __func__, params.prompt.c_str()); fprintf(stderr, "%s: prompt: '%s'\n", __func__, params.prompt.c_str());
@ -778,8 +775,7 @@ int main(int argc, char ** argv) {
if (grammar != NULL) { if (grammar != NULL) {
llama_grammar_free(grammar); llama_grammar_free(grammar);
std::vector<const llama_grammar_element *> grammar_rules( std::vector<const llama_grammar_element *> grammar_rules( parsed_grammar.c_rules());
parsed_grammar.c_rules());
grammar = llama_grammar_init( grammar = llama_grammar_init(
grammar_rules.data(), grammar_rules.size(), grammar_rules.data(), grammar_rules.size(),
parsed_grammar.symbol_ids.at("root")); parsed_grammar.symbol_ids.at("root"));

View File

@ -68,10 +68,10 @@ bool try_parse_ftype(const std::string & ftype_str_in, llama_ftype & ftype, std:
} }
// usage: // usage:
// ./quantize [--allow-requantize] [--leave-output-tensor] models/llama/ggml-model.bin [models/llama/ggml-model-quant.bin] type [nthreads] // ./quantize [--allow-requantize] [--leave-output-tensor] models/llama/ggml-model.gguf [models/llama/ggml-model-quant.gguf] type [nthreads]
// //
void usage(const char * executable) { void usage(const char * executable) {
fprintf(stderr, "usage: %s [--help] [--allow-requantize] [--leave-output-tensor] model-f32.bin [model-quant.bin] type [nthreads]\n\n", executable); fprintf(stderr, "usage: %s [--help] [--allow-requantize] [--leave-output-tensor] model-f32.gguf [model-quant.gguf] type [nthreads]\n\n", executable);
fprintf(stderr, " --allow-requantize: Allows requantizing tensors that have already been quantized. Warning: This can severely reduce quality compared to quantizing from 16bit or 32bit\n"); fprintf(stderr, " --allow-requantize: Allows requantizing tensors that have already been quantized. Warning: This can severely reduce quality compared to quantizing from 16bit or 32bit\n");
fprintf(stderr, " --leave-output-tensor: Will leave output.weight un(re)quantized. Increases model size but may also increase quality, especially when requantizing\n"); fprintf(stderr, " --leave-output-tensor: Will leave output.weight un(re)quantized. Increases model size but may also increase quality, especially when requantizing\n");
fprintf(stderr, "\nAllowed quantization types:\n"); fprintf(stderr, "\nAllowed quantization types:\n");
@ -118,8 +118,8 @@ int main(int argc, char ** argv) {
if (pos != std::string::npos) { if (pos != std::string::npos) {
fpath = fname_inp.substr(0, pos + 1); fpath = fname_inp.substr(0, pos + 1);
} }
// export as [inp path]/ggml-model-[ftype].bin // export as [inp path]/ggml-model-[ftype].gguf
fname_out = fpath + "ggml-model-" + ftype_str + ".bin"; fname_out = fpath + "ggml-model-" + ftype_str + ".gguf";
arg_idx++; arg_idx++;
} }
else { else {

View File

@ -26,7 +26,6 @@ int main(int argc, char ** argv) {
auto lparams = llama_context_default_params(); auto lparams = llama_context_default_params();
lparams.n_ctx = params.n_ctx; lparams.n_ctx = params.n_ctx;
lparams.n_gqa = params.n_gqa;
lparams.seed = params.seed; lparams.seed = params.seed;
lparams.f16_kv = params.memory_f16; lparams.f16_kv = params.memory_f16;
lparams.use_mmap = params.use_mmap; lparams.use_mmap = params.use_mmap;

View File

@ -651,8 +651,6 @@ static void server_print_usage(const char *argv0, const gpt_params &params,
fprintf(stdout, " -v, --verbose verbose output (default: %s)\n", server_verbose ? "enabled" : "disabled"); fprintf(stdout, " -v, --verbose verbose output (default: %s)\n", server_verbose ? "enabled" : "disabled");
fprintf(stdout, " -t N, --threads N number of threads to use during computation (default: %d)\n", params.n_threads); fprintf(stdout, " -t N, --threads N number of threads to use during computation (default: %d)\n", params.n_threads);
fprintf(stdout, " -c N, --ctx-size N size of the prompt context (default: %d)\n", params.n_ctx); fprintf(stdout, " -c N, --ctx-size N size of the prompt context (default: %d)\n", params.n_ctx);
fprintf(stdout, " -gqa N, --gqa N grouped-query attention factor (TEMP!!! use 8 for LLaMAv2 70B) (default: %d)\n", params.n_gqa);
fprintf(stdout, " -eps N, --rms-norm-eps N rms norm eps (TEMP!!! use 1e-5 for LLaMAv2) (default: %.1e)\n", params.rms_norm_eps);
fprintf(stdout, " --rope-freq-base N RoPE base frequency (default: %.1f)\n", params.rope_freq_base); fprintf(stdout, " --rope-freq-base N RoPE base frequency (default: %.1f)\n", params.rope_freq_base);
fprintf(stdout, " --rope-freq-scale N RoPE frequency scaling factor (default: %g)\n", params.rope_freq_scale); fprintf(stdout, " --rope-freq-scale N RoPE frequency scaling factor (default: %g)\n", params.rope_freq_scale);
fprintf(stdout, " -b N, --batch-size N batch size for prompt processing (default: %d)\n", params.n_batch); fprintf(stdout, " -b N, --batch-size N batch size for prompt processing (default: %d)\n", params.n_batch);
@ -773,23 +771,6 @@ static void server_params_parse(int argc, char **argv, server_params &sparams,
} }
params.n_ctx = std::stoi(argv[i]); params.n_ctx = std::stoi(argv[i]);
} }
else if (arg == "-gqa" || arg == "--gqa")
{
if (++i >= argc)
{
invalid_param = true;
break;
}
params.n_gqa = std::stoi(argv[i]);
}
else if (arg == "-eps" || arg == "--rms-norm-eps") {
if (++i >= argc)
{
invalid_param = true;
break;
}
params.rms_norm_eps = std::stof(argv[i]);
}
else if (arg == "--rope-freq-base") else if (arg == "--rope-freq-base")
{ {
if (++i >= argc) if (++i >= argc)

View File

@ -36,16 +36,17 @@ int main(int argc, char ** argv) {
llama_backend_init(params.numa); llama_backend_init(params.numa);
llama_model * model; llama_context_params ctx_params = llama_context_default_params();
llama_context * ctx;
std::tie(model, ctx) = llama_init_from_gpt_params(params); llama_model * model = llama_load_model_from_file(params.model.c_str(), ctx_params);
if (model == NULL) { if (model == NULL) {
fprintf(stderr, "%s: error: unable to load model\n", __func__); fprintf(stderr , "%s: error: unable to load model\n" , __func__);
return 1; return 1;
} }
llama_context * ctx = llama_new_context_with_model(model, ctx_params);
// tokenize the prompt // tokenize the prompt
std::vector<llama_token> tokens_list; std::vector<llama_token> tokens_list;
@ -54,7 +55,7 @@ int main(int argc, char ** argv) {
const int max_context_size = llama_n_ctx(ctx); const int max_context_size = llama_n_ctx(ctx);
const int max_tokens_list_size = max_context_size - 4; const int max_tokens_list_size = max_context_size - 4;
if ((int)tokens_list.size() > max_tokens_list_size) { if ((int) tokens_list.size() > max_tokens_list_size) {
fprintf(stderr, "%s: error: prompt too long (%d tokens, max %d)\n", __func__, (int) tokens_list.size(), max_tokens_list_size); fprintf(stderr, "%s: error: prompt too long (%d tokens, max %d)\n", __func__, (int) tokens_list.size(), max_tokens_list_size);
return 1; return 1;
} }
@ -74,7 +75,9 @@ int main(int argc, char ** argv) {
// tokens (see "infinite text generation via context swapping" in the main example), but in this minimalist // tokens (see "infinite text generation via context swapping" in the main example), but in this minimalist
// example, we will just stop the loop once this cache is full or once an end of stream is detected. // example, we will just stop the loop once this cache is full or once an end of stream is detected.
while (llama_get_kv_cache_token_count( ctx ) < max_context_size) { const int n_gen = std::min(32, max_context_size);
while (llama_get_kv_cache_token_count(ctx) < n_gen) {
// evaluate the transformer // evaluate the transformer
if (llama_eval(ctx, tokens_list.data(), int(tokens_list.size()), llama_get_kv_cache_token_count(ctx), params.n_threads)) { if (llama_eval(ctx, tokens_list.data(), int(tokens_list.size()), llama_get_kv_cache_token_count(ctx), params.n_threads)) {
@ -114,7 +117,6 @@ int main(int argc, char ** argv) {
// push this new token for next evaluation // push this new token for next evaluation
tokens_list.push_back(new_token_id); tokens_list.push_back(new_token_id);
} }
llama_free(ctx); llama_free(ctx);
@ -122,5 +124,7 @@ int main(int argc, char ** argv) {
llama_backend_free(); llama_backend_free();
fprintf(stderr, "\n\n");
return 0; return 0;
} }

View File

@ -17,7 +17,7 @@
#pragma warning(disable: 4244 4267) // possible loss of data #pragma warning(disable: 4244 4267) // possible loss of data
#endif #endif
static const float rms_norm_eps = LLAMA_DEFAULT_RMS_EPS; static const float rms_norm_eps = 1e-5f;
struct random_normal_distribution { struct random_normal_distribution {
std::mt19937 gen; std::mt19937 gen;
@ -2612,42 +2612,45 @@ void save_as_llama_model(struct llama_vocab * vocab, struct my_llama_model * mod
return; return;
} }
// write_magic #pragma message("TODO: implement file saving using gguf")
file.write_u32(LLAMA_FILE_MAGIC); // magic (void) vocab;
file.write_u32(LLAMA_FILE_VERSION); // version (void) model;
// write_hparams // // write_magic
file.write_u32(model->hparams.n_vocab); // file.write_u32(LLAMA_FILE_MAGIC); // magic
file.write_u32(model->hparams.n_embd); // file.write_u32(LLAMA_FILE_VERSION); // version
file.write_u32(model->hparams.n_mult); // // write_hparams
file.write_u32(model->hparams.n_head); // file.write_u32(model->hparams.n_vocab);
file.write_u32(model->hparams.n_layer); // file.write_u32(model->hparams.n_embd);
file.write_u32(model->hparams.n_rot); // file.write_u32(model->hparams.n_mult);
file.write_u32(LLAMA_FTYPE_ALL_F32); // file.write_u32(model->hparams.n_head);
// write_vocab // file.write_u32(model->hparams.n_layer);
uint32_t n_vocab = model->hparams.n_vocab; // file.write_u32(model->hparams.n_rot);
for (uint32_t i = 0; i < n_vocab; i++) { // file.write_u32(LLAMA_FTYPE_ALL_F32);
const auto & token_score = vocab->id_to_token.at(i); // // write_vocab
file.write_u32((uint32_t) token_score.tok.size()); // uint32_t n_vocab = model->hparams.n_vocab;
file.write_raw(token_score.tok.data(), token_score.tok.size()); // for (uint32_t i = 0; i < n_vocab; i++) {
file.write_raw(&token_score.score, sizeof(token_score.score)); // const auto & token_score = vocab->id_to_token.at(i);
} // file.write_u32((uint32_t) token_score.tok.size());
// write tensors // file.write_raw(token_score.tok.data(), token_score.tok.size());
write_tensor(&file, model->tok_embeddings); // file.write_raw(&token_score.score, sizeof(token_score.score));
write_tensor(&file, model->norm); // }
write_tensor(&file, model->output); // // write tensors
for (uint32_t i = 0; i < model->hparams.n_layer; ++i) { // write_tensor(&file, model->tok_embeddings);
auto & layer = model->layers[i]; // write_tensor(&file, model->norm);
// write_tensor(&file, model->output);
write_tensor(&file, layer.attention_norm); // for (uint32_t i = 0; i < model->hparams.n_layer; ++i) {
write_tensor(&file, layer.wq); // auto & layer = model->layers[i];
write_tensor(&file, layer.wk); //
write_tensor(&file, layer.wv); // write_tensor(&file, layer.attention_norm);
write_tensor(&file, layer.wo); // write_tensor(&file, layer.wq);
write_tensor(&file, layer.ffn_norm); // write_tensor(&file, layer.wk);
write_tensor(&file, layer.w1); // write_tensor(&file, layer.wv);
write_tensor(&file, layer.w2); // write_tensor(&file, layer.wo);
write_tensor(&file, layer.w3); // write_tensor(&file, layer.ffn_norm);
} // write_tensor(&file, layer.w1);
// write_tensor(&file, layer.w2);
// write_tensor(&file, layer.w3);
// }
} }
float cosine_decay(const int decay_steps, const float alpha, int step) { float cosine_decay(const int decay_steps, const float alpha, int step) {

33
ggml.c
View File

@ -9140,6 +9140,8 @@ static void ggml_compute_forward_mul(
const struct ggml_tensor * src0, const struct ggml_tensor * src0,
const struct ggml_tensor * src1, const struct ggml_tensor * src1,
struct ggml_tensor * dst) { struct ggml_tensor * dst) {
GGML_ASSERT(src1->type == GGML_TYPE_F32 && "only f32 src1 supported for now");
switch (src0->type) { switch (src0->type) {
case GGML_TYPE_F32: case GGML_TYPE_F32:
{ {
@ -18584,17 +18586,18 @@ static const size_t GGUF_TYPE_SIZE[GGUF_TYPE_COUNT] = {
static_assert(GGUF_TYPE_COUNT == 10, "GGUF_TYPE_COUNT != 10"); static_assert(GGUF_TYPE_COUNT == 10, "GGUF_TYPE_COUNT != 10");
static const char * GGUF_TYPE_NAME[GGUF_TYPE_COUNT] = { static const char * GGUF_TYPE_NAME[GGUF_TYPE_COUNT] = {
[GGUF_TYPE_UINT8] = "uint8", [GGUF_TYPE_UINT8] = "u8",
[GGUF_TYPE_INT8] = "int8", [GGUF_TYPE_INT8] = "i8",
[GGUF_TYPE_UINT16] = "uint16", [GGUF_TYPE_UINT16] = "u16",
[GGUF_TYPE_INT16] = "int16", [GGUF_TYPE_INT16] = "i16",
[GGUF_TYPE_UINT32] = "uint32", [GGUF_TYPE_UINT32] = "u32",
[GGUF_TYPE_INT32] = "int32", [GGUF_TYPE_INT32] = "i32",
[GGUF_TYPE_FLOAT32] = "float32", [GGUF_TYPE_FLOAT32] = "f32",
[GGUF_TYPE_BOOL] = "bool", [GGUF_TYPE_BOOL] = "bool",
[GGUF_TYPE_STRING] = "string", [GGUF_TYPE_STRING] = "str",
[GGUF_TYPE_ARRAY] = "array", [GGUF_TYPE_ARRAY] = "arr",
}; };
static_assert(GGUF_TYPE_COUNT == 10, "GGUF_TYPE_COUNT != 10");
union gguf_value { union gguf_value {
uint8_t uint8; uint8_t uint8;
@ -19395,17 +19398,23 @@ static void gguf_buf_grow(struct gguf_buf * buf, size_t size) {
static void gguf_bwrite_str(struct gguf_buf * buf, const struct gguf_str * val) { static void gguf_bwrite_str(struct gguf_buf * buf, const struct gguf_str * val) {
gguf_buf_grow(buf, sizeof(val->n) + val->n); gguf_buf_grow(buf, sizeof(val->n) + val->n);
buf->data && memcpy((char *) buf->data + buf->offset, &val->n, sizeof(val->n)); if (buf->data) {
memcpy((char *) buf->data + buf->offset, &val->n, sizeof(val->n));
}
buf->offset += sizeof(val->n); buf->offset += sizeof(val->n);
buf->data && memcpy((char *) buf->data + buf->offset, val->data, val->n); if (buf->data) {
memcpy((char *) buf->data + buf->offset, val->data, val->n);
}
buf->offset += val->n; buf->offset += val->n;
} }
static void gguf_bwrite_el(struct gguf_buf * buf, const void * val, size_t el_size) { static void gguf_bwrite_el(struct gguf_buf * buf, const void * val, size_t el_size) {
gguf_buf_grow(buf, el_size); gguf_buf_grow(buf, el_size);
buf->data && memcpy((char *) buf->data + buf->offset, val, el_size); if (buf->data) {
memcpy((char *) buf->data + buf->offset, val, el_size);
}
buf->offset += el_size; buf->offset += el_size;
} }

File diff suppressed because it is too large Load Diff

View File

@ -1,505 +0,0 @@
#ifndef LLAMA_H
#define LLAMA_H
#include "ggml.h"
#ifdef GGML_USE_CUBLAS
#include "ggml-cuda.h"
#define LLAMA_MAX_DEVICES GGML_CUDA_MAX_DEVICES
#else
#define LLAMA_MAX_DEVICES 1
#endif // GGML_USE_CUBLAS
#include <stddef.h>
#include <stdint.h>
#include <stdbool.h>
#ifdef LLAMA_SHARED
# if defined(_WIN32) && !defined(__MINGW32__)
# ifdef LLAMA_BUILD
# define LLAMA_API __declspec(dllexport)
# else
# define LLAMA_API __declspec(dllimport)
# endif
# else
# define LLAMA_API __attribute__ ((visibility ("default")))
# endif
#else
# define LLAMA_API
#endif
#ifdef __GNUC__
# define DEPRECATED(func, hint) func __attribute__((deprecated(hint)))
#elif defined(_MSC_VER)
# define DEPRECATED(func, hint) __declspec(deprecated(hint)) func
#else
# define DEPRECATED(func, hint) func
#endif
#define LLAMA_DEFAULT_SEED 0xFFFFFFFF
#if defined(GGML_USE_CUBLAS) || defined(GGML_USE_CLBLAST) || defined(GGML_USE_METAL)
// Defined when llama.cpp is compiled with support for offloading model layers to GPU.
#define LLAMA_SUPPORTS_GPU_OFFLOAD
#endif
#ifdef __cplusplus
extern "C" {
#endif
//
// C interface
//
// TODO: show sample usage
//
struct llama_model;
struct llama_context;
typedef int llama_token;
typedef struct llama_token_data {
llama_token id; // token id
float logit; // log-odds of the token
float p; // probability of the token
} llama_token_data;
typedef struct llama_token_data_array {
llama_token_data * data;
size_t size;
bool sorted;
} llama_token_data_array;
typedef void (*llama_progress_callback)(float progress, void *ctx);
enum llama_log_level {
LLAMA_LOG_LEVEL_ERROR = 2,
LLAMA_LOG_LEVEL_WARN = 3,
LLAMA_LOG_LEVEL_INFO = 4
};
// Signature for logging events
// Note that text includes the new line character at the end for most events.
// If your logging mechanism cannot handle that, check if the last character is '\n' and strip it
// if it exists.
// It might not exist for progress report where '.' is output repeatedly.
typedef void (*llama_log_callback)(enum llama_log_level level, const char * text, void * user_data);
struct llama_context_params {
uint32_t seed; // RNG seed, -1 for random
int32_t n_ctx; // text context
int32_t n_batch; // prompt processing batch size
int32_t n_gpu_layers; // number of layers to store in VRAM
int32_t main_gpu; // the GPU that is used for scratch and small tensors
const float * tensor_split; // how to split layers across multiple GPUs (size: LLAMA_MAX_DEVICES)
// ref: https://github.com/ggerganov/llama.cpp/pull/2054
float rope_freq_base; // RoPE base frequency
float rope_freq_scale; // RoPE frequency scaling factor
// called with a progress value between 0 and 1, pass NULL to disable
llama_progress_callback progress_callback;
// context pointer passed to the progress callback
void * progress_callback_user_data;
// Keep the booleans together to avoid misalignment during copy-by-value.
bool low_vram; // if true, reduce VRAM usage at the cost of performance
bool mul_mat_q; // if true, use experimental mul_mat_q kernels
bool f16_kv; // use fp16 for KV cache
bool logits_all; // the llama_eval() call computes all logits, not just the last one
bool vocab_only; // only load the vocabulary, no weights
bool use_mmap; // use mmap if possible
bool use_mlock; // force system to keep model in RAM
bool embedding; // embedding mode only
};
// model file types
enum llama_ftype {
LLAMA_FTYPE_ALL_F32 = 0,
LLAMA_FTYPE_MOSTLY_F16 = 1, // except 1d tensors
LLAMA_FTYPE_MOSTLY_Q4_0 = 2, // except 1d tensors
LLAMA_FTYPE_MOSTLY_Q4_1 = 3, // except 1d tensors
LLAMA_FTYPE_MOSTLY_Q4_1_SOME_F16 = 4, // tok_embeddings.weight and output.weight are F16
// LLAMA_FTYPE_MOSTLY_Q4_2 = 5, // support has been removed
// LLAMA_FTYPE_MOSTLY_Q4_3 = 6, // support has been removed
LLAMA_FTYPE_MOSTLY_Q8_0 = 7, // except 1d tensors
LLAMA_FTYPE_MOSTLY_Q5_0 = 8, // except 1d tensors
LLAMA_FTYPE_MOSTLY_Q5_1 = 9, // except 1d tensors
LLAMA_FTYPE_MOSTLY_Q2_K = 10,// except 1d tensors
LLAMA_FTYPE_MOSTLY_Q3_K_S = 11,// except 1d tensors
LLAMA_FTYPE_MOSTLY_Q3_K_M = 12,// except 1d tensors
LLAMA_FTYPE_MOSTLY_Q3_K_L = 13,// except 1d tensors
LLAMA_FTYPE_MOSTLY_Q4_K_S = 14,// except 1d tensors
LLAMA_FTYPE_MOSTLY_Q4_K_M = 15,// except 1d tensors
LLAMA_FTYPE_MOSTLY_Q5_K_S = 16,// except 1d tensors
LLAMA_FTYPE_MOSTLY_Q5_K_M = 17,// except 1d tensors
LLAMA_FTYPE_MOSTLY_Q6_K = 18,// except 1d tensors
};
// model quantization parameters
typedef struct llama_model_quantize_params {
int nthread; // number of threads to use for quantizing, if <=0 will use std::thread::hardware_concurrency()
enum llama_ftype ftype; // quantize to this llama_ftype
bool allow_requantize; // allow quantizing non-f32/f16 tensors
bool quantize_output_tensor; // quantize output.weight
} llama_model_quantize_params;
// grammar types
struct llama_grammar;
// grammar element type
enum llama_gretype {
// end of rule definition
LLAMA_GRETYPE_END = 0,
// start of alternate definition for rule
LLAMA_GRETYPE_ALT = 1,
// non-terminal element: reference to rule
LLAMA_GRETYPE_RULE_REF = 2,
// terminal element: character (code point)
LLAMA_GRETYPE_CHAR = 3,
// inverse char(s) ([^a], [^a-b] [^abc])
LLAMA_GRETYPE_CHAR_NOT = 4,
// modifies a preceding LLAMA_GRETYPE_CHAR or LLAMA_GRETYPE_CHAR_ALT to
// be an inclusive range ([a-z])
LLAMA_GRETYPE_CHAR_RNG_UPPER = 5,
// modifies a preceding LLAMA_GRETYPE_CHAR or
// LLAMA_GRETYPE_CHAR_RNG_UPPER to add an alternate char to match ([ab], [a-zA])
LLAMA_GRETYPE_CHAR_ALT = 6,
};
typedef struct llama_grammar_element {
enum llama_gretype type;
uint32_t value; // Unicode code point or rule ID
} llama_grammar_element;
// performance timing information
struct llama_timings {
double t_start_ms;
double t_end_ms;
double t_load_ms;
double t_sample_ms;
double t_p_eval_ms;
double t_eval_ms;
int32_t n_sample;
int32_t n_p_eval;
int32_t n_eval;
};
LLAMA_API struct llama_context_params llama_context_default_params(void);
LLAMA_API struct llama_model_quantize_params llama_model_quantize_default_params(void);
LLAMA_API int llama_max_devices(void);
LLAMA_API bool llama_mmap_supported(void);
LLAMA_API bool llama_mlock_supported(void);
// TODO: not great API - very likely to change
// Initialize the llama + ggml backend
// If numa is true, use NUMA optimizations
// Call once at the start of the program
LLAMA_API void llama_backend_init(bool numa);
// Call once at the end of the program - currently only used for MPI
LLAMA_API void llama_backend_free(void);
LLAMA_API int64_t llama_time_us(void);
LLAMA_API struct llama_model * llama_load_model_from_file(
const char * path_model,
struct llama_context_params params);
LLAMA_API void llama_free_model(struct llama_model * model);
LLAMA_API struct llama_context * llama_new_context_with_model(
struct llama_model * model,
struct llama_context_params params);
// Frees all allocated memory
LLAMA_API void llama_free(struct llama_context * ctx);
// Returns 0 on success
LLAMA_API int llama_model_quantize(
const char * fname_inp,
const char * fname_out,
const llama_model_quantize_params * params);
// Apply a LoRA adapter to a loaded model
// path_base_model is the path to a higher quality model to use as a base for
// the layers modified by the adapter. Can be NULL to use the current loaded model.
// The model needs to be reloaded before applying a new adapter, otherwise the adapter
// will be applied on top of the previous one
// Returns 0 on success
LLAMA_API DEPRECATED(int llama_apply_lora_from_file(
struct llama_context * ctx,
const char * path_lora,
const char * path_base_model,
int n_threads),
"please use llama_model_apply_lora_from_file instead");
LLAMA_API int llama_model_apply_lora_from_file(
const struct llama_model * model,
const char * path_lora,
const char * path_base_model,
int n_threads);
// Returns the number of tokens in the KV cache
LLAMA_API int llama_get_kv_cache_token_count(const struct llama_context * ctx);
// Sets the current rng seed.
LLAMA_API void llama_set_rng_seed(struct llama_context * ctx, uint32_t seed);
// Returns the maximum size in bytes of the state (rng, logits, embedding
// and kv_cache) - will often be smaller after compacting tokens
LLAMA_API size_t llama_get_state_size(const struct llama_context * ctx);
// Copies the state to the specified destination address.
// Destination needs to have allocated enough memory.
// Returns the number of bytes copied
LLAMA_API size_t llama_copy_state_data(struct llama_context * ctx, uint8_t * dst);
// Set the state reading from the specified address
// Returns the number of bytes read
LLAMA_API size_t llama_set_state_data(struct llama_context * ctx, uint8_t * src);
// Save/load session file
LLAMA_API bool llama_load_session_file(struct llama_context * ctx, const char * path_session, llama_token * tokens_out, size_t n_token_capacity, size_t * n_token_count_out);
LLAMA_API bool llama_save_session_file(struct llama_context * ctx, const char * path_session, const llama_token * tokens, size_t n_token_count);
// Run the llama inference to obtain the logits and probabilities for the next token.
// tokens + n_tokens is the provided batch of new tokens to process
// n_past is the number of tokens to use from previous eval calls
// Returns 0 on success
LLAMA_API int llama_eval(
struct llama_context * ctx,
const llama_token * tokens,
int n_tokens,
int n_past,
int n_threads);
// Same as llama_eval, but use float matrix input directly.
LLAMA_API int llama_eval_embd(
struct llama_context * ctx,
const float * embd,
int n_tokens,
int n_past,
int n_threads);
// Export a static computation graph for context of 511 and batch size of 1
// NOTE: since this functionality is mostly for debugging and demonstration purposes, we hardcode these
// parameters here to keep things simple
// IMPORTANT: do not use for anything else other than debugging and testing!
LLAMA_API int llama_eval_export(struct llama_context * ctx, const char * fname);
// Convert the provided text into tokens.
// The tokens pointer must be large enough to hold the resulting tokens.
// Returns the number of tokens on success, no more than n_max_tokens
// Returns a negative number on failure - the number of tokens that would have been returned
// TODO: not sure if correct
LLAMA_API int llama_tokenize(
struct llama_context * ctx,
const char * text,
llama_token * tokens,
int n_max_tokens,
bool add_bos);
LLAMA_API int llama_tokenize_bpe(
struct llama_context * ctx,
const char * text,
llama_token * tokens,
int n_max_tokens,
bool add_bos);
LLAMA_API int llama_tokenize_with_model(
const struct llama_model * model,
const char * text,
llama_token * tokens,
int n_max_tokens,
bool add_bos);
LLAMA_API int llama_n_vocab(const struct llama_context * ctx);
LLAMA_API int llama_n_ctx (const struct llama_context * ctx);
LLAMA_API int llama_n_embd (const struct llama_context * ctx);
LLAMA_API int llama_n_vocab_from_model(const struct llama_model * model);
LLAMA_API int llama_n_ctx_from_model (const struct llama_model * model);
LLAMA_API int llama_n_embd_from_model (const struct llama_model * model);
// Get the vocabulary as output parameters.
// Returns number of results.
LLAMA_API int llama_get_vocab(
const struct llama_context * ctx,
const char * * strings,
float * scores,
int capacity);
LLAMA_API int llama_get_vocab_from_model(
const struct llama_model * model,
const char * * strings,
float * scores,
int capacity);
// Token logits obtained from the last call to llama_eval()
// The logits for the last token are stored in the last row
// Can be mutated in order to change the probabilities of the next token
// Rows: n_tokens
// Cols: n_vocab
LLAMA_API float * llama_get_logits(struct llama_context * ctx);
// Get the embeddings for the input
// shape: [n_embd] (1-dimensional)
LLAMA_API float * llama_get_embeddings(struct llama_context * ctx);
// Token Id -> String. Uses the vocabulary in the provided context
LLAMA_API int llama_token_to_str(
const struct llama_context * ctx,
llama_token token,
char * str,
int length);
LLAMA_API int llama_token_to_str_bpe(
const struct llama_context * ctx,
llama_token token,
char * str,
int length);
LLAMA_API int llama_token_to_str_with_model(
const struct llama_model * model,
llama_token token,
char * str,
int length);
// Special tokens
LLAMA_API llama_token llama_token_bos(void); // beginning-of-sentence
LLAMA_API llama_token llama_token_eos(void); // end-of-sentence
LLAMA_API llama_token llama_token_nl(void); // next-line
// Grammar
//
LLAMA_API struct llama_grammar * llama_grammar_init(
const llama_grammar_element ** rules,
size_t n_rules,
size_t start_rule_index);
LLAMA_API void llama_grammar_free(struct llama_grammar * grammar);
// Sampling functions
/// @details Repetition penalty described in CTRL academic paper https://arxiv.org/abs/1909.05858, with negative logit fix.
LLAMA_API void llama_sample_repetition_penalty(struct llama_context * ctx, llama_token_data_array * candidates, const llama_token * last_tokens, size_t last_tokens_size, float penalty);
/// @details Frequency and presence penalties described in OpenAI API https://platform.openai.com/docs/api-reference/parameter-details.
LLAMA_API void llama_sample_frequency_and_presence_penalties(struct llama_context * ctx, llama_token_data_array * candidates, const llama_token * last_tokens, size_t last_tokens_size, float alpha_frequency, float alpha_presence);
/// @details Apply classifier-free guidance to the logits as described in academic paper "Stay on topic with Classifier-Free Guidance" https://arxiv.org/abs/2306.17806
/// @param candidates A vector of `llama_token_data` containing the candidate tokens, the logits must be directly extracted from the original generation context without being sorted.
/// @params guidance_ctx A separate context from the same model. Other than a negative prompt at the beginning, it should have all generated and user input tokens copied from the main context.
/// @params scale Guidance strength. 1.0f means no guidance. Higher values mean stronger guidance.
LLAMA_API void llama_sample_classifier_free_guidance(
struct llama_context * ctx,
llama_token_data_array * candidates,
struct llama_context * guidance_ctx,
float scale);
/// @details Sorts candidate tokens by their logits in descending order and calculate probabilities based on logits.
LLAMA_API void llama_sample_softmax(struct llama_context * ctx, llama_token_data_array * candidates);
/// @details Top-K sampling described in academic paper "The Curious Case of Neural Text Degeneration" https://arxiv.org/abs/1904.09751
LLAMA_API void llama_sample_top_k(struct llama_context * ctx, llama_token_data_array * candidates, int k, size_t min_keep);
/// @details Nucleus sampling described in academic paper "The Curious Case of Neural Text Degeneration" https://arxiv.org/abs/1904.09751
LLAMA_API void llama_sample_top_p(struct llama_context * ctx, llama_token_data_array * candidates, float p, size_t min_keep);
/// @details Tail Free Sampling described in https://www.trentonbricken.com/Tail-Free-Sampling/.
LLAMA_API void llama_sample_tail_free(struct llama_context * ctx, llama_token_data_array * candidates, float z, size_t min_keep);
/// @details Locally Typical Sampling implementation described in the paper https://arxiv.org/abs/2202.00666.
LLAMA_API void llama_sample_typical(struct llama_context * ctx, llama_token_data_array * candidates, float p, size_t min_keep);
LLAMA_API void llama_sample_temperature(struct llama_context * ctx, llama_token_data_array * candidates, float temp);
/// @details Apply constraints from grammar
LLAMA_API void llama_sample_grammar(struct llama_context * ctx, llama_token_data_array * candidates, const struct llama_grammar * grammar);
/// @details Mirostat 1.0 algorithm described in the paper https://arxiv.org/abs/2007.14966. Uses tokens instead of words.
/// @param candidates A vector of `llama_token_data` containing the candidate tokens, their probabilities (p), and log-odds (logit) for the current position in the generated text.
/// @param tau The target cross-entropy (or surprise) value you want to achieve for the generated text. A higher value corresponds to more surprising or less predictable text, while a lower value corresponds to less surprising or more predictable text.
/// @param eta The learning rate used to update `mu` based on the error between the target and observed surprisal of the sampled word. A larger learning rate will cause `mu` to be updated more quickly, while a smaller learning rate will result in slower updates.
/// @param m The number of tokens considered in the estimation of `s_hat`. This is an arbitrary value that is used to calculate `s_hat`, which in turn helps to calculate the value of `k`. In the paper, they use `m = 100`, but you can experiment with different values to see how it affects the performance of the algorithm.
/// @param mu Maximum cross-entropy. This value is initialized to be twice the target cross-entropy (`2 * tau`) and is updated in the algorithm based on the error between the target and observed surprisal.
LLAMA_API llama_token llama_sample_token_mirostat(struct llama_context * ctx, llama_token_data_array * candidates, float tau, float eta, int m, float * mu);
/// @details Mirostat 2.0 algorithm described in the paper https://arxiv.org/abs/2007.14966. Uses tokens instead of words.
/// @param candidates A vector of `llama_token_data` containing the candidate tokens, their probabilities (p), and log-odds (logit) for the current position in the generated text.
/// @param tau The target cross-entropy (or surprise) value you want to achieve for the generated text. A higher value corresponds to more surprising or less predictable text, while a lower value corresponds to less surprising or more predictable text.
/// @param eta The learning rate used to update `mu` based on the error between the target and observed surprisal of the sampled word. A larger learning rate will cause `mu` to be updated more quickly, while a smaller learning rate will result in slower updates.
/// @param mu Maximum cross-entropy. This value is initialized to be twice the target cross-entropy (`2 * tau`) and is updated in the algorithm based on the error between the target and observed surprisal.
LLAMA_API llama_token llama_sample_token_mirostat_v2(struct llama_context * ctx, llama_token_data_array * candidates, float tau, float eta, float * mu);
/// @details Selects the token with the highest probability.
LLAMA_API llama_token llama_sample_token_greedy(struct llama_context * ctx, llama_token_data_array * candidates);
/// @details Randomly selects a token from the candidates based on their probabilities.
LLAMA_API llama_token llama_sample_token(struct llama_context * ctx, llama_token_data_array * candidates);
/// @details Accepts the sampled token into the grammar
LLAMA_API void llama_grammar_accept_token(struct llama_context * ctx, struct llama_grammar * grammar, llama_token token);
// Performance information
LLAMA_API struct llama_timings llama_get_timings(struct llama_context * ctx);
LLAMA_API void llama_print_timings(struct llama_context * ctx);
LLAMA_API void llama_reset_timings(struct llama_context * ctx);
// Print system information
LLAMA_API const char * llama_print_system_info(void);
// Set callback for all future logging events.
// If this is not called, or NULL is supplied, everything is output on stderr.
LLAMA_API void llama_log_set(llama_log_callback log_callback, void * user_data);
#ifdef __cplusplus
}
#endif
// C++ API, will be moving to common.h soon (TM)
#ifdef LLAMA_API_CPP
#include <vector>
#include <string>
//
// Vocab utils
//
std::vector<llama_token> llama_tokenize(
struct llama_context * ctx,
const std::string & text,
bool add_bos);
std::vector<llama_token> llama_tokenize_bpe(
struct llama_context * ctx,
const std::string & text,
bool add_bos);
std::string llama_token_to_str(
const struct llama_context * ctx,
llama_token token);
std::string llama_token_to_str_bpe(
const struct llama_context * ctx,
llama_token token);
// Internal API to be implemented by llama.cpp and used by tests/benchmarks only
#ifdef LLAMA_API_INTERNAL
struct ggml_tensor;
const std::vector<std::pair<std::string, struct ggml_tensor *>>& llama_internal_get_tensor_map(struct llama_context * ctx);
#endif // LLAMA_API_CPP
#endif // LLAMA_API_INTERNAL
#endif // LLAMA_H

View File

@ -1,553 +0,0 @@
// Internal header to be included only by llama.cpp.
// Contains wrappers around OS interfaces.
#ifndef LLAMA_UTIL_H
#define LLAMA_UTIL_H
#include <cstdio>
#include <cstdint>
#include <cerrno>
#include <cstring>
#include <cstdarg>
#include <cstdlib>
#include <climits>
#include <string>
#include <vector>
#include <stdexcept>
#ifdef __has_include
#if __has_include(<unistd.h>)
#include <unistd.h>
#if defined(_POSIX_MAPPED_FILES)
#include <sys/mman.h>
#endif
#if defined(_POSIX_MEMLOCK_RANGE)
#include <sys/resource.h>
#endif
#endif
#endif
#if defined(_WIN32)
#define WIN32_LEAN_AND_MEAN
#ifndef NOMINMAX
#define NOMINMAX
#endif
#include <windows.h>
#include <io.h>
#include <stdio.h> // for _fseeki64
#endif
#define LLAMA_ASSERT(x) \
do { \
if (!(x)) { \
fprintf(stderr, "LLAMA_ASSERT: %s:%d: %s\n", __FILE__, __LINE__, #x); \
abort(); \
} \
} while (0)
#ifdef __GNUC__
#ifdef __MINGW32__
__attribute__((format(gnu_printf, 1, 2)))
#else
__attribute__((format(printf, 1, 2)))
#endif
#endif
static std::string format(const char * fmt, ...) {
va_list ap, ap2;
va_start(ap, fmt);
va_copy(ap2, ap);
int size = vsnprintf(NULL, 0, fmt, ap);
LLAMA_ASSERT(size >= 0 && size < INT_MAX);
std::vector<char> buf(size + 1);
int size2 = vsnprintf(buf.data(), size + 1, fmt, ap2);
LLAMA_ASSERT(size2 == size);
va_end(ap2);
va_end(ap);
return std::string(buf.data(), size);
}
struct llama_file {
// use FILE * so we don't have to re-open the file to mmap
FILE * fp;
size_t size;
llama_file(const char * fname, const char * mode) {
fp = std::fopen(fname, mode);
if (fp == NULL) {
throw std::runtime_error(format("failed to open %s: %s", fname, strerror(errno)));
}
seek(0, SEEK_END);
size = tell();
seek(0, SEEK_SET);
}
size_t tell() const {
#ifdef _WIN32
__int64 ret = _ftelli64(fp);
#else
long ret = std::ftell(fp);
#endif
LLAMA_ASSERT(ret != -1); // this really shouldn't fail
return (size_t) ret;
}
void seek(size_t offset, int whence) {
#ifdef _WIN32
int ret = _fseeki64(fp, (__int64) offset, whence);
#else
int ret = std::fseek(fp, (long) offset, whence);
#endif
LLAMA_ASSERT(ret == 0); // same
}
void read_raw(void * ptr, size_t len) const {
if (len == 0) {
return;
}
errno = 0;
std::size_t ret = std::fread(ptr, len, 1, fp);
if (ferror(fp)) {
throw std::runtime_error(format("read error: %s", strerror(errno)));
}
if (ret != 1) {
throw std::runtime_error(std::string("unexpectedly reached end of file"));
}
}
std::uint32_t read_u32() {
std::uint32_t ret;
read_raw(&ret, sizeof(ret));
return ret;
}
std::string read_string(std::uint32_t len) {
std::vector<char> chars(len);
read_raw(chars.data(), len);
return std::string(chars.data(), len);
}
void write_raw(const void * ptr, size_t len) const {
if (len == 0) {
return;
}
errno = 0;
size_t ret = std::fwrite(ptr, len, 1, fp);
if (ret != 1) {
throw std::runtime_error(format("write error: %s", strerror(errno)));
}
}
void write_u32(std::uint32_t val) {
write_raw(&val, sizeof(val));
}
~llama_file() {
if (fp) {
std::fclose(fp);
}
}
};
// llama_context_data
struct llama_data_context {
virtual void write(const void * src, size_t size) = 0;
virtual size_t get_size_written() = 0;
virtual ~llama_data_context() = default;
};
struct llama_data_buffer_context : llama_data_context {
uint8_t* ptr;
size_t size_written = 0;
llama_data_buffer_context(uint8_t * p) : ptr(p) {}
void write(const void * src, size_t size) override {
memcpy(ptr, src, size);
ptr += size;
size_written += size;
}
size_t get_size_written() override {
return size_written;
}
};
struct llama_data_file_context : llama_data_context {
llama_file* file;
size_t size_written = 0;
llama_data_file_context(llama_file * f) : file(f) {}
void write(const void * src, size_t size) override {
file->write_raw(src, size);
size_written += size;
}
size_t get_size_written() override {
return size_written;
}
};
#if defined(_WIN32)
static std::string llama_format_win_err(DWORD err) {
LPSTR buf;
size_t size = FormatMessageA(FORMAT_MESSAGE_ALLOCATE_BUFFER | FORMAT_MESSAGE_FROM_SYSTEM | FORMAT_MESSAGE_IGNORE_INSERTS,
NULL, err, MAKELANGID(LANG_NEUTRAL, SUBLANG_DEFAULT), (LPSTR)&buf, 0, NULL);
if (!size) {
return "FormatMessageA failed";
}
std::string ret(buf, size);
LocalFree(buf);
return ret;
}
#endif
struct llama_mmap {
void * addr;
size_t size;
llama_mmap(const llama_mmap &) = delete;
#ifdef _POSIX_MAPPED_FILES
static constexpr bool SUPPORTED = true;
llama_mmap(struct llama_file * file, size_t prefetch = (size_t) -1 /* -1 = max value */, bool numa = false) {
size = file->size;
int fd = fileno(file->fp);
int flags = MAP_SHARED;
// prefetch/readahead impairs performance on NUMA systems
if (numa) { prefetch = 0; }
#ifdef __linux__
if (prefetch >= file->size) { flags |= MAP_POPULATE; }
#endif
addr = mmap(NULL, file->size, PROT_READ, flags, fd, 0);
if (addr == MAP_FAILED) {
throw std::runtime_error(format("mmap failed: %s", strerror(errno)));
}
if (prefetch > 0) {
// Advise the kernel to preload the mapped memory
if (madvise(addr, std::min(file->size, prefetch), MADV_WILLNEED)) {
fprintf(stderr, "warning: madvise(.., MADV_WILLNEED) failed: %s\n",
strerror(errno));
}
}
if (numa) {
// advise the kernel not to use readahead
// (because the next page might not belong on the same node)
if (madvise(addr, file->size, MADV_RANDOM)) {
fprintf(stderr, "warning: madvise(.., MADV_RANDOM) failed: %s\n",
strerror(errno));
}
}
}
~llama_mmap() {
munmap(addr, size);
}
#elif defined(_WIN32)
static constexpr bool SUPPORTED = true;
llama_mmap(struct llama_file * file, bool prefetch = true, bool numa = false) {
(void) numa;
size = file->size;
HANDLE hFile = (HANDLE) _get_osfhandle(_fileno(file->fp));
HANDLE hMapping = CreateFileMappingA(hFile, NULL, PAGE_READONLY, 0, 0, NULL);
DWORD error = GetLastError();
if (hMapping == NULL) {
throw std::runtime_error(format("CreateFileMappingA failed: %s", llama_format_win_err(error).c_str()));
}
addr = MapViewOfFile(hMapping, FILE_MAP_READ, 0, 0, 0);
error = GetLastError();
CloseHandle(hMapping);
if (addr == NULL) {
throw std::runtime_error(format("MapViewOfFile failed: %s", llama_format_win_err(error).c_str()));
}
if (prefetch) {
// The PrefetchVirtualMemory API is only present on Windows 8 and above, so we
// will dynamically load it using GetProcAddress.
BOOL (WINAPI *pPrefetchVirtualMemory) (HANDLE, ULONG_PTR, PWIN32_MEMORY_RANGE_ENTRY, ULONG);
HMODULE hKernel32;
// This call is guaranteed to succeed.
hKernel32 = GetModuleHandleW(L"kernel32.dll");
// This call may fail if on a pre-Win8 system.
pPrefetchVirtualMemory = reinterpret_cast<decltype(pPrefetchVirtualMemory)> (GetProcAddress(hKernel32, "PrefetchVirtualMemory"));
if (pPrefetchVirtualMemory) {
// Advise the kernel to preload the mapped memory.
WIN32_MEMORY_RANGE_ENTRY range;
range.VirtualAddress = addr;
range.NumberOfBytes = (SIZE_T)size;
if (!pPrefetchVirtualMemory(GetCurrentProcess(), 1, &range, 0)) {
fprintf(stderr, "warning: PrefetchVirtualMemory failed: %s\n",
llama_format_win_err(GetLastError()).c_str());
}
}
}
}
~llama_mmap() {
if (!UnmapViewOfFile(addr)) {
fprintf(stderr, "warning: UnmapViewOfFile failed: %s\n",
llama_format_win_err(GetLastError()).c_str());
}
}
#else
static constexpr bool SUPPORTED = false;
llama_mmap(struct llama_file *, bool prefetch = true, bool numa = false) {
(void) prefetch;
(void) numa;
throw std::runtime_error(std::string("mmap not supported"));
}
#endif
};
// Represents some region of memory being locked using mlock or VirtualLock;
// will automatically unlock on destruction.
struct llama_mlock {
void * addr = NULL;
size_t size = 0;
bool failed_already = false;
llama_mlock() {}
llama_mlock(const llama_mlock &) = delete;
~llama_mlock() {
if (size) {
raw_unlock(addr, size);
}
}
void init(void * ptr) {
LLAMA_ASSERT(addr == NULL && size == 0);
addr = ptr;
}
void grow_to(size_t target_size) {
LLAMA_ASSERT(addr);
if (failed_already) {
return;
}
size_t granularity = lock_granularity();
target_size = (target_size + granularity - 1) & ~(granularity - 1);
if (target_size > size) {
if (raw_lock((uint8_t *) addr + size, target_size - size)) {
size = target_size;
} else {
failed_already = true;
}
}
}
#ifdef _POSIX_MEMLOCK_RANGE
static constexpr bool SUPPORTED = true;
size_t lock_granularity() {
return (size_t) sysconf(_SC_PAGESIZE);
}
#ifdef __APPLE__
#define MLOCK_SUGGESTION \
"Try increasing the sysctl values 'vm.user_wire_limit' and 'vm.global_user_wire_limit' and/or " \
"decreasing 'vm.global_no_user_wire_amount'. Also try increasing RLIMIT_MLOCK (ulimit -l).\n"
#else
#define MLOCK_SUGGESTION \
"Try increasing RLIMIT_MLOCK ('ulimit -l' as root).\n"
#endif
bool raw_lock(const void * addr, size_t size) {
if (!mlock(addr, size)) {
return true;
} else {
char* errmsg = std::strerror(errno);
bool suggest = (errno == ENOMEM);
// Check if the resource limit is fine after all
struct rlimit lock_limit;
if (suggest && getrlimit(RLIMIT_MEMLOCK, &lock_limit))
suggest = false;
if (suggest && (lock_limit.rlim_max > lock_limit.rlim_cur + size))
suggest = false;
fprintf(stderr, "warning: failed to mlock %zu-byte buffer (after previously locking %zu bytes): %s\n%s",
size, this->size, errmsg, suggest ? MLOCK_SUGGESTION : "");
return false;
}
}
#undef MLOCK_SUGGESTION
void raw_unlock(void * addr, size_t size) {
if (munlock(addr, size)) {
fprintf(stderr, "warning: failed to munlock buffer: %s\n", std::strerror(errno));
}
}
#elif defined(_WIN32)
static constexpr bool SUPPORTED = true;
size_t lock_granularity() {
SYSTEM_INFO si;
GetSystemInfo(&si);
return (size_t) si.dwPageSize;
}
bool raw_lock(void * ptr, size_t len) {
for (int tries = 1; ; tries++) {
if (VirtualLock(ptr, len)) {
return true;
}
if (tries == 2) {
fprintf(stderr, "warning: failed to VirtualLock %zu-byte buffer (after previously locking %zu bytes): %s\n",
len, size, llama_format_win_err(GetLastError()).c_str());
return false;
}
// It failed but this was only the first try; increase the working
// set size and try again.
SIZE_T min_ws_size, max_ws_size;
if (!GetProcessWorkingSetSize(GetCurrentProcess(), &min_ws_size, &max_ws_size)) {
fprintf(stderr, "warning: GetProcessWorkingSetSize failed: %s\n",
llama_format_win_err(GetLastError()).c_str());
return false;
}
// Per MSDN: "The maximum number of pages that a process can lock
// is equal to the number of pages in its minimum working set minus
// a small overhead."
// Hopefully a megabyte is enough overhead:
size_t increment = len + 1048576;
// The minimum must be <= the maximum, so we need to increase both:
min_ws_size += increment;
max_ws_size += increment;
if (!SetProcessWorkingSetSize(GetCurrentProcess(), min_ws_size, max_ws_size)) {
fprintf(stderr, "warning: SetProcessWorkingSetSize failed: %s\n",
llama_format_win_err(GetLastError()).c_str());
return false;
}
}
}
void raw_unlock(void * ptr, size_t len) {
if (!VirtualUnlock(ptr, len)) {
fprintf(stderr, "warning: failed to VirtualUnlock buffer: %s\n",
llama_format_win_err(GetLastError()).c_str());
}
}
#else
static constexpr bool SUPPORTED = false;
size_t lock_granularity() {
return (size_t) 65536;
}
bool raw_lock(const void * addr, size_t len) {
fprintf(stderr, "warning: mlock not supported on this system\n");
return false;
}
void raw_unlock(const void * addr, size_t len) {}
#endif
};
// Replacement for std::vector<uint8_t> that doesn't require zero-initialization.
struct llama_buffer {
uint8_t * addr = NULL;
size_t size = 0;
llama_buffer() = default;
void resize(size_t len) {
#ifdef GGML_USE_METAL
free(addr);
int result = posix_memalign((void **) &addr, getpagesize(), len);
if (result == 0) {
memset(addr, 0, len);
}
else {
addr = NULL;
}
#else
delete[] addr;
addr = new uint8_t[len];
#endif
size = len;
}
~llama_buffer() {
#ifdef GGML_USE_METAL
free(addr);
#else
delete[] addr;
#endif
addr = NULL;
}
// disable copy and move
llama_buffer(const llama_buffer&) = delete;
llama_buffer(llama_buffer&&) = delete;
llama_buffer& operator=(const llama_buffer&) = delete;
llama_buffer& operator=(llama_buffer&&) = delete;
};
#ifdef GGML_USE_CUBLAS
#include "ggml-cuda.h"
struct llama_ctx_buffer {
uint8_t * addr = NULL;
bool is_cuda;
size_t size = 0;
llama_ctx_buffer() = default;
void resize(size_t size) {
free();
addr = (uint8_t *) ggml_cuda_host_malloc(size);
if (addr) {
is_cuda = true;
}
else {
// fall back to pageable memory
addr = new uint8_t[size];
is_cuda = false;
}
this->size = size;
}
void free() {
if (addr) {
if (is_cuda) {
ggml_cuda_host_free(addr);
}
else {
delete[] addr;
}
}
addr = NULL;
}
~llama_ctx_buffer() {
free();
}
// disable copy and move
llama_ctx_buffer(const llama_ctx_buffer&) = delete;
llama_ctx_buffer(llama_ctx_buffer&&) = delete;
llama_ctx_buffer& operator=(const llama_ctx_buffer&) = delete;
llama_ctx_buffer& operator=(llama_ctx_buffer&&) = delete;
};
#else
typedef llama_buffer llama_ctx_buffer;
#endif
#endif

2447
llama.cpp

File diff suppressed because it is too large Load Diff

67
llama.h
View File

@ -34,29 +34,18 @@
# define DEPRECATED(func, hint) func # define DEPRECATED(func, hint) func
#endif #endif
#define LLAMA_FILE_MAGIC_GGJT 0x67676a74u // 'ggjt' #define LLAMA_DEFAULT_SEED 0xFFFFFFFF
#define LLAMA_FILE_MAGIC_GGLA 0x67676c61u // 'ggla'
#define LLAMA_FILE_MAGIC_GGMF 0x67676d66u // 'ggmf'
#define LLAMA_FILE_MAGIC_GGML 0x67676d6cu // 'ggml'
#define LLAMA_FILE_MAGIC_GGSN 0x6767736eu // 'ggsn'
#define LLAMA_FILE_VERSION 3 #define LLAMA_FILE_MAGIC_GGSN 0x6767736eu // 'ggsn'
#define LLAMA_FILE_MAGIC LLAMA_FILE_MAGIC_GGJT
#define LLAMA_FILE_MAGIC_UNVERSIONED LLAMA_FILE_MAGIC_GGML
#define LLAMA_SESSION_MAGIC LLAMA_FILE_MAGIC_GGSN
#define LLAMA_SESSION_VERSION 1
#define LLAMA_DEFAULT_SEED 0xFFFFFFFF #define LLAMA_SESSION_MAGIC LLAMA_FILE_MAGIC_GGSN
#define LLAMA_SESSION_VERSION 1
#if defined(GGML_USE_CUBLAS) || defined(GGML_USE_CLBLAST) || defined(GGML_USE_METAL) #if defined(GGML_USE_CUBLAS) || defined(GGML_USE_CLBLAST) || defined(GGML_USE_METAL)
// Defined when llama.cpp is compiled with support for offloading model layers to GPU. // Defined when llama.cpp is compiled with support for offloading model layers to GPU.
#define LLAMA_SUPPORTS_GPU_OFFLOAD #define LLAMA_SUPPORTS_GPU_OFFLOAD
#endif #endif
#ifndef LLAMA_DEFAULT_RMS_EPS
#define LLAMA_DEFAULT_RMS_EPS 5e-6f
#endif
#ifdef __cplusplus #ifdef __cplusplus
extern "C" { extern "C" {
#endif #endif
@ -103,8 +92,6 @@ extern "C" {
uint32_t seed; // RNG seed, -1 for random uint32_t seed; // RNG seed, -1 for random
int32_t n_ctx; // text context int32_t n_ctx; // text context
int32_t n_batch; // prompt processing batch size int32_t n_batch; // prompt processing batch size
int32_t n_gqa; // grouped-query attention (TEMP - will be moved to model hparams)
float rms_norm_eps; // rms norm epsilon (TEMP - will be moved to model hparams)
int32_t n_gpu_layers; // number of layers to store in VRAM int32_t n_gpu_layers; // number of layers to store in VRAM
int32_t main_gpu; // the GPU that is used for scratch and small tensors int32_t main_gpu; // the GPU that is used for scratch and small tensors
@ -129,6 +116,7 @@ extern "C" {
bool use_mlock; // force system to keep model in RAM bool use_mlock; // force system to keep model in RAM
bool embedding; // embedding mode only bool embedding; // embedding mode only
}; };
// model file types // model file types
enum llama_ftype { enum llama_ftype {
LLAMA_FTYPE_ALL_F32 = 0, LLAMA_FTYPE_ALL_F32 = 0,
@ -155,7 +143,7 @@ extern "C" {
// model quantization parameters // model quantization parameters
typedef struct llama_model_quantize_params { typedef struct llama_model_quantize_params {
int nthread; // number of threads to use for quantizing, if <=0 will use std::thread::hardware_concurrency() int nthread; // number of threads to use for quantizing, if <=0 will use std::thread::hardware_concurrency()
enum llama_ftype ftype; // quantize to this llama_ftype enum llama_ftype ftype; // quantize to this llama_ftype
bool allow_requantize; // allow quantizing non-f32/f16 tensors bool allow_requantize; // allow quantizing non-f32/f16 tensors
bool quantize_output_tensor; // quantize output.weight bool quantize_output_tensor; // quantize output.weight
} llama_model_quantize_params; } llama_model_quantize_params;
@ -208,17 +196,12 @@ extern "C" {
int32_t n_eval; int32_t n_eval;
}; };
// Set callback for all future logging events. LLAMA_API struct llama_context_params llama_context_default_params(void);
// If this is not called, or NULL is supplied, everything is output on stderr. LLAMA_API struct llama_model_quantize_params llama_model_quantize_default_params(void);
LLAMA_API void llama_log_set(llama_log_callback log_callback, void * user_data);
LLAMA_API int llama_max_devices(); LLAMA_API int llama_max_devices(void);
LLAMA_API bool llama_mmap_supported(void);
LLAMA_API struct llama_context_params llama_context_default_params(); LLAMA_API bool llama_mlock_supported(void);
LLAMA_API struct llama_model_quantize_params llama_model_quantize_default_params();
LLAMA_API bool llama_mmap_supported();
LLAMA_API bool llama_mlock_supported();
// TODO: not great API - very likely to change // TODO: not great API - very likely to change
// Initialize the llama + ggml backend // Initialize the llama + ggml backend
@ -226,9 +209,9 @@ extern "C" {
// Call once at the start of the program // Call once at the start of the program
LLAMA_API void llama_backend_init(bool numa); LLAMA_API void llama_backend_init(bool numa);
// Call once at the end of the program - currently only used for MPI // Call once at the end of the program - currently only used for MPI
LLAMA_API void llama_backend_free(); LLAMA_API void llama_backend_free(void);
LLAMA_API int64_t llama_time_us(); LLAMA_API int64_t llama_time_us(void);
LLAMA_API struct llama_model * llama_load_model_from_file( LLAMA_API struct llama_model * llama_load_model_from_file(
const char * path_model, const char * path_model,
@ -240,13 +223,6 @@ extern "C" {
struct llama_model * model, struct llama_model * model,
struct llama_context_params params); struct llama_context_params params);
// Various functions for loading a ggml llama model.
// Allocate (almost) all memory needed for the model.
// Return NULL on failure
LLAMA_API DEPRECATED(struct llama_context * llama_init_from_file(
const char * path_model,
struct llama_context_params params),
"please use llama_load_model_from_file combined with llama_new_context_with_model instead");
// Frees all allocated memory // Frees all allocated memory
LLAMA_API void llama_free(struct llama_context * ctx); LLAMA_API void llama_free(struct llama_context * ctx);
@ -384,27 +360,28 @@ extern "C" {
LLAMA_API float * llama_get_embeddings(struct llama_context * ctx); LLAMA_API float * llama_get_embeddings(struct llama_context * ctx);
// Token Id -> String. Uses the vocabulary in the provided context // Token Id -> String. Uses the vocabulary in the provided context
// Does not write null terminator to the buffer
LLAMA_API int llama_token_to_str( LLAMA_API int llama_token_to_str(
const struct llama_context * ctx, const struct llama_context * ctx,
llama_token token, llama_token token,
char * str, char * buf,
int length); int length);
LLAMA_API int llama_token_to_str_bpe( LLAMA_API int llama_token_to_str_bpe(
const struct llama_context * ctx, const struct llama_context * ctx,
llama_token token, llama_token token,
char * str, char * buf,
int length); int length);
LLAMA_API int llama_token_to_str_with_model( LLAMA_API int llama_token_to_str_with_model(
const struct llama_model * model, const struct llama_model * model,
llama_token token, llama_token token,
char * str, char * buf,
int length); int length);
// Special tokens // Special tokens
LLAMA_API llama_token llama_token_bos(); // beginning-of-sentence LLAMA_API llama_token llama_token_bos(void); // beginning-of-sentence
LLAMA_API llama_token llama_token_eos(); // end-of-sentence LLAMA_API llama_token llama_token_eos(void); // end-of-sentence
LLAMA_API llama_token llama_token_nl(); // next-line LLAMA_API llama_token llama_token_nl(void); // next-line
// Grammar // Grammar
// //
@ -484,6 +461,10 @@ extern "C" {
// Print system information // Print system information
LLAMA_API const char * llama_print_system_info(void); LLAMA_API const char * llama_print_system_info(void);
// Set callback for all future logging events.
// If this is not called, or NULL is supplied, everything is output on stderr.
LLAMA_API void llama_log_set(llama_log_callback log_callback, void * user_data);
#ifdef __cplusplus #ifdef __cplusplus
} }
#endif #endif