mirror of
https://github.com/ggerganov/llama.cpp.git
synced 2025-01-26 20:22:25 +01:00
minor : clean-up some warnings and style (#5094)
* minor : clean-up some warnings and style ggml-ci * ggml : add comment
This commit is contained in:
parent
2bed4aa3f3
commit
89758723c7
@ -216,12 +216,10 @@ bool gpt_params_parse_ex(int argc, char ** argv, gpt_params & params) {
|
||||
}
|
||||
// store the external file name in params
|
||||
params.prompt_file = argv[i];
|
||||
file.seekg(0, std::ios::end);
|
||||
size_t size = file.tellg();
|
||||
file.seekg(0, std::ios::beg);
|
||||
params.prompt.resize(size);
|
||||
file.read((char *)params.prompt.data(), size);
|
||||
fprintf(stderr, "Read %zu bytes from binary file %s\n", size, argv[i]);
|
||||
std::ostringstream ss;
|
||||
ss << file.rdbuf();
|
||||
params.prompt = ss.str();
|
||||
fprintf(stderr, "Read %zu bytes from binary file %s\n", params.prompt.size(), argv[i]);
|
||||
} else if (arg == "-f" || arg == "--file") {
|
||||
if (++i >= argc) {
|
||||
invalid_param = true;
|
||||
|
@ -2,18 +2,6 @@
|
||||
// so there might be still unnecessary artifacts hanging around
|
||||
// I'll gradually clean and extend it
|
||||
|
||||
#include <cassert>
|
||||
#include <cmath>
|
||||
#include <cstdlib>
|
||||
#include <cstring>
|
||||
#include <fstream>
|
||||
#include <iostream>
|
||||
#include <map>
|
||||
#include <regex>
|
||||
#include <stdexcept>
|
||||
#include <vector>
|
||||
#include <sstream>
|
||||
|
||||
#include "clip.h"
|
||||
#include "ggml.h"
|
||||
#include "ggml-alloc.h"
|
||||
@ -30,6 +18,19 @@
|
||||
#define STB_IMAGE_IMPLEMENTATION
|
||||
#include "stb_image.h"
|
||||
|
||||
#include <cassert>
|
||||
#include <cmath>
|
||||
#include <cstdlib>
|
||||
#include <cstring>
|
||||
#include <fstream>
|
||||
#include <iostream>
|
||||
#include <map>
|
||||
#include <regex>
|
||||
#include <stdexcept>
|
||||
#include <vector>
|
||||
#include <sstream>
|
||||
#include <cinttypes>
|
||||
|
||||
static std::string format(const char * fmt, ...) {
|
||||
va_list ap;
|
||||
va_list ap2;
|
||||
@ -217,9 +218,9 @@ static std::string gguf_kv_to_str(const struct gguf_context * ctx_gguf, int i) {
|
||||
|
||||
static void print_tensor_info(const ggml_tensor* tensor, const char* prefix = "") {
|
||||
size_t tensor_size = ggml_nbytes(tensor);
|
||||
printf("%s: n_dims = %d, name = %s, tensor_size=%zu, shape:[%d, %d, %d, %d], type: %d\n",
|
||||
printf("%s: n_dims = %d, name = %s, tensor_size=%zu, shape:[%" PRId64 ", %" PRId64 ", %" PRId64 ", %" PRId64 "], type = %s\n",
|
||||
prefix, ggml_n_dims(tensor), tensor->name, tensor_size,
|
||||
tensor->ne[0], tensor->ne[1], tensor->ne[2], tensor->ne[3], tensor->type);
|
||||
tensor->ne[0], tensor->ne[1], tensor->ne[2], tensor->ne[3], ggml_type_name(tensor->type));
|
||||
}
|
||||
|
||||
static projector_type clip_projector_type_from_string(const std::string & name) {
|
||||
@ -592,7 +593,7 @@ static ggml_cgraph * clip_image_build_graph(clip_ctx * ctx, const clip_image_f32
|
||||
mlp_3 = ggml_cont(ctx0, ggml_permute(ctx0, mlp_3, 1, 0, 2, 3));
|
||||
mlp_3 = ggml_reshape_4d(ctx0, mlp_3, n_patch, n_patch, mlp_3->ne[1], mlp_3->ne[2]);
|
||||
// stride = 1, padding = 1, bias is nullptr
|
||||
block_1 = ggml_conv_depthwise_2d(ctx0, model.mm_model_block_1_block_0_0_w, mlp_3, nullptr, 1, 1, 1, 1, 1, 1);
|
||||
block_1 = ggml_conv_depthwise_2d(ctx0, model.mm_model_block_1_block_0_0_w, mlp_3, 1, 1, 1, 1, 1, 1);
|
||||
|
||||
// layer norm
|
||||
// // block_1 shape = [1, 2048, 24, 24], ne = [24, 24, 2048, 1]
|
||||
@ -640,7 +641,7 @@ static ggml_cgraph * clip_image_build_graph(clip_ctx * ctx, const clip_image_f32
|
||||
// block_2
|
||||
{
|
||||
// stride = 2
|
||||
block_1 = ggml_conv_depthwise_2d(ctx0, model.mm_model_block_2_block_0_0_w, block_1, nullptr, 2, 2, 1, 1, 1, 1);
|
||||
block_1 = ggml_conv_depthwise_2d(ctx0, model.mm_model_block_2_block_0_0_w, block_1, 2, 2, 1, 1, 1, 1);
|
||||
|
||||
// block_1 shape = [1, 2048, 12, 12], ne = [12, 12, 2048, 1]
|
||||
// layer norm
|
||||
@ -741,18 +742,10 @@ struct clip_ctx * clip_model_load(const char * fname, const int verbosity = 1) {
|
||||
{
|
||||
std::map<enum ggml_type, uint32_t> n_type;
|
||||
|
||||
uint32_t n_type_max = 0;
|
||||
enum ggml_type type_max = GGML_TYPE_F32;
|
||||
|
||||
for (int i = 0; i < n_tensors; i++) {
|
||||
enum ggml_type type = gguf_get_tensor_type(ctx, i);
|
||||
|
||||
n_type[type]++;
|
||||
|
||||
if (n_type_max < n_type[type]) {
|
||||
n_type_max = n_type[type];
|
||||
type_max = type;
|
||||
}
|
||||
}
|
||||
|
||||
printf("%s: Dumping metadata keys/values. Note: KV overrides do not apply in this output.\n", __func__);
|
||||
@ -795,14 +788,12 @@ struct clip_ctx * clip_model_load(const char * fname, const int verbosity = 1) {
|
||||
size_t tensor_size = ggml_nbytes(cur);
|
||||
buffer_size += tensor_size;
|
||||
if (verbosity >= 3) {
|
||||
printf("%s: tensor[%d]: n_dims = %d, name = %s, tensor_size=%zu, offset=%zu, shape:[%d, %d, %d, %d], type: %d\n", __func__, i,
|
||||
ggml_n_dims(cur), cur->name, tensor_size, offset, cur->ne[0], cur->ne[1], cur->ne[2], cur->ne[3], type);
|
||||
printf("%s: tensor[%d]: n_dims = %d, name = %s, tensor_size=%zu, offset=%zu, shape:[%" PRIu64 ", %" PRIu64 ", %" PRIu64 ", %" PRIu64 "], type = %s\n",
|
||||
__func__, i, ggml_n_dims(cur), cur->name, tensor_size, offset, cur->ne[0], cur->ne[1], cur->ne[2], cur->ne[3], ggml_type_name(type));
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
|
||||
buffer_size += n_tensors * 128 /* CLIP PADDING */;
|
||||
|
||||
clip_ctx * new_clip = new clip_ctx;
|
||||
|
@ -1202,11 +1202,11 @@ static void winogrande_score(llama_context * ctx, const gpt_params & params) {
|
||||
printf("Final Winogrande score(%d tasks): %.4lf +/- %.4lf\n", n_done, 100*p, sigma);
|
||||
}
|
||||
|
||||
static bool deserialize_string(std::istream& in, std::string& str) {
|
||||
static bool deserialize_string(std::istream & in, std::string & str) {
|
||||
uint32_t size;
|
||||
if (!in.read((char *)&size, sizeof(size)).fail()) {
|
||||
str.resize(size);
|
||||
if (!in.read((char *)str.data(), size).fail()) return true;
|
||||
if (!in.read((char *)&str[0], size).fail()) return true;
|
||||
}
|
||||
return false;
|
||||
}
|
||||
|
9
ggml.c
9
ggml.c
@ -5368,14 +5368,12 @@ struct ggml_tensor * ggml_conv_depthwise_2d(
|
||||
struct ggml_context * ctx,
|
||||
struct ggml_tensor * a,
|
||||
struct ggml_tensor * b,
|
||||
struct ggml_tensor * c,
|
||||
int s0,
|
||||
int s1,
|
||||
int p0,
|
||||
int p1,
|
||||
int d0,
|
||||
int d1) {
|
||||
|
||||
struct ggml_tensor * new_a = ggml_reshape_4d(ctx, a, a->ne[0], a->ne[1], 1, a->ne[2] * a->ne[3]);
|
||||
struct ggml_tensor * im2col = ggml_im2col(ctx, new_a,
|
||||
ggml_reshape_4d(ctx, b, b->ne[0], b->ne[1], 1, b->ne[2] * b->ne[3]),
|
||||
@ -9991,7 +9989,7 @@ static void ggml_compute_forward_mul_mat(
|
||||
return;
|
||||
}
|
||||
|
||||
const int64_t tgemm0 = ggml_perf_time_us();
|
||||
//const int64_t tgemm0 = ggml_perf_time_us();
|
||||
for (int64_t i13 = 0; i13 < ne13; i13++) {
|
||||
for (int64_t i12 = 0; i12 < ne12; i12++) {
|
||||
const int64_t i03 = i13/r3;
|
||||
@ -16934,7 +16932,10 @@ struct ggml_cplan ggml_graph_plan(const struct ggml_cgraph * cgraph, int n_threa
|
||||
if (ggml_compute_forward_mul_mat_use_blas(node)) {
|
||||
if (node->src[0]->type != GGML_TYPE_F32) {
|
||||
// here we need memory for fully dequantized matrix from src0
|
||||
cur = ggml_type_size(GGML_TYPE_F32)*ggml_nelements(node->src[0]);
|
||||
// take into account that src0 can be broadcasted into src1[2,3]
|
||||
cur = ggml_type_size(GGML_TYPE_F32)
|
||||
* node->src[0]->ne[0]*node->src[0]->ne[1]
|
||||
* node->src[1]->ne[2]*node->src[1]->ne[3];
|
||||
}
|
||||
} else
|
||||
#endif
|
||||
|
1
ggml.h
1
ggml.h
@ -1499,7 +1499,6 @@ extern "C" {
|
||||
struct ggml_context * ctx,
|
||||
struct ggml_tensor * a,
|
||||
struct ggml_tensor * b,
|
||||
struct ggml_tensor * c,
|
||||
int s0,
|
||||
int s1,
|
||||
int p0,
|
||||
|
24
llama.cpp
24
llama.cpp
@ -2300,18 +2300,18 @@ struct llama_model_loader {
|
||||
}
|
||||
|
||||
switch (type_max) {
|
||||
case GGML_TYPE_F32: ftype = LLAMA_FTYPE_ALL_F32; break;
|
||||
case GGML_TYPE_F16: ftype = LLAMA_FTYPE_MOSTLY_F16; break;
|
||||
case GGML_TYPE_Q4_0: ftype = LLAMA_FTYPE_MOSTLY_Q4_0; break;
|
||||
case GGML_TYPE_Q4_1: ftype = LLAMA_FTYPE_MOSTLY_Q4_1; break;
|
||||
case GGML_TYPE_Q5_0: ftype = LLAMA_FTYPE_MOSTLY_Q5_0; break;
|
||||
case GGML_TYPE_Q5_1: ftype = LLAMA_FTYPE_MOSTLY_Q5_1; break;
|
||||
case GGML_TYPE_Q8_0: ftype = LLAMA_FTYPE_MOSTLY_Q8_0; break;
|
||||
case GGML_TYPE_Q2_K: ftype = LLAMA_FTYPE_MOSTLY_Q2_K; break;
|
||||
case GGML_TYPE_Q3_K: ftype = LLAMA_FTYPE_MOSTLY_Q3_K_M; break;
|
||||
case GGML_TYPE_Q4_K: ftype = LLAMA_FTYPE_MOSTLY_Q4_K_M; break;
|
||||
case GGML_TYPE_Q5_K: ftype = LLAMA_FTYPE_MOSTLY_Q5_K_M; break;
|
||||
case GGML_TYPE_Q6_K: ftype = LLAMA_FTYPE_MOSTLY_Q6_K; break;
|
||||
case GGML_TYPE_F32: ftype = LLAMA_FTYPE_ALL_F32; break;
|
||||
case GGML_TYPE_F16: ftype = LLAMA_FTYPE_MOSTLY_F16; break;
|
||||
case GGML_TYPE_Q4_0: ftype = LLAMA_FTYPE_MOSTLY_Q4_0; break;
|
||||
case GGML_TYPE_Q4_1: ftype = LLAMA_FTYPE_MOSTLY_Q4_1; break;
|
||||
case GGML_TYPE_Q5_0: ftype = LLAMA_FTYPE_MOSTLY_Q5_0; break;
|
||||
case GGML_TYPE_Q5_1: ftype = LLAMA_FTYPE_MOSTLY_Q5_1; break;
|
||||
case GGML_TYPE_Q8_0: ftype = LLAMA_FTYPE_MOSTLY_Q8_0; break;
|
||||
case GGML_TYPE_Q2_K: ftype = LLAMA_FTYPE_MOSTLY_Q2_K; break;
|
||||
case GGML_TYPE_Q3_K: ftype = LLAMA_FTYPE_MOSTLY_Q3_K_M; break;
|
||||
case GGML_TYPE_Q4_K: ftype = LLAMA_FTYPE_MOSTLY_Q4_K_M; break;
|
||||
case GGML_TYPE_Q5_K: ftype = LLAMA_FTYPE_MOSTLY_Q5_K_M; break;
|
||||
case GGML_TYPE_Q6_K: ftype = LLAMA_FTYPE_MOSTLY_Q6_K; break;
|
||||
case GGML_TYPE_IQ2_XXS: ftype = LLAMA_FTYPE_MOSTLY_IQ2_XXS; break;
|
||||
case GGML_TYPE_IQ2_XS: ftype = LLAMA_FTYPE_MOSTLY_IQ2_XS; break;
|
||||
default:
|
||||
|
Loading…
Reference in New Issue
Block a user