mirror of
https://github.com/ggerganov/llama.cpp.git
synced 2025-01-04 01:57:53 +01:00
gguf : deduplicate (#2629)
* gguf : better type names * dedup : CPU + Metal is working * ggml : fix warnings about unused results * llama.cpp : fix line feed and compiler warning * llama : fix strncpy warning + note token_to_str does not write null * llama : restore the original load/save session implementation Will migrate this to GGUF in the future * convert-llama-h5-to-gguf.py : support alt ctx param name * ggml : assert when using ggml_mul with non-F32 src1 * examples : dedup simple --------- Co-authored-by: klosax <131523366+klosax@users.noreply.github.com>
This commit is contained in:
parent
758ff1bbb5
commit
88b5769487
@ -529,7 +529,6 @@ endif()
|
|||||||
add_library(llama
|
add_library(llama
|
||||||
llama.cpp
|
llama.cpp
|
||||||
llama.h
|
llama.h
|
||||||
llama-util.h
|
|
||||||
)
|
)
|
||||||
|
|
||||||
target_include_directories(llama PUBLIC .)
|
target_include_directories(llama PUBLIC .)
|
||||||
|
12
Makefile
12
Makefile
@ -1,5 +1,5 @@
|
|||||||
# Define the default target now so that it is always the first target
|
# Define the default target now so that it is always the first target
|
||||||
BUILD_TARGETS = main quantize quantize-stats perplexity embedding vdot train-text-from-scratch convert-llama2c-to-ggml simple server embd-input-test gguf gguf-llama-simple gptneox-main
|
BUILD_TARGETS = main quantize quantize-stats perplexity embedding vdot train-text-from-scratch convert-llama2c-to-ggml simple server embd-input-test gguf gptneox-main
|
||||||
|
|
||||||
# Binaries only useful for tests
|
# Binaries only useful for tests
|
||||||
TEST_TARGETS = tests/test-grammar-parser tests/test-double-float tests/test-grad0 tests/test-opt tests/test-quantize-fns tests/test-quantize-perf tests/test-sampling tests/test-tokenizer-0
|
TEST_TARGETS = tests/test-grammar-parser tests/test-double-float tests/test-grad0 tests/test-opt tests/test-quantize-fns tests/test-quantize-perf tests/test-sampling tests/test-tokenizer-0
|
||||||
@ -329,10 +329,7 @@ ggml-alloc.o: ggml-alloc.c ggml.h ggml-alloc.h
|
|||||||
|
|
||||||
OBJS += ggml-alloc.o
|
OBJS += ggml-alloc.o
|
||||||
|
|
||||||
llama.o: llama.cpp ggml.h ggml-alloc.h ggml-cuda.h ggml-metal.h llama.h llama-util.h
|
llama.o: llama.cpp ggml.h ggml-alloc.h ggml-cuda.h ggml-metal.h llama.h
|
||||||
$(CXX) $(CXXFLAGS) -c $< -o $@
|
|
||||||
|
|
||||||
gguf-llama.o: gguf-llama.cpp ggml.h ggml-alloc.h ggml-cuda.h ggml-metal.h gguf-llama.h
|
|
||||||
$(CXX) $(CXXFLAGS) -c $< -o $@
|
$(CXX) $(CXXFLAGS) -c $< -o $@
|
||||||
|
|
||||||
common.o: examples/common.cpp examples/common.h
|
common.o: examples/common.cpp examples/common.h
|
||||||
@ -388,10 +385,7 @@ $(LIB_PRE)embdinput$(DSO_EXT): examples/embd-input/embd-input.h examples/embd-in
|
|||||||
embd-input-test: $(LIB_PRE)embdinput$(DSO_EXT) examples/embd-input/embd-input-test.cpp build-info.h ggml.o llama.o common.o $(OBJS)
|
embd-input-test: $(LIB_PRE)embdinput$(DSO_EXT) examples/embd-input/embd-input-test.cpp build-info.h ggml.o llama.o common.o $(OBJS)
|
||||||
$(CXX) $(CXXFLAGS) $(filter-out %$(DSO_EXT),$(filter-out %.h,$(filter-out %.hpp,$^))) -o $@ $(LDFLAGS) -L. -lembdinput
|
$(CXX) $(CXXFLAGS) $(filter-out %$(DSO_EXT),$(filter-out %.h,$(filter-out %.hpp,$^))) -o $@ $(LDFLAGS) -L. -lembdinput
|
||||||
|
|
||||||
gguf: examples/gguf/gguf.cpp build-info.h ggml.o gguf-llama.o $(OBJS)
|
gguf: examples/gguf/gguf.cpp build-info.h ggml.o llama.o $(OBJS)
|
||||||
$(CXX) $(CXXFLAGS) $(filter-out %.h,$^) -o $@ $(LDFLAGS)
|
|
||||||
|
|
||||||
gguf-llama-simple: examples/gguf/gguf-llama-simple.cpp build-info.h ggml.o gguf-llama.o common.o $(OBJS)
|
|
||||||
$(CXX) $(CXXFLAGS) $(filter-out %.h,$^) -o $@ $(LDFLAGS)
|
$(CXX) $(CXXFLAGS) $(filter-out %.h,$^) -o $@ $(LDFLAGS)
|
||||||
|
|
||||||
gptneox-main: gptneox-main.cpp ggml.o $(OBJS)
|
gptneox-main: gptneox-main.cpp ggml.o $(OBJS)
|
||||||
|
@ -132,7 +132,7 @@ if Path(dir_model + "/tokenizer.model").is_file():
|
|||||||
toktype = 1 # defualt to normal token type
|
toktype = 1 # defualt to normal token type
|
||||||
if tokenizer.is_unknown(i): toktype = 2
|
if tokenizer.is_unknown(i): toktype = 2
|
||||||
if tokenizer.is_control(i): toktype = 3
|
if tokenizer.is_control(i): toktype = 3
|
||||||
|
|
||||||
# TODO: How to determinate if a token is user defined?
|
# TODO: How to determinate if a token is user defined?
|
||||||
# ref: https://github.com/google/sentencepiece/blob/master/src/sentencepiece_model.proto
|
# ref: https://github.com/google/sentencepiece/blob/master/src/sentencepiece_model.proto
|
||||||
# if tokenizer.is_user_defined(i): toktype = 4
|
# if tokenizer.is_user_defined(i): toktype = 4
|
||||||
@ -223,7 +223,7 @@ for part_name in part_names:
|
|||||||
sys.exit()
|
sys.exit()
|
||||||
|
|
||||||
n_dims = len(data.shape)
|
n_dims = len(data.shape)
|
||||||
data_dtype = data.dtype
|
data_dtype = data.dtype
|
||||||
|
|
||||||
# if f32 desired, convert any float16 to float32
|
# if f32 desired, convert any float16 to float32
|
||||||
if ftype == 0 and data.dtype == np.float16:
|
if ftype == 0 and data.dtype == np.float16:
|
||||||
@ -261,7 +261,6 @@ for part_name in part_names:
|
|||||||
for name in model_part.keys():
|
for name in model_part.keys():
|
||||||
data = model_part[name]
|
data = model_part[name]
|
||||||
|
|
||||||
|
|
||||||
old_dtype = data.dtype
|
old_dtype = data.dtype
|
||||||
|
|
||||||
# we don't need these
|
# we don't need these
|
||||||
@ -284,7 +283,7 @@ for part_name in part_names:
|
|||||||
sys.exit()
|
sys.exit()
|
||||||
|
|
||||||
n_dims = len(data.shape)
|
n_dims = len(data.shape)
|
||||||
data_dtype = data.dtype
|
data_dtype = data.dtype
|
||||||
|
|
||||||
# if f32 desired, convert any float16 to float32
|
# if f32 desired, convert any float16 to float32
|
||||||
if ftype == 0 and data.dtype == np.float16:
|
if ftype == 0 and data.dtype == np.float16:
|
||||||
|
@ -95,12 +95,21 @@ if "_name_or_path" in hparams:
|
|||||||
else:
|
else:
|
||||||
hf_repo=""
|
hf_repo=""
|
||||||
|
|
||||||
|
if "max_sequence_length" in hparams:
|
||||||
|
ctx_length = hparams["max_sequence_length"]
|
||||||
|
elif "max_position_embeddings" in hparams:
|
||||||
|
ctx_length = hparams["max_position_embeddings"]
|
||||||
|
else:
|
||||||
|
print("gguf: can not find ctx length parameter.")
|
||||||
|
sys.exit()
|
||||||
|
|
||||||
|
|
||||||
gguf_writer.add_architecture(llm_arch)
|
gguf_writer.add_architecture(llm_arch)
|
||||||
gguf_writer.add_name(last_dir)
|
gguf_writer.add_name(last_dir)
|
||||||
gguf_writer.add_file_type("All tensors F32" if ftype == 0 else "Most tensors F16, some F32")
|
gguf_writer.add_file_type("All tensors F32" if ftype == 0 else "Most tensors F16, some F32")
|
||||||
gguf_writer.add_source_hf_repo(hf_repo)
|
gguf_writer.add_source_hf_repo(hf_repo)
|
||||||
gguf_writer.add_tensor_data_layout(llm_arch, "Meta AI original pth")
|
gguf_writer.add_tensor_data_layout(llm_arch, "Meta AI original pth")
|
||||||
gguf_writer.add_context_length(llm_arch, hparams["max_position_embeddings"])
|
gguf_writer.add_context_length(llm_arch, ctx_length)
|
||||||
gguf_writer.add_embedding_length(llm_arch, hparams["hidden_size"])
|
gguf_writer.add_embedding_length(llm_arch, hparams["hidden_size"])
|
||||||
gguf_writer.add_block_count(llm_arch, block_count)
|
gguf_writer.add_block_count(llm_arch, block_count)
|
||||||
gguf_writer.add_feed_forward_length(llm_arch, hparams["intermediate_size"])
|
gguf_writer.add_feed_forward_length(llm_arch, hparams["intermediate_size"])
|
||||||
@ -318,7 +327,7 @@ for part_name in part_names:
|
|||||||
if ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and n_dims == 2:
|
if ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and n_dims == 2:
|
||||||
data = data.astype(np.float16)
|
data = data.astype(np.float16)
|
||||||
|
|
||||||
print( name + ", shape " + str(len(data.shape)) + ", " + str(old_dtype) + " --> " + str(data.dtype))
|
print(name + ", shape " + str(len(data.shape)) + ", " + str(old_dtype) + " --> " + str(data.dtype))
|
||||||
|
|
||||||
gguf_writer.write_tensor_to_file(data)
|
gguf_writer.write_tensor_to_file(data)
|
||||||
|
|
||||||
|
@ -170,18 +170,6 @@ bool gpt_params_parse(int argc, char ** argv, gpt_params & params) {
|
|||||||
break;
|
break;
|
||||||
}
|
}
|
||||||
params.n_ctx = std::stoi(argv[i]);
|
params.n_ctx = std::stoi(argv[i]);
|
||||||
} else if (arg == "-gqa" || arg == "--gqa") {
|
|
||||||
if (++i >= argc) {
|
|
||||||
invalid_param = true;
|
|
||||||
break;
|
|
||||||
}
|
|
||||||
params.n_gqa = std::stoi(argv[i]);
|
|
||||||
} else if (arg == "-eps" || arg == "--rms-norm-eps") {
|
|
||||||
if (++i >= argc) {
|
|
||||||
invalid_param = true;
|
|
||||||
break;
|
|
||||||
}
|
|
||||||
params.rms_norm_eps = std::stof(argv[i]);
|
|
||||||
} else if (arg == "--rope-freq-base") {
|
} else if (arg == "--rope-freq-base") {
|
||||||
if (++i >= argc) {
|
if (++i >= argc) {
|
||||||
invalid_param = true;
|
invalid_param = true;
|
||||||
@ -546,8 +534,6 @@ void gpt_print_usage(int /*argc*/, char ** argv, const gpt_params & params) {
|
|||||||
fprintf(stdout, " -n N, --n-predict N number of tokens to predict (default: %d, -1 = infinity, -2 = until context filled)\n", params.n_predict);
|
fprintf(stdout, " -n N, --n-predict N number of tokens to predict (default: %d, -1 = infinity, -2 = until context filled)\n", params.n_predict);
|
||||||
fprintf(stdout, " -c N, --ctx-size N size of the prompt context (default: %d)\n", params.n_ctx);
|
fprintf(stdout, " -c N, --ctx-size N size of the prompt context (default: %d)\n", params.n_ctx);
|
||||||
fprintf(stdout, " -b N, --batch-size N batch size for prompt processing (default: %d)\n", params.n_batch);
|
fprintf(stdout, " -b N, --batch-size N batch size for prompt processing (default: %d)\n", params.n_batch);
|
||||||
fprintf(stdout, " -gqa N, --gqa N grouped-query attention factor (TEMP!!! use 8 for LLaMAv2 70B) (default: %d)\n", params.n_gqa);
|
|
||||||
fprintf(stdout, " -eps N, --rms-norm-eps N rms norm eps (TEMP!!! use 1e-5 for LLaMAv2) (default: %.1e)\n", params.rms_norm_eps);
|
|
||||||
fprintf(stdout, " --top-k N top-k sampling (default: %d, 0 = disabled)\n", params.top_k);
|
fprintf(stdout, " --top-k N top-k sampling (default: %d, 0 = disabled)\n", params.top_k);
|
||||||
fprintf(stdout, " --top-p N top-p sampling (default: %.1f, 1.0 = disabled)\n", (double)params.top_p);
|
fprintf(stdout, " --top-p N top-p sampling (default: %.1f, 1.0 = disabled)\n", (double)params.top_p);
|
||||||
fprintf(stdout, " --tfs N tail free sampling, parameter z (default: %.1f, 1.0 = disabled)\n", (double)params.tfs_z);
|
fprintf(stdout, " --tfs N tail free sampling, parameter z (default: %.1f, 1.0 = disabled)\n", (double)params.tfs_z);
|
||||||
@ -638,8 +624,6 @@ struct llama_context_params llama_context_params_from_gpt_params(const gpt_param
|
|||||||
|
|
||||||
lparams.n_ctx = params.n_ctx;
|
lparams.n_ctx = params.n_ctx;
|
||||||
lparams.n_batch = params.n_batch;
|
lparams.n_batch = params.n_batch;
|
||||||
lparams.n_gqa = params.n_gqa;
|
|
||||||
lparams.rms_norm_eps = params.rms_norm_eps;
|
|
||||||
lparams.n_gpu_layers = params.n_gpu_layers;
|
lparams.n_gpu_layers = params.n_gpu_layers;
|
||||||
lparams.main_gpu = params.main_gpu;
|
lparams.main_gpu = params.main_gpu;
|
||||||
lparams.tensor_split = params.tensor_split;
|
lparams.tensor_split = params.tensor_split;
|
||||||
|
@ -23,14 +23,12 @@ struct gpt_params {
|
|||||||
int32_t n_predict = -1; // new tokens to predict
|
int32_t n_predict = -1; // new tokens to predict
|
||||||
int32_t n_ctx = 512; // context size
|
int32_t n_ctx = 512; // context size
|
||||||
int32_t n_batch = 512; // batch size for prompt processing (must be >=32 to use BLAS)
|
int32_t n_batch = 512; // batch size for prompt processing (must be >=32 to use BLAS)
|
||||||
int32_t n_gqa = 1; // grouped-query attention factor (TODO: move to hparams)
|
|
||||||
int32_t n_keep = 0; // number of tokens to keep from initial prompt
|
int32_t n_keep = 0; // number of tokens to keep from initial prompt
|
||||||
int32_t n_chunks = -1; // max number of chunks to process (-1 = unlimited)
|
int32_t n_chunks = -1; // max number of chunks to process (-1 = unlimited)
|
||||||
int32_t n_gpu_layers = 0; // number of layers to store in VRAM
|
int32_t n_gpu_layers = 0; // number of layers to store in VRAM
|
||||||
int32_t main_gpu = 0; // the GPU that is used for scratch and small tensors
|
int32_t main_gpu = 0; // the GPU that is used for scratch and small tensors
|
||||||
float tensor_split[LLAMA_MAX_DEVICES] = {0}; // how split tensors should be distributed across GPUs
|
float tensor_split[LLAMA_MAX_DEVICES] = {0}; // how split tensors should be distributed across GPUs
|
||||||
int32_t n_probs = 0; // if greater than 0, output the probabilities of top n_probs tokens.
|
int32_t n_probs = 0; // if greater than 0, output the probabilities of top n_probs tokens.
|
||||||
float rms_norm_eps = LLAMA_DEFAULT_RMS_EPS; // rms norm epsilon
|
|
||||||
float rope_freq_base = 10000.0f; // RoPE base frequency
|
float rope_freq_base = 10000.0f; // RoPE base frequency
|
||||||
float rope_freq_scale = 1.0f; // RoPE frequency scaling factor
|
float rope_freq_scale = 1.0f; // RoPE frequency scaling factor
|
||||||
|
|
||||||
|
@ -1,5 +1,6 @@
|
|||||||
#include "ggml.h"
|
#include "ggml.h"
|
||||||
#include "llama.h"
|
#include "llama.h"
|
||||||
|
|
||||||
#include <unordered_map>
|
#include <unordered_map>
|
||||||
#include <vector>
|
#include <vector>
|
||||||
#include <cassert>
|
#include <cassert>
|
||||||
@ -502,7 +503,7 @@ bool is_ggml_file(const char *filename) {
|
|||||||
return false;
|
return false;
|
||||||
}
|
}
|
||||||
uint32_t magic = file.read_u32();
|
uint32_t magic = file.read_u32();
|
||||||
return magic == LLAMA_FILE_MAGIC;
|
return magic == GGUF_MAGIC;
|
||||||
}
|
}
|
||||||
|
|
||||||
void load_vocab(const char *filename, Config *config, struct llama_vocab *vocab) {
|
void load_vocab(const char *filename, Config *config, struct llama_vocab *vocab) {
|
||||||
@ -590,75 +591,80 @@ void save_as_llama_model(struct llama_vocab * vocab, struct my_llama_model * mod
|
|||||||
if (file.fp == NULL) {
|
if (file.fp == NULL) {
|
||||||
return;
|
return;
|
||||||
}
|
}
|
||||||
// write_magic
|
|
||||||
file.write_u32(LLAMA_FILE_MAGIC); // magic
|
|
||||||
file.write_u32(LLAMA_FILE_VERSION); // version
|
|
||||||
// write_hparams
|
|
||||||
file.write_u32(model->hparams.n_vocab);
|
|
||||||
file.write_u32(model->hparams.n_embd);
|
|
||||||
file.write_u32(model->hparams.n_mult);
|
|
||||||
file.write_u32(model->hparams.n_head);
|
|
||||||
file.write_u32(model->hparams.n_layer);
|
|
||||||
file.write_u32(model->hparams.n_rot);
|
|
||||||
file.write_u32(LLAMA_FTYPE_ALL_F32);
|
|
||||||
|
|
||||||
// write_vocab - for now we are just writing the existing BPE voc. assuming karpathy's vocabulary is the same. idk.
|
#pragma message("TODO: implement file saving using gguf")
|
||||||
uint32_t n_vocab = model->hparams.n_vocab;
|
(void) vocab;
|
||||||
for (uint32_t i = 0; i < n_vocab; i++) {
|
(void) model;
|
||||||
const auto & token_score = vocab->id_to_token.at(i);
|
(void) w;
|
||||||
file.write_u32((uint32_t) token_score.tok.size());
|
// // write_magic
|
||||||
file.write_raw(token_score.tok.data(), token_score.tok.size());
|
// file.write_u32(LLAMA_FILE_MAGIC); // magic
|
||||||
file.write_raw(&token_score.score, sizeof(token_score.score));
|
// file.write_u32(LLAMA_FILE_VERSION); // version
|
||||||
}
|
// // write_hparams
|
||||||
|
// file.write_u32(model->hparams.n_vocab);
|
||||||
// stuff AK weights into GG weights one by one.
|
// file.write_u32(model->hparams.n_embd);
|
||||||
// w->token_embedding_table -> model->tok_embeddings
|
// file.write_u32(model->hparams.n_mult);
|
||||||
// float* -> struct ggml_tensor
|
// file.write_u32(model->hparams.n_head);
|
||||||
stuff_karpathy_weights_into_gg(model->tok_embeddings, w->token_embedding_table);
|
// file.write_u32(model->hparams.n_layer);
|
||||||
stuff_karpathy_weights_into_gg(model->output, w->token_embedding_table);
|
// file.write_u32(model->hparams.n_rot);
|
||||||
|
// file.write_u32(LLAMA_FTYPE_ALL_F32);
|
||||||
stuff_karpathy_weights_into_gg(model->norm, w->rms_final_weight);
|
//
|
||||||
//print_row(model->norm, 0);
|
// // write_vocab - for now we are just writing the existing BPE voc. assuming karpathy's vocabulary is the same. idk.
|
||||||
|
// uint32_t n_vocab = model->hparams.n_vocab;
|
||||||
// for rms-att-weight
|
// for (uint32_t i = 0; i < n_vocab; i++) {
|
||||||
int row_length = model->hparams.n_embd;
|
// const auto & token_score = vocab->id_to_token.at(i);
|
||||||
const auto & hparams = model->hparams;
|
// file.write_u32((uint32_t) token_score.tok.size());
|
||||||
//int n_ff = model->hparams.n_embd;
|
// file.write_raw(token_score.tok.data(), token_score.tok.size());
|
||||||
int n_ff = get_n_ff(&hparams);
|
// file.write_raw(&token_score.score, sizeof(token_score.score));
|
||||||
|
// }
|
||||||
for (uint32_t i = 0; i < model->hparams.n_layer; ++i){
|
//
|
||||||
auto & layer = model->layers[i];
|
// // stuff AK weights into GG weights one by one.
|
||||||
// 1d
|
// // w->token_embedding_table -> model->tok_embeddings
|
||||||
stuff_karpathy_weights_into_gg(layer.attention_norm, &w->rms_att_weight[i*row_length]);
|
// // float* -> struct ggml_tensor
|
||||||
stuff_karpathy_weights_into_gg(layer.ffn_norm , &w->rms_ffn_weight[i*row_length]);
|
// stuff_karpathy_weights_into_gg(model->tok_embeddings, w->token_embedding_table);
|
||||||
|
// stuff_karpathy_weights_into_gg(model->output, w->token_embedding_table);
|
||||||
// from 3d matrix layer x dim x dim to 2d matrix dim x dim
|
//
|
||||||
stuff_karpathy_weights_into_gg(layer.wq , &w->wq[i*row_length*row_length]);
|
// stuff_karpathy_weights_into_gg(model->norm, w->rms_final_weight);
|
||||||
stuff_karpathy_weights_into_gg(layer.wk , &w->wk[i*row_length*row_length]);
|
// //print_row(model->norm, 0);
|
||||||
stuff_karpathy_weights_into_gg(layer.wv , &w->wv[i*row_length*row_length]);
|
//
|
||||||
stuff_karpathy_weights_into_gg(layer.wo , &w->wo[i*row_length*row_length]);
|
// // for rms-att-weight
|
||||||
|
// int row_length = model->hparams.n_embd;
|
||||||
stuff_karpathy_weights_into_gg(layer.w1 , &w->w1[i*row_length*n_ff]);
|
// const auto & hparams = model->hparams;
|
||||||
stuff_karpathy_weights_into_gg(layer.w2 , &w->w2[i*n_ff*row_length]);
|
// //int n_ff = model->hparams.n_embd;
|
||||||
stuff_karpathy_weights_into_gg(layer.w3 , &w->w3[i*row_length*n_ff]);
|
// int n_ff = get_n_ff(&hparams);
|
||||||
}
|
//
|
||||||
// write tensors
|
// for (uint32_t i = 0; i < model->hparams.n_layer; ++i){
|
||||||
write_tensor(&file, model->tok_embeddings);
|
// auto & layer = model->layers[i];
|
||||||
write_tensor(&file, model->norm);
|
// // 1d
|
||||||
write_tensor(&file, model->output); // ?
|
// stuff_karpathy_weights_into_gg(layer.attention_norm, &w->rms_att_weight[i*row_length]);
|
||||||
for (uint32_t i = 0; i < model->hparams.n_layer; ++i) {
|
// stuff_karpathy_weights_into_gg(layer.ffn_norm , &w->rms_ffn_weight[i*row_length]);
|
||||||
auto & layer = model->layers[i];
|
//
|
||||||
|
// // from 3d matrix layer x dim x dim to 2d matrix dim x dim
|
||||||
write_tensor(&file, layer.attention_norm);
|
// stuff_karpathy_weights_into_gg(layer.wq , &w->wq[i*row_length*row_length]);
|
||||||
write_tensor(&file, layer.wq);
|
// stuff_karpathy_weights_into_gg(layer.wk , &w->wk[i*row_length*row_length]);
|
||||||
write_tensor(&file, layer.wk);
|
// stuff_karpathy_weights_into_gg(layer.wv , &w->wv[i*row_length*row_length]);
|
||||||
write_tensor(&file, layer.wv);
|
// stuff_karpathy_weights_into_gg(layer.wo , &w->wo[i*row_length*row_length]);
|
||||||
write_tensor(&file, layer.wo);
|
//
|
||||||
write_tensor(&file, layer.ffn_norm);
|
// stuff_karpathy_weights_into_gg(layer.w1 , &w->w1[i*row_length*n_ff]);
|
||||||
write_tensor(&file, layer.w1);
|
// stuff_karpathy_weights_into_gg(layer.w2 , &w->w2[i*n_ff*row_length]);
|
||||||
write_tensor(&file, layer.w2);
|
// stuff_karpathy_weights_into_gg(layer.w3 , &w->w3[i*row_length*n_ff]);
|
||||||
write_tensor(&file, layer.w3);
|
// }
|
||||||
}
|
// // write tensors
|
||||||
|
// write_tensor(&file, model->tok_embeddings);
|
||||||
|
// write_tensor(&file, model->norm);
|
||||||
|
// write_tensor(&file, model->output); // ?
|
||||||
|
// for (uint32_t i = 0; i < model->hparams.n_layer; ++i) {
|
||||||
|
// auto & layer = model->layers[i];
|
||||||
|
//
|
||||||
|
// write_tensor(&file, layer.attention_norm);
|
||||||
|
// write_tensor(&file, layer.wq);
|
||||||
|
// write_tensor(&file, layer.wk);
|
||||||
|
// write_tensor(&file, layer.wv);
|
||||||
|
// write_tensor(&file, layer.wo);
|
||||||
|
// write_tensor(&file, layer.ffn_norm);
|
||||||
|
// write_tensor(&file, layer.w1);
|
||||||
|
// write_tensor(&file, layer.w2);
|
||||||
|
// write_tensor(&file, layer.w3);
|
||||||
|
// }
|
||||||
}
|
}
|
||||||
|
|
||||||
struct train_params get_default_train_params() {
|
struct train_params get_default_train_params() {
|
||||||
|
@ -1,129 +0,0 @@
|
|||||||
#ifndef _GNU_SOURCE
|
|
||||||
#define _GNU_SOURCE
|
|
||||||
#endif
|
|
||||||
|
|
||||||
#include "common.h"
|
|
||||||
#include "gguf-llama.h"
|
|
||||||
#include "build-info.h"
|
|
||||||
|
|
||||||
#include <cmath>
|
|
||||||
#include <cstdio>
|
|
||||||
#include <string>
|
|
||||||
#include <vector>
|
|
||||||
|
|
||||||
int main(int argc, char ** argv) {
|
|
||||||
gpt_params params;
|
|
||||||
|
|
||||||
if (argc == 1 || argv[1][0] == '-') {
|
|
||||||
printf("usage: %s MODEL_PATH [PROMPT]\n" , argv[0]);
|
|
||||||
return 1 ;
|
|
||||||
}
|
|
||||||
|
|
||||||
if (argc >= 2) {
|
|
||||||
params.model = argv[1];
|
|
||||||
}
|
|
||||||
|
|
||||||
if (argc >= 3) {
|
|
||||||
params.prompt = argv[2];
|
|
||||||
}
|
|
||||||
|
|
||||||
if (params.prompt.empty()) {
|
|
||||||
params.prompt = "Hello my name is";
|
|
||||||
}
|
|
||||||
|
|
||||||
// init LLM
|
|
||||||
|
|
||||||
llama_backend_init(params.numa);
|
|
||||||
|
|
||||||
llama_context_params ctx_params = llama_context_default_params();
|
|
||||||
|
|
||||||
llama_model * model = llama_load_model_from_file(params.model.c_str(), ctx_params);
|
|
||||||
|
|
||||||
if (model == NULL) {
|
|
||||||
fprintf(stderr , "%s: error: unable to load model\n" , __func__);
|
|
||||||
return 1;
|
|
||||||
}
|
|
||||||
|
|
||||||
llama_context * ctx = llama_new_context_with_model(model, ctx_params);
|
|
||||||
|
|
||||||
// tokenize the prompt
|
|
||||||
|
|
||||||
std::vector<llama_token> tokens_list;
|
|
||||||
tokens_list = ::llama_tokenize(ctx, params.prompt, true);
|
|
||||||
|
|
||||||
const int max_context_size = llama_n_ctx(ctx);
|
|
||||||
const int max_tokens_list_size = max_context_size - 4;
|
|
||||||
|
|
||||||
if ((int) tokens_list.size() > max_tokens_list_size) {
|
|
||||||
fprintf(stderr, "%s: error: prompt too long (%d tokens, max %d)\n", __func__, (int) tokens_list.size(), max_tokens_list_size);
|
|
||||||
return 1;
|
|
||||||
}
|
|
||||||
|
|
||||||
fprintf(stderr, "\n\n");
|
|
||||||
|
|
||||||
for (auto id : tokens_list) {
|
|
||||||
fprintf(stderr, "%s", llama_token_to_str(ctx, id).c_str());
|
|
||||||
}
|
|
||||||
|
|
||||||
fflush(stderr);
|
|
||||||
|
|
||||||
// main loop
|
|
||||||
|
|
||||||
// The LLM keeps a contextual cache memory of previous token evaluation.
|
|
||||||
// Usually, once this cache is full, it is required to recompute a compressed context based on previous
|
|
||||||
// tokens (see "infinite text generation via context swapping" in the main example), but in this minimalist
|
|
||||||
// example, we will just stop the loop once this cache is full or once an end of stream is detected.
|
|
||||||
|
|
||||||
const int n_gen = std::min(32, max_context_size);
|
|
||||||
|
|
||||||
while (llama_get_kv_cache_token_count(ctx) < n_gen) {
|
|
||||||
// evaluate the transformer
|
|
||||||
|
|
||||||
if (llama_eval(ctx, tokens_list.data(), int(tokens_list.size()), llama_get_kv_cache_token_count(ctx), params.n_threads)) {
|
|
||||||
fprintf(stderr, "%s : failed to eval\n", __func__);
|
|
||||||
return 1;
|
|
||||||
}
|
|
||||||
|
|
||||||
tokens_list.clear();
|
|
||||||
|
|
||||||
// sample the next token
|
|
||||||
|
|
||||||
llama_token new_token_id = 0;
|
|
||||||
|
|
||||||
auto logits = llama_get_logits(ctx);
|
|
||||||
auto n_vocab = llama_n_vocab(ctx);
|
|
||||||
|
|
||||||
std::vector<llama_token_data> candidates;
|
|
||||||
candidates.reserve(n_vocab);
|
|
||||||
|
|
||||||
for (llama_token token_id = 0; token_id < n_vocab; token_id++) {
|
|
||||||
candidates.emplace_back(llama_token_data{ token_id, logits[token_id], 0.0f });
|
|
||||||
}
|
|
||||||
|
|
||||||
llama_token_data_array candidates_p = { candidates.data(), candidates.size(), false };
|
|
||||||
|
|
||||||
new_token_id = llama_sample_token_greedy(ctx , &candidates_p);
|
|
||||||
|
|
||||||
// is it an end of stream ?
|
|
||||||
if (new_token_id == llama_token_eos()) {
|
|
||||||
fprintf(stderr, " [end of text]\n");
|
|
||||||
break;
|
|
||||||
}
|
|
||||||
|
|
||||||
// print the new token :
|
|
||||||
printf("%s", llama_token_to_str(ctx, new_token_id).c_str());
|
|
||||||
fflush(stdout);
|
|
||||||
|
|
||||||
// push this new token for next evaluation
|
|
||||||
tokens_list.push_back(new_token_id);
|
|
||||||
}
|
|
||||||
|
|
||||||
llama_free(ctx);
|
|
||||||
llama_free_model(model);
|
|
||||||
|
|
||||||
llama_backend_free();
|
|
||||||
|
|
||||||
fprintf(stderr, "\n\n");
|
|
||||||
|
|
||||||
return 0;
|
|
||||||
}
|
|
@ -1,5 +1,5 @@
|
|||||||
#include "ggml.h"
|
#include "ggml.h"
|
||||||
#include "gguf-llama.h"
|
#include "llama.h"
|
||||||
|
|
||||||
#include <cstdio>
|
#include <cstdio>
|
||||||
#include <cinttypes>
|
#include <cinttypes>
|
||||||
|
@ -266,9 +266,6 @@ int main(int argc, char ** argv) {
|
|||||||
params.interactive = true;
|
params.interactive = true;
|
||||||
}
|
}
|
||||||
|
|
||||||
// determine newline token
|
|
||||||
auto llama_token_newline = ::llama_tokenize(ctx, "\n", false);
|
|
||||||
|
|
||||||
if (params.verbose_prompt) {
|
if (params.verbose_prompt) {
|
||||||
fprintf(stderr, "\n");
|
fprintf(stderr, "\n");
|
||||||
fprintf(stderr, "%s: prompt: '%s'\n", __func__, params.prompt.c_str());
|
fprintf(stderr, "%s: prompt: '%s'\n", __func__, params.prompt.c_str());
|
||||||
@ -778,8 +775,7 @@ int main(int argc, char ** argv) {
|
|||||||
if (grammar != NULL) {
|
if (grammar != NULL) {
|
||||||
llama_grammar_free(grammar);
|
llama_grammar_free(grammar);
|
||||||
|
|
||||||
std::vector<const llama_grammar_element *> grammar_rules(
|
std::vector<const llama_grammar_element *> grammar_rules( parsed_grammar.c_rules());
|
||||||
parsed_grammar.c_rules());
|
|
||||||
grammar = llama_grammar_init(
|
grammar = llama_grammar_init(
|
||||||
grammar_rules.data(), grammar_rules.size(),
|
grammar_rules.data(), grammar_rules.size(),
|
||||||
parsed_grammar.symbol_ids.at("root"));
|
parsed_grammar.symbol_ids.at("root"));
|
||||||
|
@ -68,10 +68,10 @@ bool try_parse_ftype(const std::string & ftype_str_in, llama_ftype & ftype, std:
|
|||||||
}
|
}
|
||||||
|
|
||||||
// usage:
|
// usage:
|
||||||
// ./quantize [--allow-requantize] [--leave-output-tensor] models/llama/ggml-model.bin [models/llama/ggml-model-quant.bin] type [nthreads]
|
// ./quantize [--allow-requantize] [--leave-output-tensor] models/llama/ggml-model.gguf [models/llama/ggml-model-quant.gguf] type [nthreads]
|
||||||
//
|
//
|
||||||
void usage(const char * executable) {
|
void usage(const char * executable) {
|
||||||
fprintf(stderr, "usage: %s [--help] [--allow-requantize] [--leave-output-tensor] model-f32.bin [model-quant.bin] type [nthreads]\n\n", executable);
|
fprintf(stderr, "usage: %s [--help] [--allow-requantize] [--leave-output-tensor] model-f32.gguf [model-quant.gguf] type [nthreads]\n\n", executable);
|
||||||
fprintf(stderr, " --allow-requantize: Allows requantizing tensors that have already been quantized. Warning: This can severely reduce quality compared to quantizing from 16bit or 32bit\n");
|
fprintf(stderr, " --allow-requantize: Allows requantizing tensors that have already been quantized. Warning: This can severely reduce quality compared to quantizing from 16bit or 32bit\n");
|
||||||
fprintf(stderr, " --leave-output-tensor: Will leave output.weight un(re)quantized. Increases model size but may also increase quality, especially when requantizing\n");
|
fprintf(stderr, " --leave-output-tensor: Will leave output.weight un(re)quantized. Increases model size but may also increase quality, especially when requantizing\n");
|
||||||
fprintf(stderr, "\nAllowed quantization types:\n");
|
fprintf(stderr, "\nAllowed quantization types:\n");
|
||||||
@ -118,8 +118,8 @@ int main(int argc, char ** argv) {
|
|||||||
if (pos != std::string::npos) {
|
if (pos != std::string::npos) {
|
||||||
fpath = fname_inp.substr(0, pos + 1);
|
fpath = fname_inp.substr(0, pos + 1);
|
||||||
}
|
}
|
||||||
// export as [inp path]/ggml-model-[ftype].bin
|
// export as [inp path]/ggml-model-[ftype].gguf
|
||||||
fname_out = fpath + "ggml-model-" + ftype_str + ".bin";
|
fname_out = fpath + "ggml-model-" + ftype_str + ".gguf";
|
||||||
arg_idx++;
|
arg_idx++;
|
||||||
}
|
}
|
||||||
else {
|
else {
|
||||||
|
@ -26,7 +26,6 @@ int main(int argc, char ** argv) {
|
|||||||
auto lparams = llama_context_default_params();
|
auto lparams = llama_context_default_params();
|
||||||
|
|
||||||
lparams.n_ctx = params.n_ctx;
|
lparams.n_ctx = params.n_ctx;
|
||||||
lparams.n_gqa = params.n_gqa;
|
|
||||||
lparams.seed = params.seed;
|
lparams.seed = params.seed;
|
||||||
lparams.f16_kv = params.memory_f16;
|
lparams.f16_kv = params.memory_f16;
|
||||||
lparams.use_mmap = params.use_mmap;
|
lparams.use_mmap = params.use_mmap;
|
||||||
|
@ -651,8 +651,6 @@ static void server_print_usage(const char *argv0, const gpt_params ¶ms,
|
|||||||
fprintf(stdout, " -v, --verbose verbose output (default: %s)\n", server_verbose ? "enabled" : "disabled");
|
fprintf(stdout, " -v, --verbose verbose output (default: %s)\n", server_verbose ? "enabled" : "disabled");
|
||||||
fprintf(stdout, " -t N, --threads N number of threads to use during computation (default: %d)\n", params.n_threads);
|
fprintf(stdout, " -t N, --threads N number of threads to use during computation (default: %d)\n", params.n_threads);
|
||||||
fprintf(stdout, " -c N, --ctx-size N size of the prompt context (default: %d)\n", params.n_ctx);
|
fprintf(stdout, " -c N, --ctx-size N size of the prompt context (default: %d)\n", params.n_ctx);
|
||||||
fprintf(stdout, " -gqa N, --gqa N grouped-query attention factor (TEMP!!! use 8 for LLaMAv2 70B) (default: %d)\n", params.n_gqa);
|
|
||||||
fprintf(stdout, " -eps N, --rms-norm-eps N rms norm eps (TEMP!!! use 1e-5 for LLaMAv2) (default: %.1e)\n", params.rms_norm_eps);
|
|
||||||
fprintf(stdout, " --rope-freq-base N RoPE base frequency (default: %.1f)\n", params.rope_freq_base);
|
fprintf(stdout, " --rope-freq-base N RoPE base frequency (default: %.1f)\n", params.rope_freq_base);
|
||||||
fprintf(stdout, " --rope-freq-scale N RoPE frequency scaling factor (default: %g)\n", params.rope_freq_scale);
|
fprintf(stdout, " --rope-freq-scale N RoPE frequency scaling factor (default: %g)\n", params.rope_freq_scale);
|
||||||
fprintf(stdout, " -b N, --batch-size N batch size for prompt processing (default: %d)\n", params.n_batch);
|
fprintf(stdout, " -b N, --batch-size N batch size for prompt processing (default: %d)\n", params.n_batch);
|
||||||
@ -773,23 +771,6 @@ static void server_params_parse(int argc, char **argv, server_params &sparams,
|
|||||||
}
|
}
|
||||||
params.n_ctx = std::stoi(argv[i]);
|
params.n_ctx = std::stoi(argv[i]);
|
||||||
}
|
}
|
||||||
else if (arg == "-gqa" || arg == "--gqa")
|
|
||||||
{
|
|
||||||
if (++i >= argc)
|
|
||||||
{
|
|
||||||
invalid_param = true;
|
|
||||||
break;
|
|
||||||
}
|
|
||||||
params.n_gqa = std::stoi(argv[i]);
|
|
||||||
}
|
|
||||||
else if (arg == "-eps" || arg == "--rms-norm-eps") {
|
|
||||||
if (++i >= argc)
|
|
||||||
{
|
|
||||||
invalid_param = true;
|
|
||||||
break;
|
|
||||||
}
|
|
||||||
params.rms_norm_eps = std::stof(argv[i]);
|
|
||||||
}
|
|
||||||
else if (arg == "--rope-freq-base")
|
else if (arg == "--rope-freq-base")
|
||||||
{
|
{
|
||||||
if (++i >= argc)
|
if (++i >= argc)
|
||||||
|
@ -36,16 +36,17 @@ int main(int argc, char ** argv) {
|
|||||||
|
|
||||||
llama_backend_init(params.numa);
|
llama_backend_init(params.numa);
|
||||||
|
|
||||||
llama_model * model;
|
llama_context_params ctx_params = llama_context_default_params();
|
||||||
llama_context * ctx;
|
|
||||||
|
|
||||||
std::tie(model, ctx) = llama_init_from_gpt_params(params);
|
llama_model * model = llama_load_model_from_file(params.model.c_str(), ctx_params);
|
||||||
|
|
||||||
if (model == NULL) {
|
if (model == NULL) {
|
||||||
fprintf(stderr, "%s: error: unable to load model\n", __func__);
|
fprintf(stderr , "%s: error: unable to load model\n" , __func__);
|
||||||
return 1;
|
return 1;
|
||||||
}
|
}
|
||||||
|
|
||||||
|
llama_context * ctx = llama_new_context_with_model(model, ctx_params);
|
||||||
|
|
||||||
// tokenize the prompt
|
// tokenize the prompt
|
||||||
|
|
||||||
std::vector<llama_token> tokens_list;
|
std::vector<llama_token> tokens_list;
|
||||||
@ -54,7 +55,7 @@ int main(int argc, char ** argv) {
|
|||||||
const int max_context_size = llama_n_ctx(ctx);
|
const int max_context_size = llama_n_ctx(ctx);
|
||||||
const int max_tokens_list_size = max_context_size - 4;
|
const int max_tokens_list_size = max_context_size - 4;
|
||||||
|
|
||||||
if ((int)tokens_list.size() > max_tokens_list_size) {
|
if ((int) tokens_list.size() > max_tokens_list_size) {
|
||||||
fprintf(stderr, "%s: error: prompt too long (%d tokens, max %d)\n", __func__, (int) tokens_list.size(), max_tokens_list_size);
|
fprintf(stderr, "%s: error: prompt too long (%d tokens, max %d)\n", __func__, (int) tokens_list.size(), max_tokens_list_size);
|
||||||
return 1;
|
return 1;
|
||||||
}
|
}
|
||||||
@ -74,7 +75,9 @@ int main(int argc, char ** argv) {
|
|||||||
// tokens (see "infinite text generation via context swapping" in the main example), but in this minimalist
|
// tokens (see "infinite text generation via context swapping" in the main example), but in this minimalist
|
||||||
// example, we will just stop the loop once this cache is full or once an end of stream is detected.
|
// example, we will just stop the loop once this cache is full or once an end of stream is detected.
|
||||||
|
|
||||||
while (llama_get_kv_cache_token_count( ctx ) < max_context_size) {
|
const int n_gen = std::min(32, max_context_size);
|
||||||
|
|
||||||
|
while (llama_get_kv_cache_token_count(ctx) < n_gen) {
|
||||||
// evaluate the transformer
|
// evaluate the transformer
|
||||||
|
|
||||||
if (llama_eval(ctx, tokens_list.data(), int(tokens_list.size()), llama_get_kv_cache_token_count(ctx), params.n_threads)) {
|
if (llama_eval(ctx, tokens_list.data(), int(tokens_list.size()), llama_get_kv_cache_token_count(ctx), params.n_threads)) {
|
||||||
@ -114,7 +117,6 @@ int main(int argc, char ** argv) {
|
|||||||
|
|
||||||
// push this new token for next evaluation
|
// push this new token for next evaluation
|
||||||
tokens_list.push_back(new_token_id);
|
tokens_list.push_back(new_token_id);
|
||||||
|
|
||||||
}
|
}
|
||||||
|
|
||||||
llama_free(ctx);
|
llama_free(ctx);
|
||||||
@ -122,5 +124,7 @@ int main(int argc, char ** argv) {
|
|||||||
|
|
||||||
llama_backend_free();
|
llama_backend_free();
|
||||||
|
|
||||||
|
fprintf(stderr, "\n\n");
|
||||||
|
|
||||||
return 0;
|
return 0;
|
||||||
}
|
}
|
||||||
|
@ -17,7 +17,7 @@
|
|||||||
#pragma warning(disable: 4244 4267) // possible loss of data
|
#pragma warning(disable: 4244 4267) // possible loss of data
|
||||||
#endif
|
#endif
|
||||||
|
|
||||||
static const float rms_norm_eps = LLAMA_DEFAULT_RMS_EPS;
|
static const float rms_norm_eps = 1e-5f;
|
||||||
|
|
||||||
struct random_normal_distribution {
|
struct random_normal_distribution {
|
||||||
std::mt19937 gen;
|
std::mt19937 gen;
|
||||||
@ -2612,42 +2612,45 @@ void save_as_llama_model(struct llama_vocab * vocab, struct my_llama_model * mod
|
|||||||
return;
|
return;
|
||||||
}
|
}
|
||||||
|
|
||||||
// write_magic
|
#pragma message("TODO: implement file saving using gguf")
|
||||||
file.write_u32(LLAMA_FILE_MAGIC); // magic
|
(void) vocab;
|
||||||
file.write_u32(LLAMA_FILE_VERSION); // version
|
(void) model;
|
||||||
// write_hparams
|
// // write_magic
|
||||||
file.write_u32(model->hparams.n_vocab);
|
// file.write_u32(LLAMA_FILE_MAGIC); // magic
|
||||||
file.write_u32(model->hparams.n_embd);
|
// file.write_u32(LLAMA_FILE_VERSION); // version
|
||||||
file.write_u32(model->hparams.n_mult);
|
// // write_hparams
|
||||||
file.write_u32(model->hparams.n_head);
|
// file.write_u32(model->hparams.n_vocab);
|
||||||
file.write_u32(model->hparams.n_layer);
|
// file.write_u32(model->hparams.n_embd);
|
||||||
file.write_u32(model->hparams.n_rot);
|
// file.write_u32(model->hparams.n_mult);
|
||||||
file.write_u32(LLAMA_FTYPE_ALL_F32);
|
// file.write_u32(model->hparams.n_head);
|
||||||
// write_vocab
|
// file.write_u32(model->hparams.n_layer);
|
||||||
uint32_t n_vocab = model->hparams.n_vocab;
|
// file.write_u32(model->hparams.n_rot);
|
||||||
for (uint32_t i = 0; i < n_vocab; i++) {
|
// file.write_u32(LLAMA_FTYPE_ALL_F32);
|
||||||
const auto & token_score = vocab->id_to_token.at(i);
|
// // write_vocab
|
||||||
file.write_u32((uint32_t) token_score.tok.size());
|
// uint32_t n_vocab = model->hparams.n_vocab;
|
||||||
file.write_raw(token_score.tok.data(), token_score.tok.size());
|
// for (uint32_t i = 0; i < n_vocab; i++) {
|
||||||
file.write_raw(&token_score.score, sizeof(token_score.score));
|
// const auto & token_score = vocab->id_to_token.at(i);
|
||||||
}
|
// file.write_u32((uint32_t) token_score.tok.size());
|
||||||
// write tensors
|
// file.write_raw(token_score.tok.data(), token_score.tok.size());
|
||||||
write_tensor(&file, model->tok_embeddings);
|
// file.write_raw(&token_score.score, sizeof(token_score.score));
|
||||||
write_tensor(&file, model->norm);
|
// }
|
||||||
write_tensor(&file, model->output);
|
// // write tensors
|
||||||
for (uint32_t i = 0; i < model->hparams.n_layer; ++i) {
|
// write_tensor(&file, model->tok_embeddings);
|
||||||
auto & layer = model->layers[i];
|
// write_tensor(&file, model->norm);
|
||||||
|
// write_tensor(&file, model->output);
|
||||||
write_tensor(&file, layer.attention_norm);
|
// for (uint32_t i = 0; i < model->hparams.n_layer; ++i) {
|
||||||
write_tensor(&file, layer.wq);
|
// auto & layer = model->layers[i];
|
||||||
write_tensor(&file, layer.wk);
|
//
|
||||||
write_tensor(&file, layer.wv);
|
// write_tensor(&file, layer.attention_norm);
|
||||||
write_tensor(&file, layer.wo);
|
// write_tensor(&file, layer.wq);
|
||||||
write_tensor(&file, layer.ffn_norm);
|
// write_tensor(&file, layer.wk);
|
||||||
write_tensor(&file, layer.w1);
|
// write_tensor(&file, layer.wv);
|
||||||
write_tensor(&file, layer.w2);
|
// write_tensor(&file, layer.wo);
|
||||||
write_tensor(&file, layer.w3);
|
// write_tensor(&file, layer.ffn_norm);
|
||||||
}
|
// write_tensor(&file, layer.w1);
|
||||||
|
// write_tensor(&file, layer.w2);
|
||||||
|
// write_tensor(&file, layer.w3);
|
||||||
|
// }
|
||||||
}
|
}
|
||||||
|
|
||||||
float cosine_decay(const int decay_steps, const float alpha, int step) {
|
float cosine_decay(const int decay_steps, const float alpha, int step) {
|
||||||
|
33
ggml.c
33
ggml.c
@ -9140,6 +9140,8 @@ static void ggml_compute_forward_mul(
|
|||||||
const struct ggml_tensor * src0,
|
const struct ggml_tensor * src0,
|
||||||
const struct ggml_tensor * src1,
|
const struct ggml_tensor * src1,
|
||||||
struct ggml_tensor * dst) {
|
struct ggml_tensor * dst) {
|
||||||
|
GGML_ASSERT(src1->type == GGML_TYPE_F32 && "only f32 src1 supported for now");
|
||||||
|
|
||||||
switch (src0->type) {
|
switch (src0->type) {
|
||||||
case GGML_TYPE_F32:
|
case GGML_TYPE_F32:
|
||||||
{
|
{
|
||||||
@ -18584,17 +18586,18 @@ static const size_t GGUF_TYPE_SIZE[GGUF_TYPE_COUNT] = {
|
|||||||
static_assert(GGUF_TYPE_COUNT == 10, "GGUF_TYPE_COUNT != 10");
|
static_assert(GGUF_TYPE_COUNT == 10, "GGUF_TYPE_COUNT != 10");
|
||||||
|
|
||||||
static const char * GGUF_TYPE_NAME[GGUF_TYPE_COUNT] = {
|
static const char * GGUF_TYPE_NAME[GGUF_TYPE_COUNT] = {
|
||||||
[GGUF_TYPE_UINT8] = "uint8",
|
[GGUF_TYPE_UINT8] = "u8",
|
||||||
[GGUF_TYPE_INT8] = "int8",
|
[GGUF_TYPE_INT8] = "i8",
|
||||||
[GGUF_TYPE_UINT16] = "uint16",
|
[GGUF_TYPE_UINT16] = "u16",
|
||||||
[GGUF_TYPE_INT16] = "int16",
|
[GGUF_TYPE_INT16] = "i16",
|
||||||
[GGUF_TYPE_UINT32] = "uint32",
|
[GGUF_TYPE_UINT32] = "u32",
|
||||||
[GGUF_TYPE_INT32] = "int32",
|
[GGUF_TYPE_INT32] = "i32",
|
||||||
[GGUF_TYPE_FLOAT32] = "float32",
|
[GGUF_TYPE_FLOAT32] = "f32",
|
||||||
[GGUF_TYPE_BOOL] = "bool",
|
[GGUF_TYPE_BOOL] = "bool",
|
||||||
[GGUF_TYPE_STRING] = "string",
|
[GGUF_TYPE_STRING] = "str",
|
||||||
[GGUF_TYPE_ARRAY] = "array",
|
[GGUF_TYPE_ARRAY] = "arr",
|
||||||
};
|
};
|
||||||
|
static_assert(GGUF_TYPE_COUNT == 10, "GGUF_TYPE_COUNT != 10");
|
||||||
|
|
||||||
union gguf_value {
|
union gguf_value {
|
||||||
uint8_t uint8;
|
uint8_t uint8;
|
||||||
@ -19395,17 +19398,23 @@ static void gguf_buf_grow(struct gguf_buf * buf, size_t size) {
|
|||||||
static void gguf_bwrite_str(struct gguf_buf * buf, const struct gguf_str * val) {
|
static void gguf_bwrite_str(struct gguf_buf * buf, const struct gguf_str * val) {
|
||||||
gguf_buf_grow(buf, sizeof(val->n) + val->n);
|
gguf_buf_grow(buf, sizeof(val->n) + val->n);
|
||||||
|
|
||||||
buf->data && memcpy((char *) buf->data + buf->offset, &val->n, sizeof(val->n));
|
if (buf->data) {
|
||||||
|
memcpy((char *) buf->data + buf->offset, &val->n, sizeof(val->n));
|
||||||
|
}
|
||||||
buf->offset += sizeof(val->n);
|
buf->offset += sizeof(val->n);
|
||||||
|
|
||||||
buf->data && memcpy((char *) buf->data + buf->offset, val->data, val->n);
|
if (buf->data) {
|
||||||
|
memcpy((char *) buf->data + buf->offset, val->data, val->n);
|
||||||
|
}
|
||||||
buf->offset += val->n;
|
buf->offset += val->n;
|
||||||
}
|
}
|
||||||
|
|
||||||
static void gguf_bwrite_el(struct gguf_buf * buf, const void * val, size_t el_size) {
|
static void gguf_bwrite_el(struct gguf_buf * buf, const void * val, size_t el_size) {
|
||||||
gguf_buf_grow(buf, el_size);
|
gguf_buf_grow(buf, el_size);
|
||||||
|
|
||||||
buf->data && memcpy((char *) buf->data + buf->offset, val, el_size);
|
if (buf->data) {
|
||||||
|
memcpy((char *) buf->data + buf->offset, val, el_size);
|
||||||
|
}
|
||||||
buf->offset += el_size;
|
buf->offset += el_size;
|
||||||
}
|
}
|
||||||
|
|
||||||
|
4968
gguf-llama.cpp
4968
gguf-llama.cpp
File diff suppressed because it is too large
Load Diff
505
gguf-llama.h
505
gguf-llama.h
@ -1,505 +0,0 @@
|
|||||||
#ifndef LLAMA_H
|
|
||||||
#define LLAMA_H
|
|
||||||
|
|
||||||
#include "ggml.h"
|
|
||||||
#ifdef GGML_USE_CUBLAS
|
|
||||||
#include "ggml-cuda.h"
|
|
||||||
#define LLAMA_MAX_DEVICES GGML_CUDA_MAX_DEVICES
|
|
||||||
#else
|
|
||||||
#define LLAMA_MAX_DEVICES 1
|
|
||||||
#endif // GGML_USE_CUBLAS
|
|
||||||
#include <stddef.h>
|
|
||||||
#include <stdint.h>
|
|
||||||
#include <stdbool.h>
|
|
||||||
|
|
||||||
#ifdef LLAMA_SHARED
|
|
||||||
# if defined(_WIN32) && !defined(__MINGW32__)
|
|
||||||
# ifdef LLAMA_BUILD
|
|
||||||
# define LLAMA_API __declspec(dllexport)
|
|
||||||
# else
|
|
||||||
# define LLAMA_API __declspec(dllimport)
|
|
||||||
# endif
|
|
||||||
# else
|
|
||||||
# define LLAMA_API __attribute__ ((visibility ("default")))
|
|
||||||
# endif
|
|
||||||
#else
|
|
||||||
# define LLAMA_API
|
|
||||||
#endif
|
|
||||||
|
|
||||||
#ifdef __GNUC__
|
|
||||||
# define DEPRECATED(func, hint) func __attribute__((deprecated(hint)))
|
|
||||||
#elif defined(_MSC_VER)
|
|
||||||
# define DEPRECATED(func, hint) __declspec(deprecated(hint)) func
|
|
||||||
#else
|
|
||||||
# define DEPRECATED(func, hint) func
|
|
||||||
#endif
|
|
||||||
|
|
||||||
#define LLAMA_DEFAULT_SEED 0xFFFFFFFF
|
|
||||||
|
|
||||||
#if defined(GGML_USE_CUBLAS) || defined(GGML_USE_CLBLAST) || defined(GGML_USE_METAL)
|
|
||||||
// Defined when llama.cpp is compiled with support for offloading model layers to GPU.
|
|
||||||
#define LLAMA_SUPPORTS_GPU_OFFLOAD
|
|
||||||
#endif
|
|
||||||
|
|
||||||
#ifdef __cplusplus
|
|
||||||
extern "C" {
|
|
||||||
#endif
|
|
||||||
|
|
||||||
//
|
|
||||||
// C interface
|
|
||||||
//
|
|
||||||
// TODO: show sample usage
|
|
||||||
//
|
|
||||||
|
|
||||||
struct llama_model;
|
|
||||||
struct llama_context;
|
|
||||||
|
|
||||||
typedef int llama_token;
|
|
||||||
|
|
||||||
typedef struct llama_token_data {
|
|
||||||
llama_token id; // token id
|
|
||||||
float logit; // log-odds of the token
|
|
||||||
float p; // probability of the token
|
|
||||||
} llama_token_data;
|
|
||||||
|
|
||||||
typedef struct llama_token_data_array {
|
|
||||||
llama_token_data * data;
|
|
||||||
size_t size;
|
|
||||||
bool sorted;
|
|
||||||
} llama_token_data_array;
|
|
||||||
|
|
||||||
typedef void (*llama_progress_callback)(float progress, void *ctx);
|
|
||||||
|
|
||||||
enum llama_log_level {
|
|
||||||
LLAMA_LOG_LEVEL_ERROR = 2,
|
|
||||||
LLAMA_LOG_LEVEL_WARN = 3,
|
|
||||||
LLAMA_LOG_LEVEL_INFO = 4
|
|
||||||
};
|
|
||||||
|
|
||||||
// Signature for logging events
|
|
||||||
// Note that text includes the new line character at the end for most events.
|
|
||||||
// If your logging mechanism cannot handle that, check if the last character is '\n' and strip it
|
|
||||||
// if it exists.
|
|
||||||
// It might not exist for progress report where '.' is output repeatedly.
|
|
||||||
typedef void (*llama_log_callback)(enum llama_log_level level, const char * text, void * user_data);
|
|
||||||
|
|
||||||
struct llama_context_params {
|
|
||||||
uint32_t seed; // RNG seed, -1 for random
|
|
||||||
int32_t n_ctx; // text context
|
|
||||||
int32_t n_batch; // prompt processing batch size
|
|
||||||
int32_t n_gpu_layers; // number of layers to store in VRAM
|
|
||||||
int32_t main_gpu; // the GPU that is used for scratch and small tensors
|
|
||||||
|
|
||||||
const float * tensor_split; // how to split layers across multiple GPUs (size: LLAMA_MAX_DEVICES)
|
|
||||||
|
|
||||||
// ref: https://github.com/ggerganov/llama.cpp/pull/2054
|
|
||||||
float rope_freq_base; // RoPE base frequency
|
|
||||||
float rope_freq_scale; // RoPE frequency scaling factor
|
|
||||||
|
|
||||||
// called with a progress value between 0 and 1, pass NULL to disable
|
|
||||||
llama_progress_callback progress_callback;
|
|
||||||
// context pointer passed to the progress callback
|
|
||||||
void * progress_callback_user_data;
|
|
||||||
|
|
||||||
// Keep the booleans together to avoid misalignment during copy-by-value.
|
|
||||||
bool low_vram; // if true, reduce VRAM usage at the cost of performance
|
|
||||||
bool mul_mat_q; // if true, use experimental mul_mat_q kernels
|
|
||||||
bool f16_kv; // use fp16 for KV cache
|
|
||||||
bool logits_all; // the llama_eval() call computes all logits, not just the last one
|
|
||||||
bool vocab_only; // only load the vocabulary, no weights
|
|
||||||
bool use_mmap; // use mmap if possible
|
|
||||||
bool use_mlock; // force system to keep model in RAM
|
|
||||||
bool embedding; // embedding mode only
|
|
||||||
};
|
|
||||||
|
|
||||||
// model file types
|
|
||||||
enum llama_ftype {
|
|
||||||
LLAMA_FTYPE_ALL_F32 = 0,
|
|
||||||
LLAMA_FTYPE_MOSTLY_F16 = 1, // except 1d tensors
|
|
||||||
LLAMA_FTYPE_MOSTLY_Q4_0 = 2, // except 1d tensors
|
|
||||||
LLAMA_FTYPE_MOSTLY_Q4_1 = 3, // except 1d tensors
|
|
||||||
LLAMA_FTYPE_MOSTLY_Q4_1_SOME_F16 = 4, // tok_embeddings.weight and output.weight are F16
|
|
||||||
// LLAMA_FTYPE_MOSTLY_Q4_2 = 5, // support has been removed
|
|
||||||
// LLAMA_FTYPE_MOSTLY_Q4_3 = 6, // support has been removed
|
|
||||||
LLAMA_FTYPE_MOSTLY_Q8_0 = 7, // except 1d tensors
|
|
||||||
LLAMA_FTYPE_MOSTLY_Q5_0 = 8, // except 1d tensors
|
|
||||||
LLAMA_FTYPE_MOSTLY_Q5_1 = 9, // except 1d tensors
|
|
||||||
LLAMA_FTYPE_MOSTLY_Q2_K = 10,// except 1d tensors
|
|
||||||
LLAMA_FTYPE_MOSTLY_Q3_K_S = 11,// except 1d tensors
|
|
||||||
LLAMA_FTYPE_MOSTLY_Q3_K_M = 12,// except 1d tensors
|
|
||||||
LLAMA_FTYPE_MOSTLY_Q3_K_L = 13,// except 1d tensors
|
|
||||||
LLAMA_FTYPE_MOSTLY_Q4_K_S = 14,// except 1d tensors
|
|
||||||
LLAMA_FTYPE_MOSTLY_Q4_K_M = 15,// except 1d tensors
|
|
||||||
LLAMA_FTYPE_MOSTLY_Q5_K_S = 16,// except 1d tensors
|
|
||||||
LLAMA_FTYPE_MOSTLY_Q5_K_M = 17,// except 1d tensors
|
|
||||||
LLAMA_FTYPE_MOSTLY_Q6_K = 18,// except 1d tensors
|
|
||||||
};
|
|
||||||
|
|
||||||
// model quantization parameters
|
|
||||||
typedef struct llama_model_quantize_params {
|
|
||||||
int nthread; // number of threads to use for quantizing, if <=0 will use std::thread::hardware_concurrency()
|
|
||||||
enum llama_ftype ftype; // quantize to this llama_ftype
|
|
||||||
bool allow_requantize; // allow quantizing non-f32/f16 tensors
|
|
||||||
bool quantize_output_tensor; // quantize output.weight
|
|
||||||
} llama_model_quantize_params;
|
|
||||||
|
|
||||||
// grammar types
|
|
||||||
struct llama_grammar;
|
|
||||||
|
|
||||||
// grammar element type
|
|
||||||
enum llama_gretype {
|
|
||||||
// end of rule definition
|
|
||||||
LLAMA_GRETYPE_END = 0,
|
|
||||||
|
|
||||||
// start of alternate definition for rule
|
|
||||||
LLAMA_GRETYPE_ALT = 1,
|
|
||||||
|
|
||||||
// non-terminal element: reference to rule
|
|
||||||
LLAMA_GRETYPE_RULE_REF = 2,
|
|
||||||
|
|
||||||
// terminal element: character (code point)
|
|
||||||
LLAMA_GRETYPE_CHAR = 3,
|
|
||||||
|
|
||||||
// inverse char(s) ([^a], [^a-b] [^abc])
|
|
||||||
LLAMA_GRETYPE_CHAR_NOT = 4,
|
|
||||||
|
|
||||||
// modifies a preceding LLAMA_GRETYPE_CHAR or LLAMA_GRETYPE_CHAR_ALT to
|
|
||||||
// be an inclusive range ([a-z])
|
|
||||||
LLAMA_GRETYPE_CHAR_RNG_UPPER = 5,
|
|
||||||
|
|
||||||
// modifies a preceding LLAMA_GRETYPE_CHAR or
|
|
||||||
// LLAMA_GRETYPE_CHAR_RNG_UPPER to add an alternate char to match ([ab], [a-zA])
|
|
||||||
LLAMA_GRETYPE_CHAR_ALT = 6,
|
|
||||||
};
|
|
||||||
|
|
||||||
typedef struct llama_grammar_element {
|
|
||||||
enum llama_gretype type;
|
|
||||||
uint32_t value; // Unicode code point or rule ID
|
|
||||||
} llama_grammar_element;
|
|
||||||
|
|
||||||
// performance timing information
|
|
||||||
struct llama_timings {
|
|
||||||
double t_start_ms;
|
|
||||||
double t_end_ms;
|
|
||||||
double t_load_ms;
|
|
||||||
double t_sample_ms;
|
|
||||||
double t_p_eval_ms;
|
|
||||||
double t_eval_ms;
|
|
||||||
|
|
||||||
int32_t n_sample;
|
|
||||||
int32_t n_p_eval;
|
|
||||||
int32_t n_eval;
|
|
||||||
};
|
|
||||||
|
|
||||||
LLAMA_API struct llama_context_params llama_context_default_params(void);
|
|
||||||
LLAMA_API struct llama_model_quantize_params llama_model_quantize_default_params(void);
|
|
||||||
|
|
||||||
LLAMA_API int llama_max_devices(void);
|
|
||||||
LLAMA_API bool llama_mmap_supported(void);
|
|
||||||
LLAMA_API bool llama_mlock_supported(void);
|
|
||||||
|
|
||||||
// TODO: not great API - very likely to change
|
|
||||||
// Initialize the llama + ggml backend
|
|
||||||
// If numa is true, use NUMA optimizations
|
|
||||||
// Call once at the start of the program
|
|
||||||
LLAMA_API void llama_backend_init(bool numa);
|
|
||||||
// Call once at the end of the program - currently only used for MPI
|
|
||||||
LLAMA_API void llama_backend_free(void);
|
|
||||||
|
|
||||||
LLAMA_API int64_t llama_time_us(void);
|
|
||||||
|
|
||||||
LLAMA_API struct llama_model * llama_load_model_from_file(
|
|
||||||
const char * path_model,
|
|
||||||
struct llama_context_params params);
|
|
||||||
|
|
||||||
LLAMA_API void llama_free_model(struct llama_model * model);
|
|
||||||
|
|
||||||
LLAMA_API struct llama_context * llama_new_context_with_model(
|
|
||||||
struct llama_model * model,
|
|
||||||
struct llama_context_params params);
|
|
||||||
|
|
||||||
|
|
||||||
// Frees all allocated memory
|
|
||||||
LLAMA_API void llama_free(struct llama_context * ctx);
|
|
||||||
|
|
||||||
// Returns 0 on success
|
|
||||||
LLAMA_API int llama_model_quantize(
|
|
||||||
const char * fname_inp,
|
|
||||||
const char * fname_out,
|
|
||||||
const llama_model_quantize_params * params);
|
|
||||||
|
|
||||||
// Apply a LoRA adapter to a loaded model
|
|
||||||
// path_base_model is the path to a higher quality model to use as a base for
|
|
||||||
// the layers modified by the adapter. Can be NULL to use the current loaded model.
|
|
||||||
// The model needs to be reloaded before applying a new adapter, otherwise the adapter
|
|
||||||
// will be applied on top of the previous one
|
|
||||||
// Returns 0 on success
|
|
||||||
LLAMA_API DEPRECATED(int llama_apply_lora_from_file(
|
|
||||||
struct llama_context * ctx,
|
|
||||||
const char * path_lora,
|
|
||||||
const char * path_base_model,
|
|
||||||
int n_threads),
|
|
||||||
"please use llama_model_apply_lora_from_file instead");
|
|
||||||
|
|
||||||
LLAMA_API int llama_model_apply_lora_from_file(
|
|
||||||
const struct llama_model * model,
|
|
||||||
const char * path_lora,
|
|
||||||
const char * path_base_model,
|
|
||||||
int n_threads);
|
|
||||||
|
|
||||||
// Returns the number of tokens in the KV cache
|
|
||||||
LLAMA_API int llama_get_kv_cache_token_count(const struct llama_context * ctx);
|
|
||||||
|
|
||||||
// Sets the current rng seed.
|
|
||||||
LLAMA_API void llama_set_rng_seed(struct llama_context * ctx, uint32_t seed);
|
|
||||||
|
|
||||||
// Returns the maximum size in bytes of the state (rng, logits, embedding
|
|
||||||
// and kv_cache) - will often be smaller after compacting tokens
|
|
||||||
LLAMA_API size_t llama_get_state_size(const struct llama_context * ctx);
|
|
||||||
|
|
||||||
// Copies the state to the specified destination address.
|
|
||||||
// Destination needs to have allocated enough memory.
|
|
||||||
// Returns the number of bytes copied
|
|
||||||
LLAMA_API size_t llama_copy_state_data(struct llama_context * ctx, uint8_t * dst);
|
|
||||||
|
|
||||||
// Set the state reading from the specified address
|
|
||||||
// Returns the number of bytes read
|
|
||||||
LLAMA_API size_t llama_set_state_data(struct llama_context * ctx, uint8_t * src);
|
|
||||||
|
|
||||||
// Save/load session file
|
|
||||||
LLAMA_API bool llama_load_session_file(struct llama_context * ctx, const char * path_session, llama_token * tokens_out, size_t n_token_capacity, size_t * n_token_count_out);
|
|
||||||
LLAMA_API bool llama_save_session_file(struct llama_context * ctx, const char * path_session, const llama_token * tokens, size_t n_token_count);
|
|
||||||
|
|
||||||
// Run the llama inference to obtain the logits and probabilities for the next token.
|
|
||||||
// tokens + n_tokens is the provided batch of new tokens to process
|
|
||||||
// n_past is the number of tokens to use from previous eval calls
|
|
||||||
// Returns 0 on success
|
|
||||||
LLAMA_API int llama_eval(
|
|
||||||
struct llama_context * ctx,
|
|
||||||
const llama_token * tokens,
|
|
||||||
int n_tokens,
|
|
||||||
int n_past,
|
|
||||||
int n_threads);
|
|
||||||
|
|
||||||
// Same as llama_eval, but use float matrix input directly.
|
|
||||||
LLAMA_API int llama_eval_embd(
|
|
||||||
struct llama_context * ctx,
|
|
||||||
const float * embd,
|
|
||||||
int n_tokens,
|
|
||||||
int n_past,
|
|
||||||
int n_threads);
|
|
||||||
|
|
||||||
// Export a static computation graph for context of 511 and batch size of 1
|
|
||||||
// NOTE: since this functionality is mostly for debugging and demonstration purposes, we hardcode these
|
|
||||||
// parameters here to keep things simple
|
|
||||||
// IMPORTANT: do not use for anything else other than debugging and testing!
|
|
||||||
LLAMA_API int llama_eval_export(struct llama_context * ctx, const char * fname);
|
|
||||||
|
|
||||||
// Convert the provided text into tokens.
|
|
||||||
// The tokens pointer must be large enough to hold the resulting tokens.
|
|
||||||
// Returns the number of tokens on success, no more than n_max_tokens
|
|
||||||
// Returns a negative number on failure - the number of tokens that would have been returned
|
|
||||||
// TODO: not sure if correct
|
|
||||||
LLAMA_API int llama_tokenize(
|
|
||||||
struct llama_context * ctx,
|
|
||||||
const char * text,
|
|
||||||
llama_token * tokens,
|
|
||||||
int n_max_tokens,
|
|
||||||
bool add_bos);
|
|
||||||
|
|
||||||
LLAMA_API int llama_tokenize_bpe(
|
|
||||||
struct llama_context * ctx,
|
|
||||||
const char * text,
|
|
||||||
llama_token * tokens,
|
|
||||||
int n_max_tokens,
|
|
||||||
bool add_bos);
|
|
||||||
|
|
||||||
LLAMA_API int llama_tokenize_with_model(
|
|
||||||
const struct llama_model * model,
|
|
||||||
const char * text,
|
|
||||||
llama_token * tokens,
|
|
||||||
int n_max_tokens,
|
|
||||||
bool add_bos);
|
|
||||||
|
|
||||||
LLAMA_API int llama_n_vocab(const struct llama_context * ctx);
|
|
||||||
LLAMA_API int llama_n_ctx (const struct llama_context * ctx);
|
|
||||||
LLAMA_API int llama_n_embd (const struct llama_context * ctx);
|
|
||||||
|
|
||||||
LLAMA_API int llama_n_vocab_from_model(const struct llama_model * model);
|
|
||||||
LLAMA_API int llama_n_ctx_from_model (const struct llama_model * model);
|
|
||||||
LLAMA_API int llama_n_embd_from_model (const struct llama_model * model);
|
|
||||||
|
|
||||||
// Get the vocabulary as output parameters.
|
|
||||||
// Returns number of results.
|
|
||||||
LLAMA_API int llama_get_vocab(
|
|
||||||
const struct llama_context * ctx,
|
|
||||||
const char * * strings,
|
|
||||||
float * scores,
|
|
||||||
int capacity);
|
|
||||||
|
|
||||||
LLAMA_API int llama_get_vocab_from_model(
|
|
||||||
const struct llama_model * model,
|
|
||||||
const char * * strings,
|
|
||||||
float * scores,
|
|
||||||
int capacity);
|
|
||||||
|
|
||||||
// Token logits obtained from the last call to llama_eval()
|
|
||||||
// The logits for the last token are stored in the last row
|
|
||||||
// Can be mutated in order to change the probabilities of the next token
|
|
||||||
// Rows: n_tokens
|
|
||||||
// Cols: n_vocab
|
|
||||||
LLAMA_API float * llama_get_logits(struct llama_context * ctx);
|
|
||||||
|
|
||||||
// Get the embeddings for the input
|
|
||||||
// shape: [n_embd] (1-dimensional)
|
|
||||||
LLAMA_API float * llama_get_embeddings(struct llama_context * ctx);
|
|
||||||
|
|
||||||
// Token Id -> String. Uses the vocabulary in the provided context
|
|
||||||
LLAMA_API int llama_token_to_str(
|
|
||||||
const struct llama_context * ctx,
|
|
||||||
llama_token token,
|
|
||||||
char * str,
|
|
||||||
int length);
|
|
||||||
|
|
||||||
LLAMA_API int llama_token_to_str_bpe(
|
|
||||||
const struct llama_context * ctx,
|
|
||||||
llama_token token,
|
|
||||||
char * str,
|
|
||||||
int length);
|
|
||||||
|
|
||||||
LLAMA_API int llama_token_to_str_with_model(
|
|
||||||
const struct llama_model * model,
|
|
||||||
llama_token token,
|
|
||||||
char * str,
|
|
||||||
int length);
|
|
||||||
// Special tokens
|
|
||||||
LLAMA_API llama_token llama_token_bos(void); // beginning-of-sentence
|
|
||||||
LLAMA_API llama_token llama_token_eos(void); // end-of-sentence
|
|
||||||
LLAMA_API llama_token llama_token_nl(void); // next-line
|
|
||||||
|
|
||||||
// Grammar
|
|
||||||
//
|
|
||||||
LLAMA_API struct llama_grammar * llama_grammar_init(
|
|
||||||
const llama_grammar_element ** rules,
|
|
||||||
size_t n_rules,
|
|
||||||
size_t start_rule_index);
|
|
||||||
|
|
||||||
LLAMA_API void llama_grammar_free(struct llama_grammar * grammar);
|
|
||||||
|
|
||||||
// Sampling functions
|
|
||||||
|
|
||||||
/// @details Repetition penalty described in CTRL academic paper https://arxiv.org/abs/1909.05858, with negative logit fix.
|
|
||||||
LLAMA_API void llama_sample_repetition_penalty(struct llama_context * ctx, llama_token_data_array * candidates, const llama_token * last_tokens, size_t last_tokens_size, float penalty);
|
|
||||||
|
|
||||||
/// @details Frequency and presence penalties described in OpenAI API https://platform.openai.com/docs/api-reference/parameter-details.
|
|
||||||
LLAMA_API void llama_sample_frequency_and_presence_penalties(struct llama_context * ctx, llama_token_data_array * candidates, const llama_token * last_tokens, size_t last_tokens_size, float alpha_frequency, float alpha_presence);
|
|
||||||
|
|
||||||
/// @details Apply classifier-free guidance to the logits as described in academic paper "Stay on topic with Classifier-Free Guidance" https://arxiv.org/abs/2306.17806
|
|
||||||
/// @param candidates A vector of `llama_token_data` containing the candidate tokens, the logits must be directly extracted from the original generation context without being sorted.
|
|
||||||
/// @params guidance_ctx A separate context from the same model. Other than a negative prompt at the beginning, it should have all generated and user input tokens copied from the main context.
|
|
||||||
/// @params scale Guidance strength. 1.0f means no guidance. Higher values mean stronger guidance.
|
|
||||||
LLAMA_API void llama_sample_classifier_free_guidance(
|
|
||||||
struct llama_context * ctx,
|
|
||||||
llama_token_data_array * candidates,
|
|
||||||
struct llama_context * guidance_ctx,
|
|
||||||
float scale);
|
|
||||||
|
|
||||||
/// @details Sorts candidate tokens by their logits in descending order and calculate probabilities based on logits.
|
|
||||||
LLAMA_API void llama_sample_softmax(struct llama_context * ctx, llama_token_data_array * candidates);
|
|
||||||
|
|
||||||
/// @details Top-K sampling described in academic paper "The Curious Case of Neural Text Degeneration" https://arxiv.org/abs/1904.09751
|
|
||||||
LLAMA_API void llama_sample_top_k(struct llama_context * ctx, llama_token_data_array * candidates, int k, size_t min_keep);
|
|
||||||
|
|
||||||
/// @details Nucleus sampling described in academic paper "The Curious Case of Neural Text Degeneration" https://arxiv.org/abs/1904.09751
|
|
||||||
LLAMA_API void llama_sample_top_p(struct llama_context * ctx, llama_token_data_array * candidates, float p, size_t min_keep);
|
|
||||||
|
|
||||||
/// @details Tail Free Sampling described in https://www.trentonbricken.com/Tail-Free-Sampling/.
|
|
||||||
LLAMA_API void llama_sample_tail_free(struct llama_context * ctx, llama_token_data_array * candidates, float z, size_t min_keep);
|
|
||||||
|
|
||||||
/// @details Locally Typical Sampling implementation described in the paper https://arxiv.org/abs/2202.00666.
|
|
||||||
LLAMA_API void llama_sample_typical(struct llama_context * ctx, llama_token_data_array * candidates, float p, size_t min_keep);
|
|
||||||
LLAMA_API void llama_sample_temperature(struct llama_context * ctx, llama_token_data_array * candidates, float temp);
|
|
||||||
|
|
||||||
/// @details Apply constraints from grammar
|
|
||||||
LLAMA_API void llama_sample_grammar(struct llama_context * ctx, llama_token_data_array * candidates, const struct llama_grammar * grammar);
|
|
||||||
|
|
||||||
/// @details Mirostat 1.0 algorithm described in the paper https://arxiv.org/abs/2007.14966. Uses tokens instead of words.
|
|
||||||
/// @param candidates A vector of `llama_token_data` containing the candidate tokens, their probabilities (p), and log-odds (logit) for the current position in the generated text.
|
|
||||||
/// @param tau The target cross-entropy (or surprise) value you want to achieve for the generated text. A higher value corresponds to more surprising or less predictable text, while a lower value corresponds to less surprising or more predictable text.
|
|
||||||
/// @param eta The learning rate used to update `mu` based on the error between the target and observed surprisal of the sampled word. A larger learning rate will cause `mu` to be updated more quickly, while a smaller learning rate will result in slower updates.
|
|
||||||
/// @param m The number of tokens considered in the estimation of `s_hat`. This is an arbitrary value that is used to calculate `s_hat`, which in turn helps to calculate the value of `k`. In the paper, they use `m = 100`, but you can experiment with different values to see how it affects the performance of the algorithm.
|
|
||||||
/// @param mu Maximum cross-entropy. This value is initialized to be twice the target cross-entropy (`2 * tau`) and is updated in the algorithm based on the error between the target and observed surprisal.
|
|
||||||
LLAMA_API llama_token llama_sample_token_mirostat(struct llama_context * ctx, llama_token_data_array * candidates, float tau, float eta, int m, float * mu);
|
|
||||||
|
|
||||||
/// @details Mirostat 2.0 algorithm described in the paper https://arxiv.org/abs/2007.14966. Uses tokens instead of words.
|
|
||||||
/// @param candidates A vector of `llama_token_data` containing the candidate tokens, their probabilities (p), and log-odds (logit) for the current position in the generated text.
|
|
||||||
/// @param tau The target cross-entropy (or surprise) value you want to achieve for the generated text. A higher value corresponds to more surprising or less predictable text, while a lower value corresponds to less surprising or more predictable text.
|
|
||||||
/// @param eta The learning rate used to update `mu` based on the error between the target and observed surprisal of the sampled word. A larger learning rate will cause `mu` to be updated more quickly, while a smaller learning rate will result in slower updates.
|
|
||||||
/// @param mu Maximum cross-entropy. This value is initialized to be twice the target cross-entropy (`2 * tau`) and is updated in the algorithm based on the error between the target and observed surprisal.
|
|
||||||
LLAMA_API llama_token llama_sample_token_mirostat_v2(struct llama_context * ctx, llama_token_data_array * candidates, float tau, float eta, float * mu);
|
|
||||||
|
|
||||||
/// @details Selects the token with the highest probability.
|
|
||||||
LLAMA_API llama_token llama_sample_token_greedy(struct llama_context * ctx, llama_token_data_array * candidates);
|
|
||||||
|
|
||||||
/// @details Randomly selects a token from the candidates based on their probabilities.
|
|
||||||
LLAMA_API llama_token llama_sample_token(struct llama_context * ctx, llama_token_data_array * candidates);
|
|
||||||
|
|
||||||
/// @details Accepts the sampled token into the grammar
|
|
||||||
LLAMA_API void llama_grammar_accept_token(struct llama_context * ctx, struct llama_grammar * grammar, llama_token token);
|
|
||||||
|
|
||||||
// Performance information
|
|
||||||
LLAMA_API struct llama_timings llama_get_timings(struct llama_context * ctx);
|
|
||||||
LLAMA_API void llama_print_timings(struct llama_context * ctx);
|
|
||||||
LLAMA_API void llama_reset_timings(struct llama_context * ctx);
|
|
||||||
|
|
||||||
// Print system information
|
|
||||||
LLAMA_API const char * llama_print_system_info(void);
|
|
||||||
|
|
||||||
// Set callback for all future logging events.
|
|
||||||
// If this is not called, or NULL is supplied, everything is output on stderr.
|
|
||||||
LLAMA_API void llama_log_set(llama_log_callback log_callback, void * user_data);
|
|
||||||
|
|
||||||
#ifdef __cplusplus
|
|
||||||
}
|
|
||||||
#endif
|
|
||||||
|
|
||||||
// C++ API, will be moving to common.h soon (TM)
|
|
||||||
#ifdef LLAMA_API_CPP
|
|
||||||
|
|
||||||
#include <vector>
|
|
||||||
#include <string>
|
|
||||||
|
|
||||||
//
|
|
||||||
// Vocab utils
|
|
||||||
//
|
|
||||||
|
|
||||||
std::vector<llama_token> llama_tokenize(
|
|
||||||
struct llama_context * ctx,
|
|
||||||
const std::string & text,
|
|
||||||
bool add_bos);
|
|
||||||
|
|
||||||
std::vector<llama_token> llama_tokenize_bpe(
|
|
||||||
struct llama_context * ctx,
|
|
||||||
const std::string & text,
|
|
||||||
bool add_bos);
|
|
||||||
|
|
||||||
std::string llama_token_to_str(
|
|
||||||
const struct llama_context * ctx,
|
|
||||||
llama_token token);
|
|
||||||
|
|
||||||
std::string llama_token_to_str_bpe(
|
|
||||||
const struct llama_context * ctx,
|
|
||||||
llama_token token);
|
|
||||||
|
|
||||||
// Internal API to be implemented by llama.cpp and used by tests/benchmarks only
|
|
||||||
#ifdef LLAMA_API_INTERNAL
|
|
||||||
|
|
||||||
struct ggml_tensor;
|
|
||||||
|
|
||||||
const std::vector<std::pair<std::string, struct ggml_tensor *>>& llama_internal_get_tensor_map(struct llama_context * ctx);
|
|
||||||
|
|
||||||
#endif // LLAMA_API_CPP
|
|
||||||
|
|
||||||
#endif // LLAMA_API_INTERNAL
|
|
||||||
|
|
||||||
#endif // LLAMA_H
|
|
553
llama-util.h
553
llama-util.h
@ -1,553 +0,0 @@
|
|||||||
// Internal header to be included only by llama.cpp.
|
|
||||||
// Contains wrappers around OS interfaces.
|
|
||||||
|
|
||||||
#ifndef LLAMA_UTIL_H
|
|
||||||
#define LLAMA_UTIL_H
|
|
||||||
|
|
||||||
#include <cstdio>
|
|
||||||
#include <cstdint>
|
|
||||||
#include <cerrno>
|
|
||||||
#include <cstring>
|
|
||||||
#include <cstdarg>
|
|
||||||
#include <cstdlib>
|
|
||||||
#include <climits>
|
|
||||||
|
|
||||||
#include <string>
|
|
||||||
#include <vector>
|
|
||||||
#include <stdexcept>
|
|
||||||
|
|
||||||
#ifdef __has_include
|
|
||||||
#if __has_include(<unistd.h>)
|
|
||||||
#include <unistd.h>
|
|
||||||
#if defined(_POSIX_MAPPED_FILES)
|
|
||||||
#include <sys/mman.h>
|
|
||||||
#endif
|
|
||||||
#if defined(_POSIX_MEMLOCK_RANGE)
|
|
||||||
#include <sys/resource.h>
|
|
||||||
#endif
|
|
||||||
#endif
|
|
||||||
#endif
|
|
||||||
|
|
||||||
#if defined(_WIN32)
|
|
||||||
#define WIN32_LEAN_AND_MEAN
|
|
||||||
#ifndef NOMINMAX
|
|
||||||
#define NOMINMAX
|
|
||||||
#endif
|
|
||||||
#include <windows.h>
|
|
||||||
#include <io.h>
|
|
||||||
#include <stdio.h> // for _fseeki64
|
|
||||||
#endif
|
|
||||||
|
|
||||||
#define LLAMA_ASSERT(x) \
|
|
||||||
do { \
|
|
||||||
if (!(x)) { \
|
|
||||||
fprintf(stderr, "LLAMA_ASSERT: %s:%d: %s\n", __FILE__, __LINE__, #x); \
|
|
||||||
abort(); \
|
|
||||||
} \
|
|
||||||
} while (0)
|
|
||||||
|
|
||||||
#ifdef __GNUC__
|
|
||||||
#ifdef __MINGW32__
|
|
||||||
__attribute__((format(gnu_printf, 1, 2)))
|
|
||||||
#else
|
|
||||||
__attribute__((format(printf, 1, 2)))
|
|
||||||
#endif
|
|
||||||
#endif
|
|
||||||
static std::string format(const char * fmt, ...) {
|
|
||||||
va_list ap, ap2;
|
|
||||||
va_start(ap, fmt);
|
|
||||||
va_copy(ap2, ap);
|
|
||||||
int size = vsnprintf(NULL, 0, fmt, ap);
|
|
||||||
LLAMA_ASSERT(size >= 0 && size < INT_MAX);
|
|
||||||
std::vector<char> buf(size + 1);
|
|
||||||
int size2 = vsnprintf(buf.data(), size + 1, fmt, ap2);
|
|
||||||
LLAMA_ASSERT(size2 == size);
|
|
||||||
va_end(ap2);
|
|
||||||
va_end(ap);
|
|
||||||
return std::string(buf.data(), size);
|
|
||||||
}
|
|
||||||
|
|
||||||
struct llama_file {
|
|
||||||
// use FILE * so we don't have to re-open the file to mmap
|
|
||||||
FILE * fp;
|
|
||||||
size_t size;
|
|
||||||
|
|
||||||
llama_file(const char * fname, const char * mode) {
|
|
||||||
fp = std::fopen(fname, mode);
|
|
||||||
if (fp == NULL) {
|
|
||||||
throw std::runtime_error(format("failed to open %s: %s", fname, strerror(errno)));
|
|
||||||
}
|
|
||||||
seek(0, SEEK_END);
|
|
||||||
size = tell();
|
|
||||||
seek(0, SEEK_SET);
|
|
||||||
}
|
|
||||||
|
|
||||||
size_t tell() const {
|
|
||||||
#ifdef _WIN32
|
|
||||||
__int64 ret = _ftelli64(fp);
|
|
||||||
#else
|
|
||||||
long ret = std::ftell(fp);
|
|
||||||
#endif
|
|
||||||
LLAMA_ASSERT(ret != -1); // this really shouldn't fail
|
|
||||||
return (size_t) ret;
|
|
||||||
}
|
|
||||||
|
|
||||||
void seek(size_t offset, int whence) {
|
|
||||||
#ifdef _WIN32
|
|
||||||
int ret = _fseeki64(fp, (__int64) offset, whence);
|
|
||||||
#else
|
|
||||||
int ret = std::fseek(fp, (long) offset, whence);
|
|
||||||
#endif
|
|
||||||
LLAMA_ASSERT(ret == 0); // same
|
|
||||||
}
|
|
||||||
|
|
||||||
void read_raw(void * ptr, size_t len) const {
|
|
||||||
if (len == 0) {
|
|
||||||
return;
|
|
||||||
}
|
|
||||||
errno = 0;
|
|
||||||
std::size_t ret = std::fread(ptr, len, 1, fp);
|
|
||||||
if (ferror(fp)) {
|
|
||||||
throw std::runtime_error(format("read error: %s", strerror(errno)));
|
|
||||||
}
|
|
||||||
if (ret != 1) {
|
|
||||||
throw std::runtime_error(std::string("unexpectedly reached end of file"));
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
std::uint32_t read_u32() {
|
|
||||||
std::uint32_t ret;
|
|
||||||
read_raw(&ret, sizeof(ret));
|
|
||||||
return ret;
|
|
||||||
}
|
|
||||||
|
|
||||||
std::string read_string(std::uint32_t len) {
|
|
||||||
std::vector<char> chars(len);
|
|
||||||
read_raw(chars.data(), len);
|
|
||||||
return std::string(chars.data(), len);
|
|
||||||
}
|
|
||||||
|
|
||||||
void write_raw(const void * ptr, size_t len) const {
|
|
||||||
if (len == 0) {
|
|
||||||
return;
|
|
||||||
}
|
|
||||||
errno = 0;
|
|
||||||
size_t ret = std::fwrite(ptr, len, 1, fp);
|
|
||||||
if (ret != 1) {
|
|
||||||
throw std::runtime_error(format("write error: %s", strerror(errno)));
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
void write_u32(std::uint32_t val) {
|
|
||||||
write_raw(&val, sizeof(val));
|
|
||||||
}
|
|
||||||
|
|
||||||
~llama_file() {
|
|
||||||
if (fp) {
|
|
||||||
std::fclose(fp);
|
|
||||||
}
|
|
||||||
}
|
|
||||||
};
|
|
||||||
|
|
||||||
// llama_context_data
|
|
||||||
struct llama_data_context {
|
|
||||||
virtual void write(const void * src, size_t size) = 0;
|
|
||||||
virtual size_t get_size_written() = 0;
|
|
||||||
virtual ~llama_data_context() = default;
|
|
||||||
};
|
|
||||||
|
|
||||||
struct llama_data_buffer_context : llama_data_context {
|
|
||||||
uint8_t* ptr;
|
|
||||||
size_t size_written = 0;
|
|
||||||
|
|
||||||
llama_data_buffer_context(uint8_t * p) : ptr(p) {}
|
|
||||||
|
|
||||||
void write(const void * src, size_t size) override {
|
|
||||||
memcpy(ptr, src, size);
|
|
||||||
ptr += size;
|
|
||||||
size_written += size;
|
|
||||||
}
|
|
||||||
|
|
||||||
size_t get_size_written() override {
|
|
||||||
return size_written;
|
|
||||||
}
|
|
||||||
};
|
|
||||||
|
|
||||||
struct llama_data_file_context : llama_data_context {
|
|
||||||
llama_file* file;
|
|
||||||
size_t size_written = 0;
|
|
||||||
|
|
||||||
llama_data_file_context(llama_file * f) : file(f) {}
|
|
||||||
|
|
||||||
void write(const void * src, size_t size) override {
|
|
||||||
file->write_raw(src, size);
|
|
||||||
size_written += size;
|
|
||||||
}
|
|
||||||
|
|
||||||
size_t get_size_written() override {
|
|
||||||
return size_written;
|
|
||||||
}
|
|
||||||
};
|
|
||||||
|
|
||||||
#if defined(_WIN32)
|
|
||||||
static std::string llama_format_win_err(DWORD err) {
|
|
||||||
LPSTR buf;
|
|
||||||
size_t size = FormatMessageA(FORMAT_MESSAGE_ALLOCATE_BUFFER | FORMAT_MESSAGE_FROM_SYSTEM | FORMAT_MESSAGE_IGNORE_INSERTS,
|
|
||||||
NULL, err, MAKELANGID(LANG_NEUTRAL, SUBLANG_DEFAULT), (LPSTR)&buf, 0, NULL);
|
|
||||||
if (!size) {
|
|
||||||
return "FormatMessageA failed";
|
|
||||||
}
|
|
||||||
std::string ret(buf, size);
|
|
||||||
LocalFree(buf);
|
|
||||||
return ret;
|
|
||||||
}
|
|
||||||
#endif
|
|
||||||
|
|
||||||
struct llama_mmap {
|
|
||||||
void * addr;
|
|
||||||
size_t size;
|
|
||||||
|
|
||||||
llama_mmap(const llama_mmap &) = delete;
|
|
||||||
|
|
||||||
#ifdef _POSIX_MAPPED_FILES
|
|
||||||
static constexpr bool SUPPORTED = true;
|
|
||||||
|
|
||||||
llama_mmap(struct llama_file * file, size_t prefetch = (size_t) -1 /* -1 = max value */, bool numa = false) {
|
|
||||||
size = file->size;
|
|
||||||
int fd = fileno(file->fp);
|
|
||||||
int flags = MAP_SHARED;
|
|
||||||
// prefetch/readahead impairs performance on NUMA systems
|
|
||||||
if (numa) { prefetch = 0; }
|
|
||||||
#ifdef __linux__
|
|
||||||
if (prefetch >= file->size) { flags |= MAP_POPULATE; }
|
|
||||||
#endif
|
|
||||||
addr = mmap(NULL, file->size, PROT_READ, flags, fd, 0);
|
|
||||||
if (addr == MAP_FAILED) {
|
|
||||||
throw std::runtime_error(format("mmap failed: %s", strerror(errno)));
|
|
||||||
}
|
|
||||||
|
|
||||||
if (prefetch > 0) {
|
|
||||||
// Advise the kernel to preload the mapped memory
|
|
||||||
if (madvise(addr, std::min(file->size, prefetch), MADV_WILLNEED)) {
|
|
||||||
fprintf(stderr, "warning: madvise(.., MADV_WILLNEED) failed: %s\n",
|
|
||||||
strerror(errno));
|
|
||||||
}
|
|
||||||
}
|
|
||||||
if (numa) {
|
|
||||||
// advise the kernel not to use readahead
|
|
||||||
// (because the next page might not belong on the same node)
|
|
||||||
if (madvise(addr, file->size, MADV_RANDOM)) {
|
|
||||||
fprintf(stderr, "warning: madvise(.., MADV_RANDOM) failed: %s\n",
|
|
||||||
strerror(errno));
|
|
||||||
}
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
~llama_mmap() {
|
|
||||||
munmap(addr, size);
|
|
||||||
}
|
|
||||||
#elif defined(_WIN32)
|
|
||||||
static constexpr bool SUPPORTED = true;
|
|
||||||
|
|
||||||
llama_mmap(struct llama_file * file, bool prefetch = true, bool numa = false) {
|
|
||||||
(void) numa;
|
|
||||||
|
|
||||||
size = file->size;
|
|
||||||
|
|
||||||
HANDLE hFile = (HANDLE) _get_osfhandle(_fileno(file->fp));
|
|
||||||
|
|
||||||
HANDLE hMapping = CreateFileMappingA(hFile, NULL, PAGE_READONLY, 0, 0, NULL);
|
|
||||||
DWORD error = GetLastError();
|
|
||||||
|
|
||||||
if (hMapping == NULL) {
|
|
||||||
throw std::runtime_error(format("CreateFileMappingA failed: %s", llama_format_win_err(error).c_str()));
|
|
||||||
}
|
|
||||||
|
|
||||||
addr = MapViewOfFile(hMapping, FILE_MAP_READ, 0, 0, 0);
|
|
||||||
error = GetLastError();
|
|
||||||
CloseHandle(hMapping);
|
|
||||||
|
|
||||||
if (addr == NULL) {
|
|
||||||
throw std::runtime_error(format("MapViewOfFile failed: %s", llama_format_win_err(error).c_str()));
|
|
||||||
}
|
|
||||||
|
|
||||||
if (prefetch) {
|
|
||||||
// The PrefetchVirtualMemory API is only present on Windows 8 and above, so we
|
|
||||||
// will dynamically load it using GetProcAddress.
|
|
||||||
BOOL (WINAPI *pPrefetchVirtualMemory) (HANDLE, ULONG_PTR, PWIN32_MEMORY_RANGE_ENTRY, ULONG);
|
|
||||||
HMODULE hKernel32;
|
|
||||||
|
|
||||||
// This call is guaranteed to succeed.
|
|
||||||
hKernel32 = GetModuleHandleW(L"kernel32.dll");
|
|
||||||
|
|
||||||
// This call may fail if on a pre-Win8 system.
|
|
||||||
pPrefetchVirtualMemory = reinterpret_cast<decltype(pPrefetchVirtualMemory)> (GetProcAddress(hKernel32, "PrefetchVirtualMemory"));
|
|
||||||
|
|
||||||
if (pPrefetchVirtualMemory) {
|
|
||||||
// Advise the kernel to preload the mapped memory.
|
|
||||||
WIN32_MEMORY_RANGE_ENTRY range;
|
|
||||||
range.VirtualAddress = addr;
|
|
||||||
range.NumberOfBytes = (SIZE_T)size;
|
|
||||||
if (!pPrefetchVirtualMemory(GetCurrentProcess(), 1, &range, 0)) {
|
|
||||||
fprintf(stderr, "warning: PrefetchVirtualMemory failed: %s\n",
|
|
||||||
llama_format_win_err(GetLastError()).c_str());
|
|
||||||
}
|
|
||||||
}
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
~llama_mmap() {
|
|
||||||
if (!UnmapViewOfFile(addr)) {
|
|
||||||
fprintf(stderr, "warning: UnmapViewOfFile failed: %s\n",
|
|
||||||
llama_format_win_err(GetLastError()).c_str());
|
|
||||||
}
|
|
||||||
}
|
|
||||||
#else
|
|
||||||
static constexpr bool SUPPORTED = false;
|
|
||||||
|
|
||||||
llama_mmap(struct llama_file *, bool prefetch = true, bool numa = false) {
|
|
||||||
(void) prefetch;
|
|
||||||
(void) numa;
|
|
||||||
|
|
||||||
throw std::runtime_error(std::string("mmap not supported"));
|
|
||||||
}
|
|
||||||
#endif
|
|
||||||
};
|
|
||||||
|
|
||||||
// Represents some region of memory being locked using mlock or VirtualLock;
|
|
||||||
// will automatically unlock on destruction.
|
|
||||||
struct llama_mlock {
|
|
||||||
void * addr = NULL;
|
|
||||||
size_t size = 0;
|
|
||||||
bool failed_already = false;
|
|
||||||
|
|
||||||
llama_mlock() {}
|
|
||||||
llama_mlock(const llama_mlock &) = delete;
|
|
||||||
|
|
||||||
~llama_mlock() {
|
|
||||||
if (size) {
|
|
||||||
raw_unlock(addr, size);
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
void init(void * ptr) {
|
|
||||||
LLAMA_ASSERT(addr == NULL && size == 0);
|
|
||||||
addr = ptr;
|
|
||||||
}
|
|
||||||
|
|
||||||
void grow_to(size_t target_size) {
|
|
||||||
LLAMA_ASSERT(addr);
|
|
||||||
if (failed_already) {
|
|
||||||
return;
|
|
||||||
}
|
|
||||||
size_t granularity = lock_granularity();
|
|
||||||
target_size = (target_size + granularity - 1) & ~(granularity - 1);
|
|
||||||
if (target_size > size) {
|
|
||||||
if (raw_lock((uint8_t *) addr + size, target_size - size)) {
|
|
||||||
size = target_size;
|
|
||||||
} else {
|
|
||||||
failed_already = true;
|
|
||||||
}
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
#ifdef _POSIX_MEMLOCK_RANGE
|
|
||||||
static constexpr bool SUPPORTED = true;
|
|
||||||
|
|
||||||
size_t lock_granularity() {
|
|
||||||
return (size_t) sysconf(_SC_PAGESIZE);
|
|
||||||
}
|
|
||||||
|
|
||||||
#ifdef __APPLE__
|
|
||||||
#define MLOCK_SUGGESTION \
|
|
||||||
"Try increasing the sysctl values 'vm.user_wire_limit' and 'vm.global_user_wire_limit' and/or " \
|
|
||||||
"decreasing 'vm.global_no_user_wire_amount'. Also try increasing RLIMIT_MLOCK (ulimit -l).\n"
|
|
||||||
#else
|
|
||||||
#define MLOCK_SUGGESTION \
|
|
||||||
"Try increasing RLIMIT_MLOCK ('ulimit -l' as root).\n"
|
|
||||||
#endif
|
|
||||||
|
|
||||||
bool raw_lock(const void * addr, size_t size) {
|
|
||||||
if (!mlock(addr, size)) {
|
|
||||||
return true;
|
|
||||||
} else {
|
|
||||||
char* errmsg = std::strerror(errno);
|
|
||||||
bool suggest = (errno == ENOMEM);
|
|
||||||
|
|
||||||
// Check if the resource limit is fine after all
|
|
||||||
struct rlimit lock_limit;
|
|
||||||
if (suggest && getrlimit(RLIMIT_MEMLOCK, &lock_limit))
|
|
||||||
suggest = false;
|
|
||||||
if (suggest && (lock_limit.rlim_max > lock_limit.rlim_cur + size))
|
|
||||||
suggest = false;
|
|
||||||
|
|
||||||
fprintf(stderr, "warning: failed to mlock %zu-byte buffer (after previously locking %zu bytes): %s\n%s",
|
|
||||||
size, this->size, errmsg, suggest ? MLOCK_SUGGESTION : "");
|
|
||||||
return false;
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
#undef MLOCK_SUGGESTION
|
|
||||||
|
|
||||||
void raw_unlock(void * addr, size_t size) {
|
|
||||||
if (munlock(addr, size)) {
|
|
||||||
fprintf(stderr, "warning: failed to munlock buffer: %s\n", std::strerror(errno));
|
|
||||||
}
|
|
||||||
}
|
|
||||||
#elif defined(_WIN32)
|
|
||||||
static constexpr bool SUPPORTED = true;
|
|
||||||
|
|
||||||
size_t lock_granularity() {
|
|
||||||
SYSTEM_INFO si;
|
|
||||||
GetSystemInfo(&si);
|
|
||||||
return (size_t) si.dwPageSize;
|
|
||||||
}
|
|
||||||
|
|
||||||
bool raw_lock(void * ptr, size_t len) {
|
|
||||||
for (int tries = 1; ; tries++) {
|
|
||||||
if (VirtualLock(ptr, len)) {
|
|
||||||
return true;
|
|
||||||
}
|
|
||||||
if (tries == 2) {
|
|
||||||
fprintf(stderr, "warning: failed to VirtualLock %zu-byte buffer (after previously locking %zu bytes): %s\n",
|
|
||||||
len, size, llama_format_win_err(GetLastError()).c_str());
|
|
||||||
return false;
|
|
||||||
}
|
|
||||||
|
|
||||||
// It failed but this was only the first try; increase the working
|
|
||||||
// set size and try again.
|
|
||||||
SIZE_T min_ws_size, max_ws_size;
|
|
||||||
if (!GetProcessWorkingSetSize(GetCurrentProcess(), &min_ws_size, &max_ws_size)) {
|
|
||||||
fprintf(stderr, "warning: GetProcessWorkingSetSize failed: %s\n",
|
|
||||||
llama_format_win_err(GetLastError()).c_str());
|
|
||||||
return false;
|
|
||||||
}
|
|
||||||
// Per MSDN: "The maximum number of pages that a process can lock
|
|
||||||
// is equal to the number of pages in its minimum working set minus
|
|
||||||
// a small overhead."
|
|
||||||
// Hopefully a megabyte is enough overhead:
|
|
||||||
size_t increment = len + 1048576;
|
|
||||||
// The minimum must be <= the maximum, so we need to increase both:
|
|
||||||
min_ws_size += increment;
|
|
||||||
max_ws_size += increment;
|
|
||||||
if (!SetProcessWorkingSetSize(GetCurrentProcess(), min_ws_size, max_ws_size)) {
|
|
||||||
fprintf(stderr, "warning: SetProcessWorkingSetSize failed: %s\n",
|
|
||||||
llama_format_win_err(GetLastError()).c_str());
|
|
||||||
return false;
|
|
||||||
}
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
void raw_unlock(void * ptr, size_t len) {
|
|
||||||
if (!VirtualUnlock(ptr, len)) {
|
|
||||||
fprintf(stderr, "warning: failed to VirtualUnlock buffer: %s\n",
|
|
||||||
llama_format_win_err(GetLastError()).c_str());
|
|
||||||
}
|
|
||||||
}
|
|
||||||
#else
|
|
||||||
static constexpr bool SUPPORTED = false;
|
|
||||||
|
|
||||||
size_t lock_granularity() {
|
|
||||||
return (size_t) 65536;
|
|
||||||
}
|
|
||||||
|
|
||||||
bool raw_lock(const void * addr, size_t len) {
|
|
||||||
fprintf(stderr, "warning: mlock not supported on this system\n");
|
|
||||||
return false;
|
|
||||||
}
|
|
||||||
|
|
||||||
void raw_unlock(const void * addr, size_t len) {}
|
|
||||||
#endif
|
|
||||||
};
|
|
||||||
|
|
||||||
// Replacement for std::vector<uint8_t> that doesn't require zero-initialization.
|
|
||||||
struct llama_buffer {
|
|
||||||
uint8_t * addr = NULL;
|
|
||||||
size_t size = 0;
|
|
||||||
|
|
||||||
llama_buffer() = default;
|
|
||||||
|
|
||||||
void resize(size_t len) {
|
|
||||||
#ifdef GGML_USE_METAL
|
|
||||||
free(addr);
|
|
||||||
int result = posix_memalign((void **) &addr, getpagesize(), len);
|
|
||||||
if (result == 0) {
|
|
||||||
memset(addr, 0, len);
|
|
||||||
}
|
|
||||||
else {
|
|
||||||
addr = NULL;
|
|
||||||
}
|
|
||||||
#else
|
|
||||||
delete[] addr;
|
|
||||||
addr = new uint8_t[len];
|
|
||||||
#endif
|
|
||||||
size = len;
|
|
||||||
}
|
|
||||||
|
|
||||||
~llama_buffer() {
|
|
||||||
#ifdef GGML_USE_METAL
|
|
||||||
free(addr);
|
|
||||||
#else
|
|
||||||
delete[] addr;
|
|
||||||
#endif
|
|
||||||
addr = NULL;
|
|
||||||
}
|
|
||||||
|
|
||||||
// disable copy and move
|
|
||||||
llama_buffer(const llama_buffer&) = delete;
|
|
||||||
llama_buffer(llama_buffer&&) = delete;
|
|
||||||
llama_buffer& operator=(const llama_buffer&) = delete;
|
|
||||||
llama_buffer& operator=(llama_buffer&&) = delete;
|
|
||||||
};
|
|
||||||
|
|
||||||
#ifdef GGML_USE_CUBLAS
|
|
||||||
#include "ggml-cuda.h"
|
|
||||||
struct llama_ctx_buffer {
|
|
||||||
uint8_t * addr = NULL;
|
|
||||||
bool is_cuda;
|
|
||||||
size_t size = 0;
|
|
||||||
|
|
||||||
llama_ctx_buffer() = default;
|
|
||||||
|
|
||||||
void resize(size_t size) {
|
|
||||||
free();
|
|
||||||
|
|
||||||
addr = (uint8_t *) ggml_cuda_host_malloc(size);
|
|
||||||
if (addr) {
|
|
||||||
is_cuda = true;
|
|
||||||
}
|
|
||||||
else {
|
|
||||||
// fall back to pageable memory
|
|
||||||
addr = new uint8_t[size];
|
|
||||||
is_cuda = false;
|
|
||||||
}
|
|
||||||
this->size = size;
|
|
||||||
}
|
|
||||||
|
|
||||||
void free() {
|
|
||||||
if (addr) {
|
|
||||||
if (is_cuda) {
|
|
||||||
ggml_cuda_host_free(addr);
|
|
||||||
}
|
|
||||||
else {
|
|
||||||
delete[] addr;
|
|
||||||
}
|
|
||||||
}
|
|
||||||
addr = NULL;
|
|
||||||
}
|
|
||||||
|
|
||||||
~llama_ctx_buffer() {
|
|
||||||
free();
|
|
||||||
}
|
|
||||||
|
|
||||||
// disable copy and move
|
|
||||||
llama_ctx_buffer(const llama_ctx_buffer&) = delete;
|
|
||||||
llama_ctx_buffer(llama_ctx_buffer&&) = delete;
|
|
||||||
llama_ctx_buffer& operator=(const llama_ctx_buffer&) = delete;
|
|
||||||
llama_ctx_buffer& operator=(llama_ctx_buffer&&) = delete;
|
|
||||||
};
|
|
||||||
#else
|
|
||||||
typedef llama_buffer llama_ctx_buffer;
|
|
||||||
#endif
|
|
||||||
|
|
||||||
#endif
|
|
67
llama.h
67
llama.h
@ -34,29 +34,18 @@
|
|||||||
# define DEPRECATED(func, hint) func
|
# define DEPRECATED(func, hint) func
|
||||||
#endif
|
#endif
|
||||||
|
|
||||||
#define LLAMA_FILE_MAGIC_GGJT 0x67676a74u // 'ggjt'
|
#define LLAMA_DEFAULT_SEED 0xFFFFFFFF
|
||||||
#define LLAMA_FILE_MAGIC_GGLA 0x67676c61u // 'ggla'
|
|
||||||
#define LLAMA_FILE_MAGIC_GGMF 0x67676d66u // 'ggmf'
|
|
||||||
#define LLAMA_FILE_MAGIC_GGML 0x67676d6cu // 'ggml'
|
|
||||||
#define LLAMA_FILE_MAGIC_GGSN 0x6767736eu // 'ggsn'
|
|
||||||
|
|
||||||
#define LLAMA_FILE_VERSION 3
|
#define LLAMA_FILE_MAGIC_GGSN 0x6767736eu // 'ggsn'
|
||||||
#define LLAMA_FILE_MAGIC LLAMA_FILE_MAGIC_GGJT
|
|
||||||
#define LLAMA_FILE_MAGIC_UNVERSIONED LLAMA_FILE_MAGIC_GGML
|
|
||||||
#define LLAMA_SESSION_MAGIC LLAMA_FILE_MAGIC_GGSN
|
|
||||||
#define LLAMA_SESSION_VERSION 1
|
|
||||||
|
|
||||||
#define LLAMA_DEFAULT_SEED 0xFFFFFFFF
|
#define LLAMA_SESSION_MAGIC LLAMA_FILE_MAGIC_GGSN
|
||||||
|
#define LLAMA_SESSION_VERSION 1
|
||||||
|
|
||||||
#if defined(GGML_USE_CUBLAS) || defined(GGML_USE_CLBLAST) || defined(GGML_USE_METAL)
|
#if defined(GGML_USE_CUBLAS) || defined(GGML_USE_CLBLAST) || defined(GGML_USE_METAL)
|
||||||
// Defined when llama.cpp is compiled with support for offloading model layers to GPU.
|
// Defined when llama.cpp is compiled with support for offloading model layers to GPU.
|
||||||
#define LLAMA_SUPPORTS_GPU_OFFLOAD
|
#define LLAMA_SUPPORTS_GPU_OFFLOAD
|
||||||
#endif
|
#endif
|
||||||
|
|
||||||
#ifndef LLAMA_DEFAULT_RMS_EPS
|
|
||||||
#define LLAMA_DEFAULT_RMS_EPS 5e-6f
|
|
||||||
#endif
|
|
||||||
|
|
||||||
#ifdef __cplusplus
|
#ifdef __cplusplus
|
||||||
extern "C" {
|
extern "C" {
|
||||||
#endif
|
#endif
|
||||||
@ -103,8 +92,6 @@ extern "C" {
|
|||||||
uint32_t seed; // RNG seed, -1 for random
|
uint32_t seed; // RNG seed, -1 for random
|
||||||
int32_t n_ctx; // text context
|
int32_t n_ctx; // text context
|
||||||
int32_t n_batch; // prompt processing batch size
|
int32_t n_batch; // prompt processing batch size
|
||||||
int32_t n_gqa; // grouped-query attention (TEMP - will be moved to model hparams)
|
|
||||||
float rms_norm_eps; // rms norm epsilon (TEMP - will be moved to model hparams)
|
|
||||||
int32_t n_gpu_layers; // number of layers to store in VRAM
|
int32_t n_gpu_layers; // number of layers to store in VRAM
|
||||||
int32_t main_gpu; // the GPU that is used for scratch and small tensors
|
int32_t main_gpu; // the GPU that is used for scratch and small tensors
|
||||||
|
|
||||||
@ -129,6 +116,7 @@ extern "C" {
|
|||||||
bool use_mlock; // force system to keep model in RAM
|
bool use_mlock; // force system to keep model in RAM
|
||||||
bool embedding; // embedding mode only
|
bool embedding; // embedding mode only
|
||||||
};
|
};
|
||||||
|
|
||||||
// model file types
|
// model file types
|
||||||
enum llama_ftype {
|
enum llama_ftype {
|
||||||
LLAMA_FTYPE_ALL_F32 = 0,
|
LLAMA_FTYPE_ALL_F32 = 0,
|
||||||
@ -155,7 +143,7 @@ extern "C" {
|
|||||||
// model quantization parameters
|
// model quantization parameters
|
||||||
typedef struct llama_model_quantize_params {
|
typedef struct llama_model_quantize_params {
|
||||||
int nthread; // number of threads to use for quantizing, if <=0 will use std::thread::hardware_concurrency()
|
int nthread; // number of threads to use for quantizing, if <=0 will use std::thread::hardware_concurrency()
|
||||||
enum llama_ftype ftype; // quantize to this llama_ftype
|
enum llama_ftype ftype; // quantize to this llama_ftype
|
||||||
bool allow_requantize; // allow quantizing non-f32/f16 tensors
|
bool allow_requantize; // allow quantizing non-f32/f16 tensors
|
||||||
bool quantize_output_tensor; // quantize output.weight
|
bool quantize_output_tensor; // quantize output.weight
|
||||||
} llama_model_quantize_params;
|
} llama_model_quantize_params;
|
||||||
@ -208,17 +196,12 @@ extern "C" {
|
|||||||
int32_t n_eval;
|
int32_t n_eval;
|
||||||
};
|
};
|
||||||
|
|
||||||
// Set callback for all future logging events.
|
LLAMA_API struct llama_context_params llama_context_default_params(void);
|
||||||
// If this is not called, or NULL is supplied, everything is output on stderr.
|
LLAMA_API struct llama_model_quantize_params llama_model_quantize_default_params(void);
|
||||||
LLAMA_API void llama_log_set(llama_log_callback log_callback, void * user_data);
|
|
||||||
|
|
||||||
LLAMA_API int llama_max_devices();
|
LLAMA_API int llama_max_devices(void);
|
||||||
|
LLAMA_API bool llama_mmap_supported(void);
|
||||||
LLAMA_API struct llama_context_params llama_context_default_params();
|
LLAMA_API bool llama_mlock_supported(void);
|
||||||
LLAMA_API struct llama_model_quantize_params llama_model_quantize_default_params();
|
|
||||||
|
|
||||||
LLAMA_API bool llama_mmap_supported();
|
|
||||||
LLAMA_API bool llama_mlock_supported();
|
|
||||||
|
|
||||||
// TODO: not great API - very likely to change
|
// TODO: not great API - very likely to change
|
||||||
// Initialize the llama + ggml backend
|
// Initialize the llama + ggml backend
|
||||||
@ -226,9 +209,9 @@ extern "C" {
|
|||||||
// Call once at the start of the program
|
// Call once at the start of the program
|
||||||
LLAMA_API void llama_backend_init(bool numa);
|
LLAMA_API void llama_backend_init(bool numa);
|
||||||
// Call once at the end of the program - currently only used for MPI
|
// Call once at the end of the program - currently only used for MPI
|
||||||
LLAMA_API void llama_backend_free();
|
LLAMA_API void llama_backend_free(void);
|
||||||
|
|
||||||
LLAMA_API int64_t llama_time_us();
|
LLAMA_API int64_t llama_time_us(void);
|
||||||
|
|
||||||
LLAMA_API struct llama_model * llama_load_model_from_file(
|
LLAMA_API struct llama_model * llama_load_model_from_file(
|
||||||
const char * path_model,
|
const char * path_model,
|
||||||
@ -240,13 +223,6 @@ extern "C" {
|
|||||||
struct llama_model * model,
|
struct llama_model * model,
|
||||||
struct llama_context_params params);
|
struct llama_context_params params);
|
||||||
|
|
||||||
// Various functions for loading a ggml llama model.
|
|
||||||
// Allocate (almost) all memory needed for the model.
|
|
||||||
// Return NULL on failure
|
|
||||||
LLAMA_API DEPRECATED(struct llama_context * llama_init_from_file(
|
|
||||||
const char * path_model,
|
|
||||||
struct llama_context_params params),
|
|
||||||
"please use llama_load_model_from_file combined with llama_new_context_with_model instead");
|
|
||||||
|
|
||||||
// Frees all allocated memory
|
// Frees all allocated memory
|
||||||
LLAMA_API void llama_free(struct llama_context * ctx);
|
LLAMA_API void llama_free(struct llama_context * ctx);
|
||||||
@ -384,27 +360,28 @@ extern "C" {
|
|||||||
LLAMA_API float * llama_get_embeddings(struct llama_context * ctx);
|
LLAMA_API float * llama_get_embeddings(struct llama_context * ctx);
|
||||||
|
|
||||||
// Token Id -> String. Uses the vocabulary in the provided context
|
// Token Id -> String. Uses the vocabulary in the provided context
|
||||||
|
// Does not write null terminator to the buffer
|
||||||
LLAMA_API int llama_token_to_str(
|
LLAMA_API int llama_token_to_str(
|
||||||
const struct llama_context * ctx,
|
const struct llama_context * ctx,
|
||||||
llama_token token,
|
llama_token token,
|
||||||
char * str,
|
char * buf,
|
||||||
int length);
|
int length);
|
||||||
|
|
||||||
LLAMA_API int llama_token_to_str_bpe(
|
LLAMA_API int llama_token_to_str_bpe(
|
||||||
const struct llama_context * ctx,
|
const struct llama_context * ctx,
|
||||||
llama_token token,
|
llama_token token,
|
||||||
char * str,
|
char * buf,
|
||||||
int length);
|
int length);
|
||||||
|
|
||||||
LLAMA_API int llama_token_to_str_with_model(
|
LLAMA_API int llama_token_to_str_with_model(
|
||||||
const struct llama_model * model,
|
const struct llama_model * model,
|
||||||
llama_token token,
|
llama_token token,
|
||||||
char * str,
|
char * buf,
|
||||||
int length);
|
int length);
|
||||||
// Special tokens
|
// Special tokens
|
||||||
LLAMA_API llama_token llama_token_bos(); // beginning-of-sentence
|
LLAMA_API llama_token llama_token_bos(void); // beginning-of-sentence
|
||||||
LLAMA_API llama_token llama_token_eos(); // end-of-sentence
|
LLAMA_API llama_token llama_token_eos(void); // end-of-sentence
|
||||||
LLAMA_API llama_token llama_token_nl(); // next-line
|
LLAMA_API llama_token llama_token_nl(void); // next-line
|
||||||
|
|
||||||
// Grammar
|
// Grammar
|
||||||
//
|
//
|
||||||
@ -484,6 +461,10 @@ extern "C" {
|
|||||||
// Print system information
|
// Print system information
|
||||||
LLAMA_API const char * llama_print_system_info(void);
|
LLAMA_API const char * llama_print_system_info(void);
|
||||||
|
|
||||||
|
// Set callback for all future logging events.
|
||||||
|
// If this is not called, or NULL is supplied, everything is output on stderr.
|
||||||
|
LLAMA_API void llama_log_set(llama_log_callback log_callback, void * user_data);
|
||||||
|
|
||||||
#ifdef __cplusplus
|
#ifdef __cplusplus
|
||||||
}
|
}
|
||||||
#endif
|
#endif
|
||||||
|
Loading…
Reference in New Issue
Block a user