mirror of
https://github.com/ggerganov/llama.cpp.git
synced 2025-01-13 13:52:22 +01:00
server : match OAI structured output response (#9527)
This commit is contained in:
parent
f799155ab8
commit
8a308354f6
@ -501,7 +501,7 @@ Given a ChatML-formatted json description in `messages`, it returns the predicte
|
||||
|
||||
See [OpenAI Chat Completions API documentation](https://platform.openai.com/docs/api-reference/chat). While some OpenAI-specific features such as function calling aren't supported, llama.cpp `/completion`-specific features such as `mirostat` are supported.
|
||||
|
||||
The `response_format` parameter supports both plain JSON output (e.g. `{"type": "json_object"}`) and schema-constrained JSON (e.g. `{"type": "json_object", "schema": {"type": "string", "minLength": 10, "maxLength": 100}}`), similar to other OpenAI-inspired API providers.
|
||||
The `response_format` parameter supports both plain JSON output (e.g. `{"type": "json_object"}`) and schema-constrained JSON (e.g. `{"type": "json_object", "schema": {"type": "string", "minLength": 10, "maxLength": 100}}` or `{"type": "json_schema", "schema": {"properties": { "name": { "title": "Name", "type": "string" }, "date": { "title": "Date", "type": "string" }, "participants": { "items": {"type: "string" }, "title": "Participants", "type": "string" } } } }`), similar to other OpenAI-inspired API providers.
|
||||
|
||||
*Examples:*
|
||||
|
||||
|
@ -331,6 +331,9 @@ static json oaicompat_completion_params_parse(
|
||||
std::string response_type = json_value(response_format, "type", std::string());
|
||||
if (response_type == "json_object") {
|
||||
llama_params["json_schema"] = json_value(response_format, "schema", json::object());
|
||||
} else if (response_type == "json_schema") {
|
||||
json json_schema = json_value(response_format, "json_schema", json::object());
|
||||
llama_params["json_schema"] = json_value(json_schema, "schema", json::object());
|
||||
} else if (!response_type.empty() && response_type != "text") {
|
||||
throw std::runtime_error("response_format type must be one of \"text\" or \"json_object\", but got: " + response_type);
|
||||
}
|
||||
|
@ -120,7 +120,7 @@ You can use GBNF grammars:
|
||||
|
||||
- In [llama-server](../examples/server):
|
||||
- For any completion endpoints, passed as the `json_schema` body field
|
||||
- For the `/chat/completions` endpoint, passed inside the `response_format` body field (e.g. `{"type", "json_object", "schema": {"items": {}}}`)
|
||||
- For the `/chat/completions` endpoint, passed inside the `response_format` body field (e.g. `{"type", "json_object", "schema": {"items": {}}}` or `{ type: "json_schema", json_schema: {"schema": ...} }`)
|
||||
- In [llama-cli](../examples/main), passed as the `--json` / `-j` flag
|
||||
- To convert to a grammar ahead of time:
|
||||
- in CLI, with [examples/json_schema_to_grammar.py](../examples/json_schema_to_grammar.py)
|
||||
|
Loading…
x
Reference in New Issue
Block a user