Merge pull request #7 from OpenBMB/prepare-PR

sync master
This commit is contained in:
tc-mb 2024-05-29 02:50:30 +08:00 committed by GitHub
commit 8bd47ce5d6
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
70 changed files with 3690 additions and 647 deletions

50
.github/ISSUE_TEMPLATE/01-bug-low.yml vendored Normal file
View File

@ -0,0 +1,50 @@
name: Low Severity Bugs
description: Used to report low severity bugs in llama.cpp (e.g. cosmetic issues, non critical UI glitches)
title: "Bug: "
labels: ["bug-unconfirmed", "low severity"]
body:
- type: markdown
attributes:
value: |
Thanks for taking the time to fill out this bug report!
Please include information about your system, the steps to reproduce the bug,
and the version of llama.cpp that you are using.
If possible, please provide a minimal code example that reproduces the bug.
- type: textarea
id: what-happened
attributes:
label: What happened?
description: Also tell us, what did you expect to happen?
placeholder: Tell us what you see!
validations:
required: true
- type: textarea
id: version
attributes:
label: Name and Version
description: Which executable and which version of our software are you running? (use `--version` to get a version string)
placeholder: |
$./main --version
version: 2999 (42b4109e)
built with cc (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0 for x86_64-linux-gnu
validations:
required: true
- type: dropdown
id: operating-system
attributes:
label: What operating system are you seeing the problem on?
multiple: true
options:
- Linux
- Mac
- Windows
- BSD
- Other? (Please let us know in description)
validations:
required: false
- type: textarea
id: logs
attributes:
label: Relevant log output
description: Please copy and paste any relevant log output. This will be automatically formatted into code, so no need for backticks.
render: shell

View File

@ -0,0 +1,50 @@
name: Medium Severity Bug
description: Used to report medium severity bugs in llama.cpp (e.g. Malfunctioning Features but generally still useable)
title: "Bug: "
labels: ["bug-unconfirmed", "medium severity"]
body:
- type: markdown
attributes:
value: |
Thanks for taking the time to fill out this bug report!
Please include information about your system, the steps to reproduce the bug,
and the version of llama.cpp that you are using.
If possible, please provide a minimal code example that reproduces the bug.
- type: textarea
id: what-happened
attributes:
label: What happened?
description: Also tell us, what did you expect to happen?
placeholder: Tell us what you see!
validations:
required: true
- type: textarea
id: version
attributes:
label: Name and Version
description: Which executable and which version of our software are you running? (use `--version` to get a version string)
placeholder: |
$./main --version
version: 2999 (42b4109e)
built with cc (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0 for x86_64-linux-gnu
validations:
required: true
- type: dropdown
id: operating-system
attributes:
label: What operating system are you seeing the problem on?
multiple: true
options:
- Linux
- Mac
- Windows
- BSD
- Other? (Please let us know in description)
validations:
required: false
- type: textarea
id: logs
attributes:
label: Relevant log output
description: Please copy and paste any relevant log output. This will be automatically formatted into code, so no need for backticks.
render: shell

50
.github/ISSUE_TEMPLATE/03-bug-high.yml vendored Normal file
View File

@ -0,0 +1,50 @@
name: High Severity Bug
description: Used to report high severity bugs in llama.cpp (e.g. Malfunctioning features hindering important common workflow)
title: "Bug: "
labels: ["bug-unconfirmed", "high severity"]
body:
- type: markdown
attributes:
value: |
Thanks for taking the time to fill out this bug report!
Please include information about your system, the steps to reproduce the bug,
and the version of llama.cpp that you are using.
If possible, please provide a minimal code example that reproduces the bug.
- type: textarea
id: what-happened
attributes:
label: What happened?
description: Also tell us, what did you expect to happen?
placeholder: Tell us what you see!
validations:
required: true
- type: textarea
id: version
attributes:
label: Name and Version
description: Which executable and which version of our software are you running? (use `--version` to get a version string)
placeholder: |
$./main --version
version: 2999 (42b4109e)
built with cc (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0 for x86_64-linux-gnu
validations:
required: true
- type: dropdown
id: operating-system
attributes:
label: What operating system are you seeing the problem on?
multiple: true
options:
- Linux
- Mac
- Windows
- BSD
- Other? (Please let us know in description)
validations:
required: false
- type: textarea
id: logs
attributes:
label: Relevant log output
description: Please copy and paste any relevant log output. This will be automatically formatted into code, so no need for backticks.
render: shell

View File

@ -0,0 +1,50 @@
name: Critical Severity Bug
description: Used to report critical severity bugs in llama.cpp (e.g. Crashing, Corrupted, Dataloss)
title: "Bug: "
labels: ["bug-unconfirmed", "critical severity"]
body:
- type: markdown
attributes:
value: |
Thanks for taking the time to fill out this bug report!
Please include information about your system, the steps to reproduce the bug,
and the version of llama.cpp that you are using.
If possible, please provide a minimal code example that reproduces the bug.
- type: textarea
id: what-happened
attributes:
label: What happened?
description: Also tell us, what did you expect to happen?
placeholder: Tell us what you see!
validations:
required: true
- type: textarea
id: version
attributes:
label: Name and Version
description: Which executable and which version of our software are you running? (use `--version` to get a version string)
placeholder: |
$./main --version
version: 2999 (42b4109e)
built with cc (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0 for x86_64-linux-gnu
validations:
required: true
- type: dropdown
id: operating-system
attributes:
label: What operating system are you seeing the problem on?
multiple: true
options:
- Linux
- Mac
- Windows
- BSD
- Other? (Please let us know in description)
validations:
required: false
- type: textarea
id: logs
attributes:
label: Relevant log output
description: Please copy and paste any relevant log output. This will be automatically formatted into code, so no need for backticks.
render: shell

View File

@ -0,0 +1,51 @@
name: Enhancement
description: Used to request enhancements for llama.cpp
title: "Feature Request: "
labels: ["enhancement"]
body:
- type: markdown
attributes:
value: |
[Please post your idea first in Discussion if there is not yet a consensus for this enhancement request. This will help to keep this issue tracker focused on enhancements that the community has agreed needs to be implemented.](https://github.com/ggerganov/llama.cpp/discussions/categories/ideas)
- type: checkboxes
id: prerequisites
attributes:
label: Prerequisites
description: Please confirm the following before submitting your enhancement request.
options:
- label: I am running the latest code. Mention the version if possible as well.
required: true
- label: I carefully followed the [README.md](https://github.com/ggerganov/llama.cpp/blob/master/README.md).
required: true
- label: I searched using keywords relevant to my issue to make sure that I am creating a new issue that is not already open (or closed).
required: true
- label: I reviewed the [Discussions](https://github.com/ggerganov/llama.cpp/discussions), and have a new and useful enhancement to share.
required: true
- type: textarea
id: feature-description
attributes:
label: Feature Description
description: Please provide a detailed written description of what you were trying to do, and what you expected `llama.cpp` to do as an enhancement.
placeholder: Detailed description of the enhancement
validations:
required: true
- type: textarea
id: motivation
attributes:
label: Motivation
description: Please provide a detailed written description of reasons why this feature is necessary and how it is useful to `llama.cpp` users.
placeholder: Explanation of why this feature is needed and its benefits
validations:
required: true
- type: textarea
id: possible-implementation
attributes:
label: Possible Implementation
description: If you have an idea as to how it can be implemented, please write a detailed description. Feel free to give links to external sources or share visuals that might be helpful to understand the details better.
placeholder: Detailed description of potential implementation
validations:
required: false

38
.github/ISSUE_TEMPLATE/06-question.yml vendored Normal file
View File

@ -0,0 +1,38 @@
name: Question
description: Used to ask questions about llama.cpp
title: "Question: "
labels: ["question"]
body:
- type: markdown
attributes:
value: |
[Please search your question first in Discussion if you got a common general question.](https://github.com/ggerganov/llama.cpp/discussions/categories/q-a)
- type: checkboxes
id: prerequisites
attributes:
label: Prerequisites
description: Please confirm the following before submitting your question.
options:
- label: I searched using keywords relevant to my issue to make sure that I am creating a new issue that is not already open (or closed).
required: true
- label: I reviewed the [Discussions](https://github.com/ggerganov/llama.cpp/discussions), and have a new useful question to share that cannot be answered within Discussions.
required: true
- type: textarea
id: background-description
attributes:
label: Background Description
description: Please provide a detailed written description of what you were trying to do, and what you expected `llama.cpp` to do as an question.
placeholder: Detailed description of your question
validations:
required: true
- type: textarea
id: possible-answer
attributes:
label: Possible Answer
description: If you have some idea of possible answers you want to confirm, that would also be appreciated.
placeholder: Your idea of possible answers
validations:
required: false

28
.github/ISSUE_TEMPLATE/07-refactor.yml vendored Normal file
View File

@ -0,0 +1,28 @@
name: Refactor (Maintainers)
description: Used to track refactoring opportunities
title: "Refactor: "
labels: ["refactor"]
body:
- type: markdown
attributes:
value: |
Don't forget to [check for existing refactor issue tickets](https://github.com/ggerganov/llama.cpp/issues?q=is%3Aopen+is%3Aissue+label%3Arefactoring) in case it's already covered.
Also you may want to check [Pull request refactor label as well](https://github.com/ggerganov/llama.cpp/pulls?q=is%3Aopen+is%3Apr+label%3Arefactoring) for duplicates too.
- type: textarea
id: background-description
attributes:
label: Background Description
description: Please provide a detailed written description of the pain points you are trying to solve.
placeholder: Detailed description behind your motivation to request refactor
validations:
required: true
- type: textarea
id: possible-approaches
attributes:
label: Possible Refactor Approaches
description: If you have some idea of possible approaches to solve this problem. You may want to make it a todo list.
placeholder: Your idea of possible refactoring opportunity/approaches
validations:
required: false

View File

@ -1,11 +0,0 @@
---
name: Bug template
about: Used to report bugs in llama.cpp
labels: ["bug-unconfirmed"]
assignees: ''
---
Please include information about your system, the steps to reproduce the bug, and the version of llama.cpp that you are using. If possible, please provide a minimal code example that reproduces the bug.
If the bug concerns the server, please try to reproduce it first using the [server test scenario framework](https://github.com/ggerganov/llama.cpp/tree/master/examples/server/tests).

View File

@ -1,28 +0,0 @@
---
name: Enhancement template
about: Used to request enhancements for llama.cpp
labels: ["enhancement"]
assignees: ''
---
# Prerequisites
Please answer the following questions for yourself before submitting an issue.
- [ ] I am running the latest code. Development is very rapid so there are no tagged versions as of now.
- [ ] I carefully followed the [README.md](https://github.com/ggerganov/llama.cpp/blob/master/README.md).
- [ ] I [searched using keywords relevant to my issue](https://docs.github.com/en/issues/tracking-your-work-with-issues/filtering-and-searching-issues-and-pull-requests) to make sure that I am creating a new issue that is not already open (or closed).
- [ ] I reviewed the [Discussions](https://github.com/ggerganov/llama.cpp/discussions), and have a new bug or useful enhancement to share.
# Feature Description
Please provide a detailed written description of what you were trying to do, and what you expected `llama.cpp` to do as an enhancement.
# Motivation
Please provide a detailed written description of reasons why this feature is necessary and how it is useful to `llama.cpp` users.
# Possible Implementation
If you have an idea as to how it can be implemented, please write a detailed description. Feel free to give links to external sources or share visuals that might be helpful to understand the details better.

14
.github/labeler.yml vendored
View File

@ -1,5 +1,16 @@
# https://github.com/actions/labeler # https://github.com/actions/labeler
Kompute:
- changed-files:
- any-glob-to-any-file:
- ggml-kompute.h
- ggml-kompute.cpp
- README-kompute.md
Apple Metal:
- changed-files:
- any-glob-to-any-file:
- ggml-metal.h
- ggml-metal.cpp
- README-metal.md
SYCL: SYCL:
- changed-files: - changed-files:
- any-glob-to-any-file: - any-glob-to-any-file:
@ -9,6 +20,7 @@ SYCL:
Nvidia GPU: Nvidia GPU:
- changed-files: - changed-files:
- any-glob-to-any-file: - any-glob-to-any-file:
- ggml-cuda.h
- ggml-cuda/** - ggml-cuda/**
Vulkan: Vulkan:
- changed-files: - changed-files:

View File

@ -42,8 +42,9 @@ jobs:
- { tag: "light-rocm", dockerfile: ".devops/main-rocm.Dockerfile", platforms: "linux/amd64,linux/arm64" } - { tag: "light-rocm", dockerfile: ".devops/main-rocm.Dockerfile", platforms: "linux/amd64,linux/arm64" }
- { tag: "full-rocm", dockerfile: ".devops/full-rocm.Dockerfile", platforms: "linux/amd64,linux/arm64" } - { tag: "full-rocm", dockerfile: ".devops/full-rocm.Dockerfile", platforms: "linux/amd64,linux/arm64" }
- { tag: "server-rocm", dockerfile: ".devops/server-rocm.Dockerfile", platforms: "linux/amd64,linux/arm64" } - { tag: "server-rocm", dockerfile: ".devops/server-rocm.Dockerfile", platforms: "linux/amd64,linux/arm64" }
- { tag: "light-intel", dockerfile: ".devops/main-intel.Dockerfile", platforms: "linux/amd64" } # TODO: Disabled due to build issues https://github.com/ggerganov/llama.cpp/issues/7507
- { tag: "server-intel", dockerfile: ".devops/server-intel.Dockerfile", platforms: "linux/amd64" } #- { tag: "light-intel", dockerfile: ".devops/main-intel.Dockerfile", platforms: "linux/amd64" }
#- { tag: "server-intel", dockerfile: ".devops/server-intel.Dockerfile", platforms: "linux/amd64" }
steps: steps:
- name: Check out the repo - name: Check out the repo
uses: actions/checkout@v4 uses: actions/checkout@v4

View File

@ -72,6 +72,7 @@ else()
set(INS_ENB ON) set(INS_ENB ON)
endif() endif()
option(LLAMA_SVE "llama: enable SVE" OFF)
option(LLAMA_AVX "llama: enable AVX" ${INS_ENB}) option(LLAMA_AVX "llama: enable AVX" ${INS_ENB})
option(LLAMA_AVX2 "llama: enable AVX2" ${INS_ENB}) option(LLAMA_AVX2 "llama: enable AVX2" ${INS_ENB})
option(LLAMA_AVX512 "llama: enable AVX512" OFF) option(LLAMA_AVX512 "llama: enable AVX512" OFF)
@ -1040,6 +1041,9 @@ if (CMAKE_OSX_ARCHITECTURES STREQUAL "arm64" OR CMAKE_GENERATOR_PLATFORM_LWR STR
# Raspberry Pi 3, 4, Zero 2 (32-bit) # Raspberry Pi 3, 4, Zero 2 (32-bit)
list(APPEND ARCH_FLAGS -mno-unaligned-access) list(APPEND ARCH_FLAGS -mno-unaligned-access)
endif() endif()
if (LLAMA_SVE)
list(APPEND ARCH_FLAGS -march=armv8.6-a+sve)
endif()
endif() endif()
elseif (CMAKE_OSX_ARCHITECTURES STREQUAL "x86_64" OR CMAKE_GENERATOR_PLATFORM_LWR MATCHES "^(x86_64|i686|amd64|x64|win32)$" OR elseif (CMAKE_OSX_ARCHITECTURES STREQUAL "x86_64" OR CMAKE_GENERATOR_PLATFORM_LWR MATCHES "^(x86_64|i686|amd64|x64|win32)$" OR
(NOT CMAKE_OSX_ARCHITECTURES AND NOT CMAKE_GENERATOR_PLATFORM_LWR AND (NOT CMAKE_OSX_ARCHITECTURES AND NOT CMAKE_GENERATOR_PLATFORM_LWR AND

View File

@ -1,4 +1,4 @@
{ {
"version": 4, "version": 4,
"configurePresets": [ "configurePresets": [
{ {
@ -40,6 +40,10 @@
{ "name": "arm64-windows-msvc-debug" , "inherits": [ "base", "arm64-windows-msvc", "debug" ] }, { "name": "arm64-windows-msvc-debug" , "inherits": [ "base", "arm64-windows-msvc", "debug" ] },
{ "name": "arm64-windows-msvc-release", "inherits": [ "base", "arm64-windows-msvc", "release" ] }, { "name": "arm64-windows-msvc-release", "inherits": [ "base", "arm64-windows-msvc", "release" ] },
{ "name": "arm64-windows-msvc+static-release", "inherits": [ "base", "arm64-windows-msvc", "release", "static" ] } { "name": "arm64-windows-msvc+static-release", "inherits": [ "base", "arm64-windows-msvc", "release", "static" ] },
{ "name": "x64-windows-msvc-debug" , "inherits": [ "base", "debug" ] },
{ "name": "x64-windows-msvc-release", "inherits": [ "base", "release" ] },
{ "name": "x64-windows-msvc+static-release", "inherits": [ "base", "release", "static" ] }
] ]
} }

View File

@ -441,6 +441,9 @@ endif # JETSON_EOL_MODULE_DETECT
ifdef LLAMA_DEBUG ifdef LLAMA_DEBUG
MK_NVCCFLAGS += -lineinfo MK_NVCCFLAGS += -lineinfo
endif # LLAMA_DEBUG endif # LLAMA_DEBUG
ifdef LLAMA_CUDA_DEBUG
MK_NVCCFLAGS += --device-debug
endif # LLAMA_CUDA_DEBUG
ifdef LLAMA_CUDA_NVCC ifdef LLAMA_CUDA_NVCC
NVCC = $(CCACHE) $(LLAMA_CUDA_NVCC) NVCC = $(CCACHE) $(LLAMA_CUDA_NVCC)
else else

View File

@ -127,6 +127,7 @@ Typically finetunes of the base models below are supported as well.
- [x] [SEA-LION](https://huggingface.co/models?search=sea-lion) - [x] [SEA-LION](https://huggingface.co/models?search=sea-lion)
- [x] [GritLM-7B](https://huggingface.co/GritLM/GritLM-7B) + [GritLM-8x7B](https://huggingface.co/GritLM/GritLM-8x7B) - [x] [GritLM-7B](https://huggingface.co/GritLM/GritLM-7B) + [GritLM-8x7B](https://huggingface.co/GritLM/GritLM-8x7B)
- [x] [OLMo](https://allenai.org/olmo) - [x] [OLMo](https://allenai.org/olmo)
- [x] [GPT-NeoX](https://github.com/EleutherAI/gpt-neox) + [Pythia](https://github.com/EleutherAI/pythia)
(instructions for supporting more models: [HOWTO-add-model.md](./docs/HOWTO-add-model.md)) (instructions for supporting more models: [HOWTO-add-model.md](./docs/HOWTO-add-model.md))
@ -140,6 +141,7 @@ Typically finetunes of the base models below are supported as well.
- [x] [Yi-VL](https://huggingface.co/models?search=Yi-VL) - [x] [Yi-VL](https://huggingface.co/models?search=Yi-VL)
- [x] [Mini CPM](https://huggingface.co/models?search=MiniCPM) - [x] [Mini CPM](https://huggingface.co/models?search=MiniCPM)
- [x] [Moondream](https://huggingface.co/vikhyatk/moondream2) - [x] [Moondream](https://huggingface.co/vikhyatk/moondream2)
- [x] [Bunny](https://github.com/BAAI-DCAI/Bunny)
**HTTP server** **HTTP server**
@ -201,6 +203,10 @@ Unless otherwise noted these projects are open-source with permissive licensing:
*(to have a project listed here, it should clearly state that it depends on `llama.cpp`)* *(to have a project listed here, it should clearly state that it depends on `llama.cpp`)*
**Tools:**
- [akx/ggify](https://github.com/akx/ggify) download PyTorch models from HuggingFace Hub and convert them to GGML
--- ---
Here is a typical run using LLaMA v2 13B on M2 Ultra: Here is a typical run using LLaMA v2 13B on M2 Ultra:

424
ci/run.sh
View File

@ -202,12 +202,15 @@ function gg_sum_test_scripts_release {
} }
function gg_get_model { function gg_get_model {
local gguf_3b="$MNT/models/open-llama/3B-v2/ggml-model-f16.gguf" local gguf_0="$MNT/models/pythia/1.4B/ggml-model-f16.gguf"
local gguf_7b="$MNT/models/open-llama/7B-v2/ggml-model-f16.gguf" local gguf_1="$MNT/models/pythia/2.8B/ggml-model-f16.gguf"
if [[ -s $gguf_3b ]]; then local gguf_2="$MNT/models/open-llama/7B-v2/ggml-model-f16.gguf"
echo -n "$gguf_3b" if [[ -s $gguf_0 ]]; then
elif [[ -s $gguf_7b ]]; then echo -n "$gguf_0"
echo -n "$gguf_7b" elif [[ -s $gguf_1 ]]; then
echo -n "$gguf_1"
elif [[ -s $gguf_2 ]]; then
echo -n "$gguf_2"
else else
echo >&2 "No model found. Can't run gg_run_ctest_with_model." echo >&2 "No model found. Can't run gg_run_ctest_with_model."
exit 1 exit 1
@ -256,139 +259,6 @@ function gg_sum_ctest_with_model_release {
gg_printf '```\n' gg_printf '```\n'
} }
# open_llama_3b_v2
function gg_run_open_llama_3b_v2 {
cd ${SRC}
gg_wget models-mnt/open-llama/3B-v2/ https://huggingface.co/openlm-research/open_llama_3b_v2/raw/main/config.json
gg_wget models-mnt/open-llama/3B-v2/ https://huggingface.co/openlm-research/open_llama_3b_v2/resolve/main/tokenizer.model
gg_wget models-mnt/open-llama/3B-v2/ https://huggingface.co/openlm-research/open_llama_3b_v2/raw/main/tokenizer_config.json
gg_wget models-mnt/open-llama/3B-v2/ https://huggingface.co/openlm-research/open_llama_3b_v2/raw/main/special_tokens_map.json
gg_wget models-mnt/open-llama/3B-v2/ https://huggingface.co/openlm-research/open_llama_3b_v2/resolve/main/pytorch_model.bin
gg_wget models-mnt/open-llama/3B-v2/ https://huggingface.co/openlm-research/open_llama_3b_v2/raw/main/generation_config.json
gg_wget models-mnt/wikitext/ https://huggingface.co/datasets/ggml-org/ci/resolve/main/wikitext-2-raw-v1.zip
unzip -o models-mnt/wikitext/wikitext-2-raw-v1.zip -d models-mnt/wikitext/
head -n 60 models-mnt/wikitext/wikitext-2-raw/wiki.test.raw > models-mnt/wikitext/wikitext-2-raw/wiki.test-60.raw
path_models="../models-mnt/open-llama/3B-v2"
path_wiki="../models-mnt/wikitext/wikitext-2-raw"
rm -rf build-ci-release && mkdir build-ci-release && cd build-ci-release
set -e
(time cmake -DCMAKE_BUILD_TYPE=Release ${CMAKE_EXTRA} -DLLAMA_QKK_64=1 .. ) 2>&1 | tee -a $OUT/${ci}-cmake.log
(time make -j ) 2>&1 | tee -a $OUT/${ci}-make.log
python3 ../convert.py ${path_models}
model_f16="${path_models}/ggml-model-f16.gguf"
model_q8_0="${path_models}/ggml-model-q8_0.gguf"
model_q4_0="${path_models}/ggml-model-q4_0.gguf"
model_q4_1="${path_models}/ggml-model-q4_1.gguf"
model_q5_0="${path_models}/ggml-model-q5_0.gguf"
model_q5_1="${path_models}/ggml-model-q5_1.gguf"
model_q2_k="${path_models}/ggml-model-q2_k.gguf"
model_q3_k="${path_models}/ggml-model-q3_k.gguf"
model_q4_k="${path_models}/ggml-model-q4_k.gguf"
model_q5_k="${path_models}/ggml-model-q5_k.gguf"
model_q6_k="${path_models}/ggml-model-q6_k.gguf"
wiki_test_60="${path_wiki}/wiki.test-60.raw"
./bin/quantize ${model_f16} ${model_q8_0} q8_0
./bin/quantize ${model_f16} ${model_q4_0} q4_0
./bin/quantize ${model_f16} ${model_q4_1} q4_1
./bin/quantize ${model_f16} ${model_q5_0} q5_0
./bin/quantize ${model_f16} ${model_q5_1} q5_1
./bin/quantize ${model_f16} ${model_q2_k} q2_k
./bin/quantize ${model_f16} ${model_q3_k} q3_k
./bin/quantize ${model_f16} ${model_q4_k} q4_k
./bin/quantize ${model_f16} ${model_q5_k} q5_k
./bin/quantize ${model_f16} ${model_q6_k} q6_k
(time ./bin/main --model ${model_f16} -s 1234 -n 64 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-f16.log
(time ./bin/main --model ${model_q8_0} -s 1234 -n 64 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q8_0.log
(time ./bin/main --model ${model_q4_0} -s 1234 -n 64 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q4_0.log
(time ./bin/main --model ${model_q4_1} -s 1234 -n 64 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q4_1.log
(time ./bin/main --model ${model_q5_0} -s 1234 -n 64 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q5_0.log
(time ./bin/main --model ${model_q5_1} -s 1234 -n 64 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q5_1.log
(time ./bin/main --model ${model_q2_k} -s 1234 -n 64 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q2_k.log
(time ./bin/main --model ${model_q3_k} -s 1234 -n 64 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q3_k.log
(time ./bin/main --model ${model_q4_k} -s 1234 -n 64 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q4_k.log
(time ./bin/main --model ${model_q5_k} -s 1234 -n 64 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q5_k.log
(time ./bin/main --model ${model_q6_k} -s 1234 -n 64 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q6_k.log
(time ./bin/perplexity --model ${model_f16} -f ${wiki_test_60} -c 128 -b 128 --chunks 1 ) 2>&1 | tee -a $OUT/${ci}-tg-f16.log
(time ./bin/perplexity --model ${model_q8_0} -f ${wiki_test_60} -c 128 -b 128 --chunks 1 ) 2>&1 | tee -a $OUT/${ci}-tg-q8_0.log
(time ./bin/perplexity --model ${model_q4_0} -f ${wiki_test_60} -c 128 -b 128 --chunks 1 ) 2>&1 | tee -a $OUT/${ci}-tg-q4_0.log
(time ./bin/perplexity --model ${model_q4_1} -f ${wiki_test_60} -c 128 -b 128 --chunks 1 ) 2>&1 | tee -a $OUT/${ci}-tg-q4_1.log
(time ./bin/perplexity --model ${model_q5_0} -f ${wiki_test_60} -c 128 -b 128 --chunks 1 ) 2>&1 | tee -a $OUT/${ci}-tg-q5_0.log
(time ./bin/perplexity --model ${model_q5_1} -f ${wiki_test_60} -c 128 -b 128 --chunks 1 ) 2>&1 | tee -a $OUT/${ci}-tg-q5_1.log
(time ./bin/perplexity --model ${model_q2_k} -f ${wiki_test_60} -c 128 -b 128 --chunks 1 ) 2>&1 | tee -a $OUT/${ci}-tg-q2_k.log
(time ./bin/perplexity --model ${model_q3_k} -f ${wiki_test_60} -c 128 -b 128 --chunks 1 ) 2>&1 | tee -a $OUT/${ci}-tg-q3_k.log
(time ./bin/perplexity --model ${model_q4_k} -f ${wiki_test_60} -c 128 -b 128 --chunks 1 ) 2>&1 | tee -a $OUT/${ci}-tg-q4_k.log
(time ./bin/perplexity --model ${model_q5_k} -f ${wiki_test_60} -c 128 -b 128 --chunks 1 ) 2>&1 | tee -a $OUT/${ci}-tg-q5_k.log
(time ./bin/perplexity --model ${model_q6_k} -f ${wiki_test_60} -c 128 -b 128 --chunks 1 ) 2>&1 | tee -a $OUT/${ci}-tg-q6_k.log
(time ./bin/imatrix --model ${model_f16} -f ${wiki_test_60} -c 128 -b 128 --chunks 1 ) 2>&1 | tee -a $OUT/${ci}-imatrix.log
(time ./bin/save-load-state --model ${model_q4_0} ) 2>&1 | tee -a $OUT/${ci}-save-load-state.log
(time ./bin/save-load-state -fa --model ${model_q4_0} ) 2>&1 | tee -a $OUT/${ci}-save-load-state.log
function check_ppl {
qnt="$1"
ppl=$(echo "$2" | grep -oE "[0-9]+\.[0-9]+" | tail -n 1)
if [ $(echo "$ppl > 20.0" | bc) -eq 1 ]; then
printf ' - %s @ %s (FAIL: ppl > 20.0)\n' "$qnt" "$ppl"
return 20
fi
printf ' - %s @ %s OK\n' "$qnt" "$ppl"
return 0
}
check_ppl "f16" "$(cat $OUT/${ci}-tg-f16.log | grep "^\[1\]")" | tee -a $OUT/${ci}-ppl.log
check_ppl "q8_0" "$(cat $OUT/${ci}-tg-q8_0.log | grep "^\[1\]")" | tee -a $OUT/${ci}-ppl.log
check_ppl "q4_0" "$(cat $OUT/${ci}-tg-q4_0.log | grep "^\[1\]")" | tee -a $OUT/${ci}-ppl.log
check_ppl "q4_1" "$(cat $OUT/${ci}-tg-q4_1.log | grep "^\[1\]")" | tee -a $OUT/${ci}-ppl.log
check_ppl "q5_0" "$(cat $OUT/${ci}-tg-q5_0.log | grep "^\[1\]")" | tee -a $OUT/${ci}-ppl.log
check_ppl "q5_1" "$(cat $OUT/${ci}-tg-q5_1.log | grep "^\[1\]")" | tee -a $OUT/${ci}-ppl.log
check_ppl "q2_k" "$(cat $OUT/${ci}-tg-q2_k.log | grep "^\[1\]")" | tee -a $OUT/${ci}-ppl.log
check_ppl "q3_k" "$(cat $OUT/${ci}-tg-q3_k.log | grep "^\[1\]")" | tee -a $OUT/${ci}-ppl.log
check_ppl "q4_k" "$(cat $OUT/${ci}-tg-q4_k.log | grep "^\[1\]")" | tee -a $OUT/${ci}-ppl.log
check_ppl "q5_k" "$(cat $OUT/${ci}-tg-q5_k.log | grep "^\[1\]")" | tee -a $OUT/${ci}-ppl.log
check_ppl "q6_k" "$(cat $OUT/${ci}-tg-q6_k.log | grep "^\[1\]")" | tee -a $OUT/${ci}-ppl.log
cat $OUT/${ci}-imatrix.log | grep "Final" >> $OUT/${ci}-imatrix-sum.log
set +e
}
function gg_sum_open_llama_3b_v2 {
gg_printf '### %s\n\n' "${ci}"
gg_printf 'OpenLLaMA 3B-v2:\n'
gg_printf '- status: %s\n' "$(cat $OUT/${ci}.exit)"
gg_printf '- perplexity:\n%s\n' "$(cat $OUT/${ci}-ppl.log)"
gg_printf '- imatrix:\n```\n%s\n```\n' "$(cat $OUT/${ci}-imatrix-sum.log)"
gg_printf '- f16: \n```\n%s\n```\n' "$(cat $OUT/${ci}-tg-f16.log)"
gg_printf '- q8_0:\n```\n%s\n```\n' "$(cat $OUT/${ci}-tg-q8_0.log)"
gg_printf '- q4_0:\n```\n%s\n```\n' "$(cat $OUT/${ci}-tg-q4_0.log)"
gg_printf '- q4_1:\n```\n%s\n```\n' "$(cat $OUT/${ci}-tg-q4_1.log)"
gg_printf '- q5_0:\n```\n%s\n```\n' "$(cat $OUT/${ci}-tg-q5_0.log)"
gg_printf '- q5_1:\n```\n%s\n```\n' "$(cat $OUT/${ci}-tg-q5_1.log)"
gg_printf '- q2_k:\n```\n%s\n```\n' "$(cat $OUT/${ci}-tg-q2_k.log)"
gg_printf '- q3_k:\n```\n%s\n```\n' "$(cat $OUT/${ci}-tg-q3_k.log)"
gg_printf '- q4_k:\n```\n%s\n```\n' "$(cat $OUT/${ci}-tg-q4_k.log)"
gg_printf '- q5_k:\n```\n%s\n```\n' "$(cat $OUT/${ci}-tg-q5_k.log)"
gg_printf '- q6_k:\n```\n%s\n```\n' "$(cat $OUT/${ci}-tg-q6_k.log)"
gg_printf '- save-load-state: \n```\n%s\n```\n' "$(cat $OUT/${ci}-save-load-state.log)"
}
# open_llama_7b_v2 # open_llama_7b_v2
# requires: GG_BUILD_CUDA # requires: GG_BUILD_CUDA
@ -417,7 +287,7 @@ function gg_run_open_llama_7b_v2 {
(time cmake -DCMAKE_BUILD_TYPE=Release ${CMAKE_EXTRA} -DLLAMA_CUDA=1 .. ) 2>&1 | tee -a $OUT/${ci}-cmake.log (time cmake -DCMAKE_BUILD_TYPE=Release ${CMAKE_EXTRA} -DLLAMA_CUDA=1 .. ) 2>&1 | tee -a $OUT/${ci}-cmake.log
(time make -j ) 2>&1 | tee -a $OUT/${ci}-make.log (time make -j ) 2>&1 | tee -a $OUT/${ci}-make.log
python3 ../convert.py ${path_models} python3 ../convert.py ${path_models} --outfile ${path_models}/ggml-model-f16.gguf
model_f16="${path_models}/ggml-model-f16.gguf" model_f16="${path_models}/ggml-model-f16.gguf"
model_q8_0="${path_models}/ggml-model-q8_0.gguf" model_q8_0="${path_models}/ggml-model-q8_0.gguf"
@ -526,6 +396,272 @@ function gg_sum_open_llama_7b_v2 {
gg_printf '- save-load-state: \n```\n%s\n```\n' "$(cat $OUT/${ci}-save-load-state.log)" gg_printf '- save-load-state: \n```\n%s\n```\n' "$(cat $OUT/${ci}-save-load-state.log)"
} }
# pythia_1.4b
function gg_run_pythia_1_4b {
cd ${SRC}
gg_wget models-mnt/pythia/1.4B/ https://huggingface.co/EleutherAI/pythia-1.4b/raw/main/config.json
gg_wget models-mnt/pythia/1.4B/ https://huggingface.co/EleutherAI/pythia-1.4b/raw/main/tokenizer.json
gg_wget models-mnt/pythia/1.4B/ https://huggingface.co/EleutherAI/pythia-1.4b/raw/main/tokenizer_config.json
gg_wget models-mnt/pythia/1.4B/ https://huggingface.co/EleutherAI/pythia-1.4b/raw/main/special_tokens_map.json
gg_wget models-mnt/pythia/1.4B/ https://huggingface.co/EleutherAI/pythia-1.4b/resolve/main/pytorch_model.bin
gg_wget models-mnt/wikitext/ https://huggingface.co/datasets/ggml-org/ci/resolve/main/wikitext-2-raw-v1.zip
unzip -o models-mnt/wikitext/wikitext-2-raw-v1.zip -d models-mnt/wikitext/
head -n 60 models-mnt/wikitext/wikitext-2-raw/wiki.test.raw > models-mnt/wikitext/wikitext-2-raw/wiki.test-60.raw
path_models="../models-mnt/pythia/1.4B"
path_wiki="../models-mnt/wikitext/wikitext-2-raw"
rm -rf build-ci-release && mkdir build-ci-release && cd build-ci-release
set -e
(time cmake -DCMAKE_BUILD_TYPE=Release ${CMAKE_EXTRA} .. ) 2>&1 | tee -a $OUT/${ci}-cmake.log
(time make -j ) 2>&1 | tee -a $OUT/${ci}-make.log
python3 ../convert-hf-to-gguf.py ${path_models} --outfile ${path_models}/ggml-model-f16.gguf
model_f16="${path_models}/ggml-model-f16.gguf"
model_q8_0="${path_models}/ggml-model-q8_0.gguf"
model_q4_0="${path_models}/ggml-model-q4_0.gguf"
model_q4_1="${path_models}/ggml-model-q4_1.gguf"
model_q5_0="${path_models}/ggml-model-q5_0.gguf"
model_q5_1="${path_models}/ggml-model-q5_1.gguf"
model_q2_k="${path_models}/ggml-model-q2_k.gguf"
model_q3_k="${path_models}/ggml-model-q3_k.gguf"
model_q4_k="${path_models}/ggml-model-q4_k.gguf"
model_q5_k="${path_models}/ggml-model-q5_k.gguf"
model_q6_k="${path_models}/ggml-model-q6_k.gguf"
wiki_test_60="${path_wiki}/wiki.test-60.raw"
./bin/quantize ${model_f16} ${model_q8_0} q8_0
./bin/quantize ${model_f16} ${model_q4_0} q4_0
./bin/quantize ${model_f16} ${model_q4_1} q4_1
./bin/quantize ${model_f16} ${model_q5_0} q5_0
./bin/quantize ${model_f16} ${model_q5_1} q5_1
./bin/quantize ${model_f16} ${model_q2_k} q2_k
./bin/quantize ${model_f16} ${model_q3_k} q3_k
./bin/quantize ${model_f16} ${model_q4_k} q4_k
./bin/quantize ${model_f16} ${model_q5_k} q5_k
./bin/quantize ${model_f16} ${model_q6_k} q6_k
(time ./bin/main --model ${model_f16} -s 1234 -n 64 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-f16.log
(time ./bin/main --model ${model_q8_0} -s 1234 -n 64 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q8_0.log
(time ./bin/main --model ${model_q4_0} -s 1234 -n 64 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q4_0.log
(time ./bin/main --model ${model_q4_1} -s 1234 -n 64 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q4_1.log
(time ./bin/main --model ${model_q5_0} -s 1234 -n 64 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q5_0.log
(time ./bin/main --model ${model_q5_1} -s 1234 -n 64 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q5_1.log
(time ./bin/main --model ${model_q2_k} -s 1234 -n 64 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q2_k.log
(time ./bin/main --model ${model_q3_k} -s 1234 -n 64 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q3_k.log
(time ./bin/main --model ${model_q4_k} -s 1234 -n 64 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q4_k.log
(time ./bin/main --model ${model_q5_k} -s 1234 -n 64 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q5_k.log
(time ./bin/main --model ${model_q6_k} -s 1234 -n 64 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q6_k.log
(time ./bin/perplexity --model ${model_f16} -f ${wiki_test_60} -c 128 -b 128 --chunks 1 ) 2>&1 | tee -a $OUT/${ci}-tg-f16.log
(time ./bin/perplexity --model ${model_q8_0} -f ${wiki_test_60} -c 128 -b 128 --chunks 1 ) 2>&1 | tee -a $OUT/${ci}-tg-q8_0.log
(time ./bin/perplexity --model ${model_q4_0} -f ${wiki_test_60} -c 128 -b 128 --chunks 1 ) 2>&1 | tee -a $OUT/${ci}-tg-q4_0.log
(time ./bin/perplexity --model ${model_q4_1} -f ${wiki_test_60} -c 128 -b 128 --chunks 1 ) 2>&1 | tee -a $OUT/${ci}-tg-q4_1.log
(time ./bin/perplexity --model ${model_q5_0} -f ${wiki_test_60} -c 128 -b 128 --chunks 1 ) 2>&1 | tee -a $OUT/${ci}-tg-q5_0.log
(time ./bin/perplexity --model ${model_q5_1} -f ${wiki_test_60} -c 128 -b 128 --chunks 1 ) 2>&1 | tee -a $OUT/${ci}-tg-q5_1.log
(time ./bin/perplexity --model ${model_q2_k} -f ${wiki_test_60} -c 128 -b 128 --chunks 1 ) 2>&1 | tee -a $OUT/${ci}-tg-q2_k.log
(time ./bin/perplexity --model ${model_q3_k} -f ${wiki_test_60} -c 128 -b 128 --chunks 1 ) 2>&1 | tee -a $OUT/${ci}-tg-q3_k.log
(time ./bin/perplexity --model ${model_q4_k} -f ${wiki_test_60} -c 128 -b 128 --chunks 1 ) 2>&1 | tee -a $OUT/${ci}-tg-q4_k.log
(time ./bin/perplexity --model ${model_q5_k} -f ${wiki_test_60} -c 128 -b 128 --chunks 1 ) 2>&1 | tee -a $OUT/${ci}-tg-q5_k.log
(time ./bin/perplexity --model ${model_q6_k} -f ${wiki_test_60} -c 128 -b 128 --chunks 1 ) 2>&1 | tee -a $OUT/${ci}-tg-q6_k.log
(time ./bin/imatrix --model ${model_f16} -f ${wiki_test_60} -c 128 -b 128 --chunks 1 ) 2>&1 | tee -a $OUT/${ci}-imatrix.log
(time ./bin/save-load-state --model ${model_q4_0} ) 2>&1 | tee -a $OUT/${ci}-save-load-state.log
(time ./bin/save-load-state -fa --model ${model_q4_0} ) 2>&1 | tee -a $OUT/${ci}-save-load-state.log
function check_ppl {
qnt="$1"
ppl=$(echo "$2" | grep -oE "[0-9]+\.[0-9]+" | tail -n 1)
if [ $(echo "$ppl > 20.0" | bc) -eq 1 ]; then
printf ' - %s @ %s (FAIL: ppl > 20.0)\n' "$qnt" "$ppl"
return 20
fi
printf ' - %s @ %s OK\n' "$qnt" "$ppl"
return 0
}
check_ppl "f16" "$(cat $OUT/${ci}-tg-f16.log | grep "^\[1\]")" | tee -a $OUT/${ci}-ppl.log
check_ppl "q8_0" "$(cat $OUT/${ci}-tg-q8_0.log | grep "^\[1\]")" | tee -a $OUT/${ci}-ppl.log
check_ppl "q4_0" "$(cat $OUT/${ci}-tg-q4_0.log | grep "^\[1\]")" | tee -a $OUT/${ci}-ppl.log
check_ppl "q4_1" "$(cat $OUT/${ci}-tg-q4_1.log | grep "^\[1\]")" | tee -a $OUT/${ci}-ppl.log
check_ppl "q5_0" "$(cat $OUT/${ci}-tg-q5_0.log | grep "^\[1\]")" | tee -a $OUT/${ci}-ppl.log
check_ppl "q5_1" "$(cat $OUT/${ci}-tg-q5_1.log | grep "^\[1\]")" | tee -a $OUT/${ci}-ppl.log
#check_ppl "q2_k" "$(cat $OUT/${ci}-tg-q2_k.log | grep "^\[1\]")" | tee -a $OUT/${ci}-ppl.log # note: ppl > 20.0 for this quant and model
check_ppl "q3_k" "$(cat $OUT/${ci}-tg-q3_k.log | grep "^\[1\]")" | tee -a $OUT/${ci}-ppl.log
check_ppl "q4_k" "$(cat $OUT/${ci}-tg-q4_k.log | grep "^\[1\]")" | tee -a $OUT/${ci}-ppl.log
check_ppl "q5_k" "$(cat $OUT/${ci}-tg-q5_k.log | grep "^\[1\]")" | tee -a $OUT/${ci}-ppl.log
check_ppl "q6_k" "$(cat $OUT/${ci}-tg-q6_k.log | grep "^\[1\]")" | tee -a $OUT/${ci}-ppl.log
cat $OUT/${ci}-imatrix.log | grep "Final" >> $OUT/${ci}-imatrix-sum.log
set +e
}
function gg_sum_pythia_1_4b {
gg_printf '### %s\n\n' "${ci}"
gg_printf 'Pythia 1.4B:\n'
gg_printf '- status: %s\n' "$(cat $OUT/${ci}.exit)"
gg_printf '- perplexity:\n%s\n' "$(cat $OUT/${ci}-ppl.log)"
gg_printf '- imatrix:\n```\n%s\n```\n' "$(cat $OUT/${ci}-imatrix-sum.log)"
gg_printf '- f16: \n```\n%s\n```\n' "$(cat $OUT/${ci}-tg-f16.log)"
gg_printf '- q8_0:\n```\n%s\n```\n' "$(cat $OUT/${ci}-tg-q8_0.log)"
gg_printf '- q4_0:\n```\n%s\n```\n' "$(cat $OUT/${ci}-tg-q4_0.log)"
gg_printf '- q4_1:\n```\n%s\n```\n' "$(cat $OUT/${ci}-tg-q4_1.log)"
gg_printf '- q5_0:\n```\n%s\n```\n' "$(cat $OUT/${ci}-tg-q5_0.log)"
gg_printf '- q5_1:\n```\n%s\n```\n' "$(cat $OUT/${ci}-tg-q5_1.log)"
gg_printf '- q2_k:\n```\n%s\n```\n' "$(cat $OUT/${ci}-tg-q2_k.log)"
gg_printf '- q3_k:\n```\n%s\n```\n' "$(cat $OUT/${ci}-tg-q3_k.log)"
gg_printf '- q4_k:\n```\n%s\n```\n' "$(cat $OUT/${ci}-tg-q4_k.log)"
gg_printf '- q5_k:\n```\n%s\n```\n' "$(cat $OUT/${ci}-tg-q5_k.log)"
gg_printf '- q6_k:\n```\n%s\n```\n' "$(cat $OUT/${ci}-tg-q6_k.log)"
gg_printf '- save-load-state: \n```\n%s\n```\n' "$(cat $OUT/${ci}-save-load-state.log)"
}
# pythia_2_8b
# requires: GG_BUILD_CUDA
function gg_run_pythia_2_8b {
cd ${SRC}
gg_wget models-mnt/pythia/2.8B/ https://huggingface.co/EleutherAI/pythia-2.8b/raw/main/config.json
gg_wget models-mnt/pythia/2.8B/ https://huggingface.co/EleutherAI/pythia-2.8b/raw/main/tokenizer.json
gg_wget models-mnt/pythia/2.8B/ https://huggingface.co/EleutherAI/pythia-2.8b/raw/main/tokenizer_config.json
gg_wget models-mnt/pythia/2.8B/ https://huggingface.co/EleutherAI/pythia-2.8b/raw/main/special_tokens_map.json
gg_wget models-mnt/pythia/2.8B/ https://huggingface.co/EleutherAI/pythia-2.8b/resolve/main/pytorch_model.bin
gg_wget models-mnt/wikitext/ https://huggingface.co/datasets/ggml-org/ci/resolve/main/wikitext-2-raw-v1.zip
unzip -o models-mnt/wikitext/wikitext-2-raw-v1.zip -d models-mnt/wikitext/
path_models="../models-mnt/pythia/2.8B"
path_wiki="../models-mnt/wikitext/wikitext-2-raw"
rm -rf build-ci-release && mkdir build-ci-release && cd build-ci-release
set -e
(time cmake -DCMAKE_BUILD_TYPE=Release ${CMAKE_EXTRA} -DLLAMA_CUDA=1 .. ) 2>&1 | tee -a $OUT/${ci}-cmake.log
(time make -j ) 2>&1 | tee -a $OUT/${ci}-make.log
python3 ../convert-hf-to-gguf.py ${path_models} --outfile ${path_models}/ggml-model-f16.gguf
model_f16="${path_models}/ggml-model-f16.gguf"
model_q8_0="${path_models}/ggml-model-q8_0.gguf"
model_q4_0="${path_models}/ggml-model-q4_0.gguf"
model_q4_1="${path_models}/ggml-model-q4_1.gguf"
model_q5_0="${path_models}/ggml-model-q5_0.gguf"
model_q5_1="${path_models}/ggml-model-q5_1.gguf"
model_q2_k="${path_models}/ggml-model-q2_k.gguf"
model_q3_k="${path_models}/ggml-model-q3_k.gguf"
model_q4_k="${path_models}/ggml-model-q4_k.gguf"
model_q5_k="${path_models}/ggml-model-q5_k.gguf"
model_q6_k="${path_models}/ggml-model-q6_k.gguf"
wiki_test="${path_wiki}/wiki.test.raw"
./bin/quantize ${model_f16} ${model_q8_0} q8_0
./bin/quantize ${model_f16} ${model_q4_0} q4_0
./bin/quantize ${model_f16} ${model_q4_1} q4_1
./bin/quantize ${model_f16} ${model_q5_0} q5_0
./bin/quantize ${model_f16} ${model_q5_1} q5_1
./bin/quantize ${model_f16} ${model_q2_k} q2_k
./bin/quantize ${model_f16} ${model_q3_k} q3_k
./bin/quantize ${model_f16} ${model_q4_k} q4_k
./bin/quantize ${model_f16} ${model_q5_k} q5_k
./bin/quantize ${model_f16} ${model_q6_k} q6_k
(time ./bin/main --model ${model_f16} -t 1 -ngl 999 -s 1234 -n 256 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-f16.log
(time ./bin/main --model ${model_q8_0} -t 1 -ngl 999 -s 1234 -n 256 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q8_0.log
(time ./bin/main --model ${model_q4_0} -t 1 -ngl 999 -s 1234 -n 256 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q4_0.log
(time ./bin/main --model ${model_q4_1} -t 1 -ngl 999 -s 1234 -n 256 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q4_1.log
(time ./bin/main --model ${model_q5_0} -t 1 -ngl 999 -s 1234 -n 256 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q5_0.log
(time ./bin/main --model ${model_q5_1} -t 1 -ngl 999 -s 1234 -n 256 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q5_1.log
(time ./bin/main --model ${model_q2_k} -t 1 -ngl 999 -s 1234 -n 256 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q2_k.log
(time ./bin/main --model ${model_q3_k} -t 1 -ngl 999 -s 1234 -n 256 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q3_k.log
(time ./bin/main --model ${model_q4_k} -t 1 -ngl 999 -s 1234 -n 256 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q4_k.log
(time ./bin/main --model ${model_q5_k} -t 1 -ngl 999 -s 1234 -n 256 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q5_k.log
(time ./bin/main --model ${model_q6_k} -t 1 -ngl 999 -s 1234 -n 256 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q6_k.log
(time ./bin/perplexity --model ${model_f16} -f ${wiki_test} -t 1 -ngl 999 -c 2048 -b 512 --chunks 4 ) 2>&1 | tee -a $OUT/${ci}-tg-f16.log
(time ./bin/perplexity --model ${model_q8_0} -f ${wiki_test} -t 1 -ngl 999 -c 2048 -b 512 --chunks 4 ) 2>&1 | tee -a $OUT/${ci}-tg-q8_0.log
(time ./bin/perplexity --model ${model_q4_0} -f ${wiki_test} -t 1 -ngl 999 -c 2048 -b 512 --chunks 4 ) 2>&1 | tee -a $OUT/${ci}-tg-q4_0.log
(time ./bin/perplexity --model ${model_q4_1} -f ${wiki_test} -t 1 -ngl 999 -c 2048 -b 512 --chunks 4 ) 2>&1 | tee -a $OUT/${ci}-tg-q4_1.log
(time ./bin/perplexity --model ${model_q5_0} -f ${wiki_test} -t 1 -ngl 999 -c 2048 -b 512 --chunks 4 ) 2>&1 | tee -a $OUT/${ci}-tg-q5_0.log
(time ./bin/perplexity --model ${model_q5_1} -f ${wiki_test} -t 1 -ngl 999 -c 2048 -b 512 --chunks 4 ) 2>&1 | tee -a $OUT/${ci}-tg-q5_1.log
(time ./bin/perplexity --model ${model_q2_k} -f ${wiki_test} -t 1 -ngl 999 -c 2048 -b 512 --chunks 4 ) 2>&1 | tee -a $OUT/${ci}-tg-q2_k.log
(time ./bin/perplexity --model ${model_q3_k} -f ${wiki_test} -t 1 -ngl 999 -c 2048 -b 512 --chunks 4 ) 2>&1 | tee -a $OUT/${ci}-tg-q3_k.log
(time ./bin/perplexity --model ${model_q4_k} -f ${wiki_test} -t 1 -ngl 999 -c 2048 -b 512 --chunks 4 ) 2>&1 | tee -a $OUT/${ci}-tg-q4_k.log
(time ./bin/perplexity --model ${model_q5_k} -f ${wiki_test} -t 1 -ngl 999 -c 2048 -b 512 --chunks 4 ) 2>&1 | tee -a $OUT/${ci}-tg-q5_k.log
(time ./bin/perplexity --model ${model_q6_k} -f ${wiki_test} -t 1 -ngl 999 -c 2048 -b 512 --chunks 4 ) 2>&1 | tee -a $OUT/${ci}-tg-q6_k.log
(time ./bin/imatrix --model ${model_f16} -f ${wiki_test} -t 1 -ngl 999 -c 2048 -b 512 --chunks 4 ) 2>&1 | tee -a $OUT/${ci}-imatrix.log
(time ./bin/save-load-state -ngl 10 --model ${model_q4_0} ) 2>&1 | tee -a $OUT/${ci}-save-load-state.log
(time ./bin/save-load-state -fa -ngl 10 --model ${model_q4_0} ) 2>&1 | tee -a $OUT/${ci}-save-load-state.log
(time ./bin/save-load-state -ngl 99 --model ${model_q4_0} ) 2>&1 | tee -a $OUT/${ci}-save-load-state.log
(time ./bin/save-load-state -fa -ngl 99 --model ${model_q4_0} ) 2>&1 | tee -a $OUT/${ci}-save-load-state.log
function check_ppl {
qnt="$1"
ppl=$(echo "$2" | grep -oE "[0-9]+\.[0-9]+" | tail -n 1)
if [ $(echo "$ppl > 20.0" | bc) -eq 1 ]; then
printf ' - %s @ %s (FAIL: ppl > 20.0)\n' "$qnt" "$ppl"
return 20
fi
printf ' - %s @ %s OK\n' "$qnt" "$ppl"
return 0
}
check_ppl "f16" "$(cat $OUT/${ci}-tg-f16.log | grep "^\[1\]")" | tee -a $OUT/${ci}-ppl.log
check_ppl "q8_0" "$(cat $OUT/${ci}-tg-q8_0.log | grep "^\[1\]")" | tee -a $OUT/${ci}-ppl.log
check_ppl "q4_0" "$(cat $OUT/${ci}-tg-q4_0.log | grep "^\[1\]")" | tee -a $OUT/${ci}-ppl.log
check_ppl "q4_1" "$(cat $OUT/${ci}-tg-q4_1.log | grep "^\[1\]")" | tee -a $OUT/${ci}-ppl.log
check_ppl "q5_0" "$(cat $OUT/${ci}-tg-q5_0.log | grep "^\[1\]")" | tee -a $OUT/${ci}-ppl.log
check_ppl "q5_1" "$(cat $OUT/${ci}-tg-q5_1.log | grep "^\[1\]")" | tee -a $OUT/${ci}-ppl.log
#check_ppl "q2_k" "$(cat $OUT/${ci}-tg-q2_k.log | grep "^\[1\]")" | tee -a $OUT/${ci}-ppl.log # note: ppl > 20.0 for this quant and model
check_ppl "q3_k" "$(cat $OUT/${ci}-tg-q3_k.log | grep "^\[1\]")" | tee -a $OUT/${ci}-ppl.log
check_ppl "q4_k" "$(cat $OUT/${ci}-tg-q4_k.log | grep "^\[1\]")" | tee -a $OUT/${ci}-ppl.log
check_ppl "q5_k" "$(cat $OUT/${ci}-tg-q5_k.log | grep "^\[1\]")" | tee -a $OUT/${ci}-ppl.log
check_ppl "q6_k" "$(cat $OUT/${ci}-tg-q6_k.log | grep "^\[1\]")" | tee -a $OUT/${ci}-ppl.log
cat $OUT/${ci}-imatrix.log | grep "Final" >> $OUT/${ci}-imatrix-sum.log
set +e
}
function gg_sum_pythia_2_8b {
gg_printf '### %s\n\n' "${ci}"
gg_printf 'Pythia 2.8B:\n'
gg_printf '- status: %s\n' "$(cat $OUT/${ci}.exit)"
gg_printf '- perplexity:\n%s\n' "$(cat $OUT/${ci}-ppl.log)"
gg_printf '- imatrix:\n```\n%s\n```\n' "$(cat $OUT/${ci}-imatrix-sum.log)"
gg_printf '- f16: \n```\n%s\n```\n' "$(cat $OUT/${ci}-tg-f16.log)"
gg_printf '- q8_0:\n```\n%s\n```\n' "$(cat $OUT/${ci}-tg-q8_0.log)"
gg_printf '- q4_0:\n```\n%s\n```\n' "$(cat $OUT/${ci}-tg-q4_0.log)"
gg_printf '- q4_1:\n```\n%s\n```\n' "$(cat $OUT/${ci}-tg-q4_1.log)"
gg_printf '- q5_0:\n```\n%s\n```\n' "$(cat $OUT/${ci}-tg-q5_0.log)"
gg_printf '- q5_1:\n```\n%s\n```\n' "$(cat $OUT/${ci}-tg-q5_1.log)"
gg_printf '- q2_k:\n```\n%s\n```\n' "$(cat $OUT/${ci}-tg-q2_k.log)"
gg_printf '- q3_k:\n```\n%s\n```\n' "$(cat $OUT/${ci}-tg-q3_k.log)"
gg_printf '- q4_k:\n```\n%s\n```\n' "$(cat $OUT/${ci}-tg-q4_k.log)"
gg_printf '- q5_k:\n```\n%s\n```\n' "$(cat $OUT/${ci}-tg-q5_k.log)"
gg_printf '- q6_k:\n```\n%s\n```\n' "$(cat $OUT/${ci}-tg-q6_k.log)"
gg_printf '- save-load-state: \n```\n%s\n```\n' "$(cat $OUT/${ci}-save-load-state.log)"
}
# bge-small # bge-small
function gg_run_embd_bge_small { function gg_run_embd_bge_small {
@ -552,7 +688,7 @@ function gg_run_embd_bge_small {
(time cmake -DCMAKE_BUILD_TYPE=Release ${CMAKE_EXTRA} .. ) 2>&1 | tee -a $OUT/${ci}-cmake.log (time cmake -DCMAKE_BUILD_TYPE=Release ${CMAKE_EXTRA} .. ) 2>&1 | tee -a $OUT/${ci}-cmake.log
(time make -j ) 2>&1 | tee -a $OUT/${ci}-make.log (time make -j ) 2>&1 | tee -a $OUT/${ci}-make.log
python3 ../convert-hf-to-gguf.py ${path_models} python3 ../convert-hf-to-gguf.py ${path_models} --outfile ${path_models}/ggml-model-f16.gguf
model_f16="${path_models}/ggml-model-f16.gguf" model_f16="${path_models}/ggml-model-f16.gguf"
model_q8_0="${path_models}/ggml-model-q8_0.gguf" model_q8_0="${path_models}/ggml-model-q8_0.gguf"
@ -606,10 +742,10 @@ if [ -z ${GG_BUILD_LOW_PERF} ]; then
if [ -z ${GG_BUILD_VRAM_GB} ] || [ ${GG_BUILD_VRAM_GB} -ge 8 ]; then if [ -z ${GG_BUILD_VRAM_GB} ] || [ ${GG_BUILD_VRAM_GB} -ge 8 ]; then
if [ -z ${GG_BUILD_CUDA} ]; then if [ -z ${GG_BUILD_CUDA} ]; then
#test $ret -eq 0 && gg_run open_llama_3b_v2 test $ret -eq 0 && gg_run pythia_1_4b
date # dummy
else else
test $ret -eq 0 && gg_run open_llama_7b_v2 test $ret -eq 0 && gg_run pythia_2_8b
#test $ret -eq 0 && gg_run open_llama_7b_v2
fi fi
test $ret -eq 0 && gg_run ctest_with_model_debug test $ret -eq 0 && gg_run ctest_with_model_debug
test $ret -eq 0 && gg_run ctest_with_model_release test $ret -eq 0 && gg_run ctest_with_model_release

View File

@ -904,6 +904,10 @@ bool gpt_params_find_arg(int argc, char ** argv, const std::string & arg, gpt_pa
params.interactive_specials = true; params.interactive_specials = true;
return true; return true;
} }
if (arg == "--special") {
params.special = true;
return true;
}
if (arg == "--embedding") { if (arg == "--embedding") {
params.embedding = true; params.embedding = true;
return true; return true;
@ -1362,6 +1366,7 @@ void gpt_params_print_usage(int /*argc*/, char ** argv, const gpt_params & param
printf(" -h, --help show this help message and exit\n"); printf(" -h, --help show this help message and exit\n");
printf(" --version show version and build info\n"); printf(" --version show version and build info\n");
printf(" -i, --interactive run in interactive mode\n"); printf(" -i, --interactive run in interactive mode\n");
printf(" --special special tokens output enabled\n");
printf(" --interactive-specials allow special tokens in user text, in interactive mode\n"); printf(" --interactive-specials allow special tokens in user text, in interactive mode\n");
printf(" --interactive-first run in interactive mode and wait for input right away\n"); printf(" --interactive-first run in interactive mode and wait for input right away\n");
printf(" -cnv, --conversation run in conversation mode (does not print special tokens and suffix/prefix)\n"); printf(" -cnv, --conversation run in conversation mode (does not print special tokens and suffix/prefix)\n");
@ -1855,11 +1860,15 @@ bool fs_create_directory_with_parents(const std::string & path) {
std::string fs_get_cache_directory() { std::string fs_get_cache_directory() {
std::string cache_directory = ""; std::string cache_directory = "";
auto ensure_trailing_slash = [](std::string p) {
// Make sure to add trailing slash
if (p.back() != DIRECTORY_SEPARATOR) {
p += DIRECTORY_SEPARATOR;
}
return p;
};
if (getenv("LLAMA_CACHE")) { if (getenv("LLAMA_CACHE")) {
cache_directory = std::getenv("LLAMA_CACHE"); cache_directory = std::getenv("LLAMA_CACHE");
if (cache_directory.back() != DIRECTORY_SEPARATOR) {
cache_directory += DIRECTORY_SEPARATOR;
}
} else { } else {
#ifdef __linux__ #ifdef __linux__
if (std::getenv("XDG_CACHE_HOME")) { if (std::getenv("XDG_CACHE_HOME")) {
@ -1870,12 +1879,12 @@ std::string fs_get_cache_directory() {
#elif defined(__APPLE__) #elif defined(__APPLE__)
cache_directory = std::getenv("HOME") + std::string("/Library/Caches/"); cache_directory = std::getenv("HOME") + std::string("/Library/Caches/");
#elif defined(_WIN32) #elif defined(_WIN32)
cache_directory = std::getenv("APPDATA"); cache_directory = std::getenv("LOCALAPPDATA");
#endif // __linux__ #endif // __linux__
cache_directory = ensure_trailing_slash(cache_directory);
cache_directory += "llama.cpp"; cache_directory += "llama.cpp";
cache_directory += DIRECTORY_SEPARATOR;
} }
return cache_directory; return ensure_trailing_slash(cache_directory);
} }
@ -2840,6 +2849,7 @@ void yaml_dump_non_result_info(FILE * stream, const gpt_params & params, const l
fprintf(stream, "cpu_has_fma: %s\n", ggml_cpu_has_fma() ? "true" : "false"); fprintf(stream, "cpu_has_fma: %s\n", ggml_cpu_has_fma() ? "true" : "false");
fprintf(stream, "cpu_has_gpublas: %s\n", ggml_cpu_has_gpublas() ? "true" : "false"); fprintf(stream, "cpu_has_gpublas: %s\n", ggml_cpu_has_gpublas() ? "true" : "false");
fprintf(stream, "cpu_has_neon: %s\n", ggml_cpu_has_neon() ? "true" : "false"); fprintf(stream, "cpu_has_neon: %s\n", ggml_cpu_has_neon() ? "true" : "false");
fprintf(stream, "cpu_has_sve: %s\n", ggml_cpu_has_sve() ? "true" : "false");
fprintf(stream, "cpu_has_f16c: %s\n", ggml_cpu_has_f16c() ? "true" : "false"); fprintf(stream, "cpu_has_f16c: %s\n", ggml_cpu_has_f16c() ? "true" : "false");
fprintf(stream, "cpu_has_fp16_va: %s\n", ggml_cpu_has_fp16_va() ? "true" : "false"); fprintf(stream, "cpu_has_fp16_va: %s\n", ggml_cpu_has_fp16_va() ? "true" : "false");
fprintf(stream, "cpu_has_wasm_simd: %s\n", ggml_cpu_has_wasm_simd() ? "true" : "false"); fprintf(stream, "cpu_has_wasm_simd: %s\n", ggml_cpu_has_wasm_simd() ? "true" : "false");

View File

@ -146,6 +146,7 @@ struct gpt_params {
bool use_color = false; // use color to distinguish generations and inputs bool use_color = false; // use color to distinguish generations and inputs
bool interactive = false; // interactive mode bool interactive = false; // interactive mode
bool interactive_specials = false; // whether to allow special tokens from user, during interactive mode bool interactive_specials = false; // whether to allow special tokens from user, during interactive mode
bool special = false; // enable special token output
bool conversation = false; // conversation mode (does not print special tokens and suffix/prefix) bool conversation = false; // conversation mode (does not print special tokens and suffix/prefix)
bool chatml = false; // chatml mode (used for models trained on chatml syntax) bool chatml = false; // chatml mode (used for models trained on chatml syntax)
bool prompt_cache_all = false; // save user input and generations to prompt cache bool prompt_cache_all = false; // save user input and generations to prompt cache

View File

@ -1052,7 +1052,7 @@ struct train_params_common get_default_train_params_common() {
params.custom_n_ctx = false; params.custom_n_ctx = false;
params.use_flash = true; params.use_flash = false;
params.use_checkpointing = true; params.use_checkpointing = true;
params.sample_start = ""; params.sample_start = "";

View File

@ -81,6 +81,7 @@ models = [
{"name": "jina-v2-en", "tokt": TOKENIZER_TYPE.WPM, "repo": "https://huggingface.co/jinaai/jina-embeddings-v2-base-en", }, # WPM! {"name": "jina-v2-en", "tokt": TOKENIZER_TYPE.WPM, "repo": "https://huggingface.co/jinaai/jina-embeddings-v2-base-en", }, # WPM!
{"name": "jina-v2-es", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/jinaai/jina-embeddings-v2-base-es", }, {"name": "jina-v2-es", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/jinaai/jina-embeddings-v2-base-es", },
{"name": "jina-v2-de", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/jinaai/jina-embeddings-v2-base-de", }, {"name": "jina-v2-de", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/jinaai/jina-embeddings-v2-base-de", },
{"name": "smaug-bpe", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/abacusai/Smaug-Llama-3-70B-Instruct", },
] ]

View File

@ -313,11 +313,10 @@ class Model:
data = data.astype(np.float32) data = data.astype(np.float32)
data_qtype = gguf.GGMLQuantizationType.F32 data_qtype = gguf.GGMLQuantizationType.F32
block_size, type_size = gguf.GGML_QUANT_SIZES[data_qtype] shape = gguf.quant_shape_from_byte_shape(data.shape, data_qtype) if data.dtype == np.uint8 else data.shape
# reverse shape to make it similar to the internal ggml dimension order # reverse shape to make it similar to the internal ggml dimension order
shape_str = f"""{{{', '.join(str(n) for n in reversed( shape_str = f"{{{', '.join(str(n) for n in reversed(shape))}}}"
(*data.shape[:-1], data.shape[-1] * data.dtype.itemsize // type_size * block_size))
)}}}"""
# n_dims is implicit in the shape # n_dims is implicit in the shape
logger.info(f"{f'%-{max_name_len}s' % f'{new_name},'} {old_dtype} --> {data_qtype.name}, shape = {shape_str}") logger.info(f"{f'%-{max_name_len}s' % f'{new_name},'} {old_dtype} --> {data_qtype.name}, shape = {shape_str}")
@ -474,6 +473,9 @@ class Model:
if chkhsh == "27949a2493fc4a9f53f5b9b029c82689cfbe5d3a1929bb25e043089e28466de6": if chkhsh == "27949a2493fc4a9f53f5b9b029c82689cfbe5d3a1929bb25e043089e28466de6":
# ref: https://huggingface.co/jinaai/jina-embeddings-v2-base-de # ref: https://huggingface.co/jinaai/jina-embeddings-v2-base-de
res = "jina-v2-de" res = "jina-v2-de"
if chkhsh == "c136ed14d01c2745d4f60a9596ae66800e2b61fa45643e72436041855ad4089d":
# ref: https://huggingface.co/abacusai/Smaug-Llama-3-70B-Instruct
res = "smaug-bpe"
if res is None: if res is None:
logger.warning("\n") logger.warning("\n")
@ -2355,7 +2357,8 @@ class CommandR2Model(Model):
# max_position_embeddings = 8192 in config.json but model was actually # max_position_embeddings = 8192 in config.json but model was actually
# trained on 128k context length # trained on 128k context length
self.hparams["max_position_embeddings"] = self.hparams["model_max_length"] # aya-23 models don't have model_max_length specified
self.hparams["max_position_embeddings"] = self.find_hparam(["model_max_length", "max_position_embeddings"])
def set_gguf_parameters(self): def set_gguf_parameters(self):
super().set_gguf_parameters() super().set_gguf_parameters()
@ -2428,6 +2431,236 @@ class JinaBertV2Model(BertModel):
self.gguf_writer.add_add_eos_token(True) self.gguf_writer.add_add_eos_token(True)
@Model.register("ArcticForCausalLM")
class ArcticModel(Model):
model_arch = gguf.MODEL_ARCH.ARCTIC
def set_vocab(self):
# The reason for using a custom implementation here is that the
# snowflake-arctic-instruct model redefined tokens 31998 and 31999 from
# tokenizer.model and used them as BOS and EOS instead of adding new tokens.
from sentencepiece import SentencePieceProcessor
tokenizer_path = self.dir_model / 'tokenizer.model'
if not tokenizer_path.is_file():
logger.error(f'Error: Missing {tokenizer_path}')
sys.exit(1)
# Read the whole vocabulary from the tokenizer.model file
tokenizer = SentencePieceProcessor()
tokenizer.LoadFromFile(str(tokenizer_path))
vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
tokens: list[bytes] = [f"[PAD{i}]".encode("utf-8") for i in range(vocab_size)]
scores: list[float] = [-10000.0] * vocab_size
toktypes: list[int] = [SentencePieceTokenTypes.UNKNOWN] * vocab_size
for token_id in range(tokenizer.vocab_size()):
piece = tokenizer.IdToPiece(token_id)
text = piece.encode("utf-8")
score = tokenizer.GetScore(token_id)
toktype = SentencePieceTokenTypes.NORMAL
if tokenizer.IsUnknown(token_id):
toktype = SentencePieceTokenTypes.UNKNOWN
elif tokenizer.IsControl(token_id):
toktype = SentencePieceTokenTypes.CONTROL
elif tokenizer.IsUnused(token_id):
toktype = SentencePieceTokenTypes.UNUSED
elif tokenizer.IsByte(token_id):
toktype = SentencePieceTokenTypes.BYTE
tokens[token_id] = text
scores[token_id] = score
toktypes[token_id] = toktype
# Use the added_tokens_decoder field from tokeniser_config.json as the source
# of information about added/redefined tokens and modify them accordingly.
tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
if tokenizer_config_file.is_file():
with open(tokenizer_config_file, "r", encoding="utf-8") as f:
tokenizer_config_json = json.load(f)
if "added_tokens_decoder" in tokenizer_config_json:
added_tokens_decoder = tokenizer_config_json["added_tokens_decoder"]
for token_id, token_json in added_tokens_decoder.items():
token_id = int(token_id)
if (token_id >= vocab_size):
logger.debug(f'ignore token {token_id}: id is out of range, max={vocab_size - 1}')
continue
token_content = token_json["content"]
token_type = SentencePieceTokenTypes.USER_DEFINED
token_score = -10000.0
# Map unk_token to UNKNOWN, other special tokens to CONTROL
# Set the score to 0.0 as in the original tokenizer.model
if ("special" in token_json) and token_json["special"]:
if token_content == tokenizer_config_json["unk_token"]:
token_type = SentencePieceTokenTypes.UNKNOWN
else:
token_type = SentencePieceTokenTypes.CONTROL
token_score = 0.0
logger.info(f"Setting added token {token_id} to '{token_content}' (type: {token_type}, score: {token_score:.2f})")
tokens[token_id] = token_content.encode("utf-8")
toktypes[token_id] = token_type
scores[token_id] = token_score
self.gguf_writer.add_tokenizer_model("llama")
self.gguf_writer.add_tokenizer_pre("default")
self.gguf_writer.add_token_list(tokens)
self.gguf_writer.add_token_scores(scores)
self.gguf_writer.add_token_types(toktypes)
special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
special_vocab.add_to_gguf(self.gguf_writer)
def set_gguf_parameters(self):
super().set_gguf_parameters()
hparams = self.hparams
self.gguf_writer.add_vocab_size(hparams["vocab_size"])
self.gguf_writer.add_rope_dimension_count(hparams["hidden_size"] // hparams["num_attention_heads"])
_experts: list[dict[str, Tensor]] | None = None
def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
n_head = self.hparams["num_attention_heads"]
n_kv_head = self.hparams.get("num_key_value_heads")
if name.endswith("q_proj.weight"):
data_torch = LlamaModel.permute(data_torch, n_head, n_head)
if name.endswith("k_proj.weight"):
data_torch = LlamaModel.permute(data_torch, n_head, n_kv_head)
# process the experts separately
if name.find("block_sparse_moe.experts") != -1:
n_experts = self.hparams["num_local_experts"]
assert bid is not None
if self._experts is None:
self._experts = [{} for _ in range(self.block_count)]
self._experts[bid][name] = data_torch
if len(self._experts[bid]) >= n_experts * 3:
tensors: list[tuple[str, Tensor]] = []
# merge the experts into a single 3d tensor
for wid in ["w1", "w2", "w3"]:
datas: list[Tensor] = []
for xid in range(n_experts):
ename = f"model.layers.{bid}.block_sparse_moe.experts.{xid}.{wid}.weight"
datas.append(self._experts[bid][ename])
del self._experts[bid][ename]
data_torch = torch.stack(datas, dim=0)
merged_name = f"layers.{bid}.feed_forward.experts.{wid}.weight"
new_name = self.map_tensor_name(merged_name)
tensors.append((new_name, data_torch))
return tensors
else:
return []
return [(self.map_tensor_name(name), data_torch)]
def write_tensors(self):
super().write_tensors()
if self._experts is not None:
# flatten `list[dict[str, Tensor]]` into `list[str]`
experts = [k for d in self._experts for k in d.keys()]
if len(experts) > 0:
raise ValueError(f"Unprocessed experts: {experts}")
@Model.register("DeepseekV2ForCausalLM")
class DeepseekV2Model(Model):
model_arch = gguf.MODEL_ARCH.DEEPSEEK2
def set_vocab(self):
self._set_vocab_gpt2()
def set_gguf_parameters(self):
super().set_gguf_parameters()
hparams = self.hparams
self.gguf_writer.add_leading_dense_block_count(hparams["first_k_dense_replace"])
self.gguf_writer.add_vocab_size(hparams["vocab_size"])
if "q_lora_rank" in hparams and hparams["q_lora_rank"] is not None:
self.gguf_writer.add_q_lora_rank(hparams["q_lora_rank"])
self.gguf_writer.add_kv_lora_rank(hparams["kv_lora_rank"])
self.gguf_writer.add_key_length(hparams["qk_nope_head_dim"] + hparams["qk_rope_head_dim"])
self.gguf_writer.add_value_length(hparams["v_head_dim"])
self.gguf_writer.add_expert_feed_forward_length(hparams["moe_intermediate_size"])
self.gguf_writer.add_expert_count(hparams["n_routed_experts"])
self.gguf_writer.add_expert_shared_count(hparams["n_shared_experts"])
self.gguf_writer.add_expert_weights_scale(hparams["routed_scaling_factor"])
self.gguf_writer.add_rope_dimension_count(hparams["qk_rope_head_dim"])
if self.hparams.get("rope_scaling") is not None and "factor" in self.hparams["rope_scaling"]:
if self.hparams["rope_scaling"].get("type") == "yarn":
self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.YARN)
self.gguf_writer.add_rope_scaling_factor(self.hparams["rope_scaling"]["factor"])
self.gguf_writer.add_rope_scaling_orig_ctx_len(self.hparams["rope_scaling"]["original_max_position_embeddings"])
self.gguf_writer.add_rope_scaling_yarn_log_mul(0.1 * hparams["rope_scaling"]["mscale_all_dim"])
_experts: list[dict[str, Tensor]] | None = None
def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
# process the experts separately
if name.find("mlp.experts") != -1:
n_experts = self.hparams["n_routed_experts"]
assert bid is not None
if self._experts is None:
self._experts = [{} for _ in range(self.block_count)]
self._experts[bid][name] = data_torch
if len(self._experts[bid]) >= n_experts * 3:
tensors: list[tuple[str, Tensor]] = []
# merge the experts into a single 3d tensor
for w_name in ["down_proj", "gate_proj", "up_proj"]:
datas: list[Tensor] = []
for xid in range(n_experts):
ename = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
datas.append(self._experts[bid][ename])
del self._experts[bid][ename]
data_torch = torch.stack(datas, dim=0)
merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
new_name = self.map_tensor_name(merged_name)
tensors.append((new_name, data_torch))
return tensors
else:
return []
return [(self.map_tensor_name(name), data_torch)]
def write_tensors(self):
super().write_tensors()
if self._experts is not None:
# flatten `list[dict[str, Tensor]]` into `list[str]`
experts = [k for d in self._experts for k in d.keys()]
if len(experts) > 0:
raise ValueError(f"Unprocessed experts: {experts}")
###### CONVERSION LOGIC ###### ###### CONVERSION LOGIC ######

View File

@ -774,7 +774,7 @@ static struct train_params get_default_train_params() {
params.samples_start_after_nl = false; params.samples_start_after_nl = false;
params.use_adam = true; params.use_adam = true;
params.use_flash = true; params.use_flash = false;
params.use_scratch = true; params.use_scratch = true;
// only adam // only adam

View File

@ -7,8 +7,6 @@ android {
namespace = "com.example.llama" namespace = "com.example.llama"
compileSdk = 34 compileSdk = 34
ndkVersion = "26.1.10909125"
defaultConfig { defaultConfig {
applicationId = "com.example.llama" applicationId = "com.example.llama"
minSdk = 33 minSdk = 33
@ -20,17 +18,6 @@ android {
vectorDrawables { vectorDrawables {
useSupportLibrary = true useSupportLibrary = true
} }
ndk {
// Add NDK properties if wanted, e.g.
// abiFilters += listOf("arm64-v8a")
}
externalNativeBuild {
cmake {
arguments += "-DCMAKE_BUILD_TYPE=Release"
cppFlags += listOf()
arguments += listOf()
}
}
} }
buildTypes { buildTypes {
@ -55,17 +42,6 @@ android {
composeOptions { composeOptions {
kotlinCompilerExtensionVersion = "1.5.1" kotlinCompilerExtensionVersion = "1.5.1"
} }
packaging {
resources {
excludes += "/META-INF/{AL2.0,LGPL2.1}"
}
}
externalNativeBuild {
cmake {
path = file("src/main/cpp/CMakeLists.txt")
version = "3.22.1"
}
}
} }
dependencies { dependencies {
@ -78,6 +54,7 @@ dependencies {
implementation("androidx.compose.ui:ui-graphics") implementation("androidx.compose.ui:ui-graphics")
implementation("androidx.compose.ui:ui-tooling-preview") implementation("androidx.compose.ui:ui-tooling-preview")
implementation("androidx.compose.material3:material3") implementation("androidx.compose.material3:material3")
implementation(project(":llama"))
testImplementation("junit:junit:4.13.2") testImplementation("junit:junit:4.13.2")
androidTestImplementation("androidx.test.ext:junit:1.1.5") androidTestImplementation("androidx.test.ext:junit:1.1.5")
androidTestImplementation("androidx.test.espresso:espresso-core:3.5.1") androidTestImplementation("androidx.test.espresso:espresso-core:3.5.1")

View File

@ -1,5 +1,6 @@
package com.example.llama package com.example.llama
import android.llama.cpp.LLamaAndroid
import android.util.Log import android.util.Log
import androidx.compose.runtime.getValue import androidx.compose.runtime.getValue
import androidx.compose.runtime.mutableStateOf import androidx.compose.runtime.mutableStateOf
@ -9,7 +10,7 @@ import androidx.lifecycle.viewModelScope
import kotlinx.coroutines.flow.catch import kotlinx.coroutines.flow.catch
import kotlinx.coroutines.launch import kotlinx.coroutines.launch
class MainViewModel(private val llm: Llm = Llm.instance()): ViewModel() { class MainViewModel(private val llamaAndroid: LLamaAndroid = LLamaAndroid.instance()): ViewModel() {
companion object { companion object {
@JvmStatic @JvmStatic
private val NanosPerSecond = 1_000_000_000.0 private val NanosPerSecond = 1_000_000_000.0
@ -28,7 +29,7 @@ class MainViewModel(private val llm: Llm = Llm.instance()): ViewModel() {
viewModelScope.launch { viewModelScope.launch {
try { try {
llm.unload() llamaAndroid.unload()
} catch (exc: IllegalStateException) { } catch (exc: IllegalStateException) {
messages += exc.message!! messages += exc.message!!
} }
@ -44,7 +45,7 @@ class MainViewModel(private val llm: Llm = Llm.instance()): ViewModel() {
messages += "" messages += ""
viewModelScope.launch { viewModelScope.launch {
llm.send(text) llamaAndroid.send(text)
.catch { .catch {
Log.e(tag, "send() failed", it) Log.e(tag, "send() failed", it)
messages += it.message!! messages += it.message!!
@ -57,7 +58,7 @@ class MainViewModel(private val llm: Llm = Llm.instance()): ViewModel() {
viewModelScope.launch { viewModelScope.launch {
try { try {
val start = System.nanoTime() val start = System.nanoTime()
val warmupResult = llm.bench(pp, tg, pl, nr) val warmupResult = llamaAndroid.bench(pp, tg, pl, nr)
val end = System.nanoTime() val end = System.nanoTime()
messages += warmupResult messages += warmupResult
@ -70,7 +71,7 @@ class MainViewModel(private val llm: Llm = Llm.instance()): ViewModel() {
return@launch return@launch
} }
messages += llm.bench(512, 128, 1, 3) messages += llamaAndroid.bench(512, 128, 1, 3)
} catch (exc: IllegalStateException) { } catch (exc: IllegalStateException) {
Log.e(tag, "bench() failed", exc) Log.e(tag, "bench() failed", exc)
messages += exc.message!! messages += exc.message!!
@ -81,7 +82,7 @@ class MainViewModel(private val llm: Llm = Llm.instance()): ViewModel() {
fun load(pathToModel: String) { fun load(pathToModel: String) {
viewModelScope.launch { viewModelScope.launch {
try { try {
llm.load(pathToModel) llamaAndroid.load(pathToModel)
messages += "Loaded $pathToModel" messages += "Loaded $pathToModel"
} catch (exc: IllegalStateException) { } catch (exc: IllegalStateException) {
Log.e(tag, "load() failed", exc) Log.e(tag, "load() failed", exc)

View File

@ -2,4 +2,5 @@
plugins { plugins {
id("com.android.application") version "8.2.0" apply false id("com.android.application") version "8.2.0" apply false
id("org.jetbrains.kotlin.android") version "1.9.0" apply false id("org.jetbrains.kotlin.android") version "1.9.0" apply false
id("com.android.library") version "8.2.0" apply false
} }

View File

@ -0,0 +1 @@
/build

View File

@ -42,7 +42,7 @@ add_subdirectory(../../../../../../ build-llama)
# used in the AndroidManifest.xml file. # used in the AndroidManifest.xml file.
add_library(${CMAKE_PROJECT_NAME} SHARED add_library(${CMAKE_PROJECT_NAME} SHARED
# List C/C++ source files with relative paths to this CMakeLists.txt. # List C/C++ source files with relative paths to this CMakeLists.txt.
llama-android.cpp) llama-android.cpp)
# Specifies libraries CMake should link to your target library. You # Specifies libraries CMake should link to your target library. You
# can link libraries from various origins, such as libraries defined in this # can link libraries from various origins, such as libraries defined in this

View File

@ -0,0 +1,68 @@
plugins {
id("com.android.library")
id("org.jetbrains.kotlin.android")
}
android {
namespace = "android.llama.cpp"
compileSdk = 34
defaultConfig {
minSdk = 33
testInstrumentationRunner = "androidx.test.runner.AndroidJUnitRunner"
consumerProguardFiles("consumer-rules.pro")
ndk {
// Add NDK properties if wanted, e.g.
// abiFilters += listOf("arm64-v8a")
}
externalNativeBuild {
cmake {
arguments += "-DCMAKE_BUILD_TYPE=Release"
cppFlags += listOf()
arguments += listOf()
cppFlags("")
}
}
}
buildTypes {
release {
isMinifyEnabled = false
proguardFiles(
getDefaultProguardFile("proguard-android-optimize.txt"),
"proguard-rules.pro"
)
}
}
externalNativeBuild {
cmake {
path("src/main/cpp/CMakeLists.txt")
version = "3.22.1"
}
}
compileOptions {
sourceCompatibility = JavaVersion.VERSION_1_8
targetCompatibility = JavaVersion.VERSION_1_8
}
kotlinOptions {
jvmTarget = "1.8"
}
packaging {
resources {
excludes += "/META-INF/{AL2.0,LGPL2.1}"
}
}
}
dependencies {
implementation("androidx.core:core-ktx:1.12.0")
implementation("androidx.appcompat:appcompat:1.6.1")
implementation("com.google.android.material:material:1.11.0")
testImplementation("junit:junit:4.13.2")
androidTestImplementation("androidx.test.ext:junit:1.1.5")
androidTestImplementation("androidx.test.espresso:espresso-core:3.5.1")
}

View File

@ -0,0 +1,21 @@
# Add project specific ProGuard rules here.
# You can control the set of applied configuration files using the
# proguardFiles setting in build.gradle.
#
# For more details, see
# http://developer.android.com/guide/developing/tools/proguard.html
# If your project uses WebView with JS, uncomment the following
# and specify the fully qualified class name to the JavaScript interface
# class:
#-keepclassmembers class fqcn.of.javascript.interface.for.webview {
# public *;
#}
# Uncomment this to preserve the line number information for
# debugging stack traces.
#-keepattributes SourceFile,LineNumberTable
# If you keep the line number information, uncomment this to
# hide the original source file name.
#-renamesourcefileattribute SourceFile

View File

@ -0,0 +1,24 @@
package android.llama.cpp
import androidx.test.platform.app.InstrumentationRegistry
import androidx.test.ext.junit.runners.AndroidJUnit4
import org.junit.Test
import org.junit.runner.RunWith
import org.junit.Assert.*
/**
* Instrumented test, which will execute on an Android device.
*
* See [testing documentation](http://d.android.com/tools/testing).
*/
@RunWith(AndroidJUnit4::class)
class ExampleInstrumentedTest {
@Test
fun useAppContext() {
// Context of the app under test.
val appContext = InstrumentationRegistry.getInstrumentation().targetContext
assertEquals("android.llama.cpp.test", appContext.packageName)
}
}

View File

@ -0,0 +1,4 @@
<?xml version="1.0" encoding="utf-8"?>
<manifest xmlns:android="http://schemas.android.com/apk/res/android">
</manifest>

View File

@ -0,0 +1,49 @@
# For more information about using CMake with Android Studio, read the
# documentation: https://d.android.com/studio/projects/add-native-code.html.
# For more examples on how to use CMake, see https://github.com/android/ndk-samples.
# Sets the minimum CMake version required for this project.
cmake_minimum_required(VERSION 3.22.1)
# Declares the project name. The project name can be accessed via ${ PROJECT_NAME},
# Since this is the top level CMakeLists.txt, the project name is also accessible
# with ${CMAKE_PROJECT_NAME} (both CMake variables are in-sync within the top level
# build script scope).
project("llama-android")
include(FetchContent)
FetchContent_Declare(
llama
GIT_REPOSITORY https://github.com/ggerganov/llama.cpp
GIT_TAG master
)
# Also provides "common"
FetchContent_MakeAvailable(llama)
# Creates and names a library, sets it as either STATIC
# or SHARED, and provides the relative paths to its source code.
# You can define multiple libraries, and CMake builds them for you.
# Gradle automatically packages shared libraries with your APK.
#
# In this top level CMakeLists.txt, ${CMAKE_PROJECT_NAME} is used to define
# the target library name; in the sub-module's CMakeLists.txt, ${PROJECT_NAME}
# is preferred for the same purpose.
#
# In order to load a library into your app from Java/Kotlin, you must call
# System.loadLibrary() and pass the name of the library defined here;
# for GameActivity/NativeActivity derived applications, the same library name must be
# used in the AndroidManifest.xml file.
add_library(${CMAKE_PROJECT_NAME} SHARED
# List C/C++ source files with relative paths to this CMakeLists.txt.
llama-android.cpp)
# Specifies libraries CMake should link to your target library. You
# can link libraries from various origins, such as libraries defined in this
# build script, prebuilt third-party libraries, or Android system libraries.
target_link_libraries(${CMAKE_PROJECT_NAME}
# List libraries link to the target library
llama
common
android
log)

View File

@ -81,7 +81,7 @@ static void log_callback(ggml_log_level level, const char * fmt, void * data) {
extern "C" extern "C"
JNIEXPORT jlong JNICALL JNIEXPORT jlong JNICALL
Java_com_example_llama_Llm_load_1model(JNIEnv *env, jobject, jstring filename) { Java_android_llama_cpp_LLamaAndroid_load_1model(JNIEnv *env, jobject, jstring filename) {
llama_model_params model_params = llama_model_default_params(); llama_model_params model_params = llama_model_default_params();
auto path_to_model = env->GetStringUTFChars(filename, 0); auto path_to_model = env->GetStringUTFChars(filename, 0);
@ -101,13 +101,13 @@ Java_com_example_llama_Llm_load_1model(JNIEnv *env, jobject, jstring filename) {
extern "C" extern "C"
JNIEXPORT void JNICALL JNIEXPORT void JNICALL
Java_com_example_llama_Llm_free_1model(JNIEnv *, jobject, jlong model) { Java_android_llama_cpp_LLamaAndroid_free_1model(JNIEnv *, jobject, jlong model) {
llama_free_model(reinterpret_cast<llama_model *>(model)); llama_free_model(reinterpret_cast<llama_model *>(model));
} }
extern "C" extern "C"
JNIEXPORT jlong JNICALL JNIEXPORT jlong JNICALL
Java_com_example_llama_Llm_new_1context(JNIEnv *env, jobject, jlong jmodel) { Java_android_llama_cpp_LLamaAndroid_new_1context(JNIEnv *env, jobject, jlong jmodel) {
auto model = reinterpret_cast<llama_model *>(jmodel); auto model = reinterpret_cast<llama_model *>(jmodel);
if (!model) { if (!model) {
@ -139,25 +139,25 @@ Java_com_example_llama_Llm_new_1context(JNIEnv *env, jobject, jlong jmodel) {
extern "C" extern "C"
JNIEXPORT void JNICALL JNIEXPORT void JNICALL
Java_com_example_llama_Llm_free_1context(JNIEnv *, jobject, jlong context) { Java_android_llama_cpp_LLamaAndroid_free_1context(JNIEnv *, jobject, jlong context) {
llama_free(reinterpret_cast<llama_context *>(context)); llama_free(reinterpret_cast<llama_context *>(context));
} }
extern "C" extern "C"
JNIEXPORT void JNICALL JNIEXPORT void JNICALL
Java_com_example_llama_Llm_backend_1free(JNIEnv *, jobject) { Java_android_llama_cpp_LLamaAndroid_backend_1free(JNIEnv *, jobject) {
llama_backend_free(); llama_backend_free();
} }
extern "C" extern "C"
JNIEXPORT void JNICALL JNIEXPORT void JNICALL
Java_com_example_llama_Llm_log_1to_1android(JNIEnv *, jobject) { Java_android_llama_cpp_LLamaAndroid_log_1to_1android(JNIEnv *, jobject) {
llama_log_set(log_callback, NULL); llama_log_set(log_callback, NULL);
} }
extern "C" extern "C"
JNIEXPORT jstring JNICALL JNIEXPORT jstring JNICALL
Java_com_example_llama_Llm_bench_1model( Java_android_llama_cpp_LLamaAndroid_bench_1model(
JNIEnv *env, JNIEnv *env,
jobject, jobject,
jlong context_pointer, jlong context_pointer,
@ -271,13 +271,13 @@ Java_com_example_llama_Llm_bench_1model(
extern "C" extern "C"
JNIEXPORT void JNICALL JNIEXPORT void JNICALL
Java_com_example_llama_Llm_free_1batch(JNIEnv *, jobject, jlong batch_pointer) { Java_android_llama_cpp_LLamaAndroid_free_1batch(JNIEnv *, jobject, jlong batch_pointer) {
llama_batch_free(*reinterpret_cast<llama_batch *>(batch_pointer)); llama_batch_free(*reinterpret_cast<llama_batch *>(batch_pointer));
} }
extern "C" extern "C"
JNIEXPORT jlong JNICALL JNIEXPORT jlong JNICALL
Java_com_example_llama_Llm_new_1batch(JNIEnv *, jobject, jint n_tokens, jint embd, jint n_seq_max) { Java_android_llama_cpp_LLamaAndroid_new_1batch(JNIEnv *, jobject, jint n_tokens, jint embd, jint n_seq_max) {
// Source: Copy of llama.cpp:llama_batch_init but heap-allocated. // Source: Copy of llama.cpp:llama_batch_init but heap-allocated.
@ -313,19 +313,19 @@ Java_com_example_llama_Llm_new_1batch(JNIEnv *, jobject, jint n_tokens, jint emb
extern "C" extern "C"
JNIEXPORT void JNICALL JNIEXPORT void JNICALL
Java_com_example_llama_Llm_backend_1init(JNIEnv *, jobject) { Java_android_llama_cpp_LLamaAndroid_backend_1init(JNIEnv *, jobject) {
llama_backend_init(); llama_backend_init();
} }
extern "C" extern "C"
JNIEXPORT jstring JNICALL JNIEXPORT jstring JNICALL
Java_com_example_llama_Llm_system_1info(JNIEnv *env, jobject) { Java_android_llama_cpp_LLamaAndroid_system_1info(JNIEnv *env, jobject) {
return env->NewStringUTF(llama_print_system_info()); return env->NewStringUTF(llama_print_system_info());
} }
extern "C" extern "C"
JNIEXPORT jint JNICALL JNIEXPORT jint JNICALL
Java_com_example_llama_Llm_completion_1init( Java_android_llama_cpp_LLamaAndroid_completion_1init(
JNIEnv *env, JNIEnv *env,
jobject, jobject,
jlong context_pointer, jlong context_pointer,
@ -376,7 +376,7 @@ Java_com_example_llama_Llm_completion_1init(
extern "C" extern "C"
JNIEXPORT jstring JNICALL JNIEXPORT jstring JNICALL
Java_com_example_llama_Llm_completion_1loop( Java_android_llama_cpp_LLamaAndroid_completion_1loop(
JNIEnv * env, JNIEnv * env,
jobject, jobject,
jlong context_pointer, jlong context_pointer,
@ -438,6 +438,6 @@ Java_com_example_llama_Llm_completion_1loop(
extern "C" extern "C"
JNIEXPORT void JNICALL JNIEXPORT void JNICALL
Java_com_example_llama_Llm_kv_1cache_1clear(JNIEnv *, jobject, jlong context) { Java_android_llama_cpp_LLamaAndroid_kv_1cache_1clear(JNIEnv *, jobject, jlong context) {
llama_kv_cache_clear(reinterpret_cast<llama_context *>(context)); llama_kv_cache_clear(reinterpret_cast<llama_context *>(context));
} }

View File

@ -1,4 +1,4 @@
package com.example.llama package android.llama.cpp
import android.util.Log import android.util.Log
import kotlinx.coroutines.CoroutineDispatcher import kotlinx.coroutines.CoroutineDispatcher
@ -10,7 +10,7 @@ import kotlinx.coroutines.withContext
import java.util.concurrent.Executors import java.util.concurrent.Executors
import kotlin.concurrent.thread import kotlin.concurrent.thread
class Llm { class LLamaAndroid {
private val tag: String? = this::class.simpleName private val tag: String? = this::class.simpleName
private val threadLocalState: ThreadLocal<State> = ThreadLocal.withInitial { State.Idle } private val threadLocalState: ThreadLocal<State> = ThreadLocal.withInitial { State.Idle }
@ -165,8 +165,8 @@ class Llm {
} }
// Enforce only one instance of Llm. // Enforce only one instance of Llm.
private val _instance: Llm = Llm() private val _instance: LLamaAndroid = LLamaAndroid()
fun instance(): Llm = _instance fun instance(): LLamaAndroid = _instance
} }
} }

View File

@ -0,0 +1,17 @@
package android.llama.cpp
import org.junit.Test
import org.junit.Assert.*
/**
* Example local unit test, which will execute on the development machine (host).
*
* See [testing documentation](http://d.android.com/tools/testing).
*/
class ExampleUnitTest {
@Test
fun addition_isCorrect() {
assertEquals(4, 2 + 2)
}
}

View File

@ -15,3 +15,4 @@ dependencyResolutionManagement {
rootProject.name = "LlamaAndroid" rootProject.name = "LlamaAndroid"
include(":app") include(":app")
include(":llama")

View File

@ -68,7 +68,7 @@ CLIP_API bool clip_image_load_from_file(const char * fname, struct clip_image_u8
/** interpret bytes as an image file with length bytes_length, and use the result to populate img */ /** interpret bytes as an image file with length bytes_length, and use the result to populate img */
CLIP_API bool clip_image_load_from_bytes(const unsigned char * bytes, size_t bytes_length, struct clip_image_u8 * img); CLIP_API bool clip_image_load_from_bytes(const unsigned char * bytes, size_t bytes_length, struct clip_image_u8 * img);
/** preprocess img and store the result in res_imgs, pad_to_square may be overriden to false depending on model configuration */ /** preprocess img and store the result in res_imgs, pad_to_square may be overridden to false depending on model configuration */
CLIP_API bool clip_image_preprocess(struct clip_ctx * ctx, const struct clip_image_u8 * img, struct clip_image_f32_batch * res_imgs ); CLIP_API bool clip_image_preprocess(struct clip_ctx * ctx, const struct clip_image_u8 * img, struct clip_image_f32_batch * res_imgs );
CLIP_API struct ggml_tensor * clip_get_newline_tensor(const struct clip_ctx * ctx); CLIP_API struct ggml_tensor * clip_get_newline_tensor(const struct clip_ctx * ctx);

View File

@ -740,18 +740,26 @@ int main(int argc, char ** argv) {
// display text // display text
if (input_echo && display) { if (input_echo && display) {
for (auto id : embd) { for (auto id : embd) {
const std::string token_str = llama_token_to_piece(ctx, id, !params.conversation); const std::string token_str = llama_token_to_piece(ctx, id, params.special);
printf("%s", token_str.c_str());
// Console/Stream Output
fprintf(stdout, "%s", token_str.c_str());
// Record Displayed Tokens To Log
// Note: Generated tokens are created one by one hence this check
if (embd.size() > 1) { if (embd.size() > 1) {
// Incoming Requested Tokens
input_tokens.push_back(id); input_tokens.push_back(id);
} else { } else {
// Outgoing Generated Tokens
output_tokens.push_back(id); output_tokens.push_back(id);
output_ss << token_str; output_ss << token_str;
} }
fflush(stdout);
} }
fflush(stdout);
} }
// reset color to default if there is no pending user input // reset color to default if there is no pending user input
if (input_echo && (int) embd_inp.size() == n_consumed) { if (input_echo && (int) embd_inp.size() == n_consumed) {
console::set_display(console::reset); console::set_display(console::reset);

View File

@ -594,7 +594,7 @@
message = html`<${Probabilities} data=${data} />` message = html`<${Probabilities} data=${data} />`
} else { } else {
const text = isArrayMessage ? const text = isArrayMessage ?
data.map(msg => msg.content).join('').replace(/^\s+/, '') : data.map(msg => msg.content).join('') :
data; data;
message = isCompletionMode ? message = isCompletionMode ?
text : text :
@ -877,19 +877,30 @@
// poor mans markdown replacement // poor mans markdown replacement
const Markdownish = (params) => { const Markdownish = (params) => {
const md = params.text const chunks = params.text.split('```');
.replace(/&/g, '&amp;')
.replace(/</g, '&lt;') for (let i = 0; i < chunks.length; i++) {
.replace(/>/g, '&gt;') if (i % 2 === 0) { // outside code block
.replace(/(^|\n)#{1,6} ([^\n]*)(?=([^`]*`[^`]*`)*[^`]*$)/g, '$1<h3>$2</h3>') chunks[i] = chunks[i]
.replace(/\*\*(.*?)\*\*(?=([^`]*`[^`]*`)*[^`]*$)/g, '<strong>$1</strong>') .replace(/&/g, '&amp;')
.replace(/__(.*?)__(?=([^`]*`[^`]*`)*[^`]*$)/g, '<strong>$1</strong>') .replace(/</g, '&lt;')
.replace(/\*(.*?)\*(?=([^`]*`[^`]*`)*[^`]*$)/g, '<em>$1</em>') .replace(/>/g, '&gt;')
.replace(/_(.*?)_(?=([^`]*`[^`]*`)*[^`]*$)/g, '<em>$1</em>') .replace(/(^|\n)#{1,6} ([^\n]*)(?=([^`]*`[^`]*`)*[^`]*$)/g, '$1<h3>$2</h3>')
.replace(/```.*?\n([\s\S]*?)```/g, '<pre><code>$1</code></pre>') .replace(/\*\*(.*?)\*\*(?=([^`]*`[^`]*`)*[^`]*$)/g, '<strong>$1</strong>')
.replace(/`(.*?)`/g, '<code>$1</code>') .replace(/__(.*?)__(?=([^`]*`[^`]*`)*[^`]*$)/g, '<strong>$1</strong>')
.replace(/\n/gim, '<br />'); .replace(/\*(.*?)\*(?=([^`]*`[^`]*`)*[^`]*$)/g, '<em>$1</em>')
return html`<span dangerouslySetInnerHTML=${{ __html: md }} />`; .replace(/_(.*?)_(?=([^`]*`[^`]*`)*[^`]*$)/g, '<em>$1</em>')
.replace(/```.*?\n([\s\S]*?)```/g, '<pre><code>$1</code></pre>')
.replace(/`(.*?)`/g, '<code>$1</code>')
.replace(/\n/gim, '<br />');
} else { // inside code block
chunks[i] = `<pre><code>${chunks[i]}</code></pre>`;
}
}
const restoredText = chunks.join('');
return html`<span dangerouslySetInnerHTML=${{ __html: restoredText }} />`;
}; };
const ModelGenerationInfo = (params) => { const ModelGenerationInfo = (params) => {
@ -903,6 +914,7 @@
` `
} }
// simple popover impl // simple popover impl
const Popover = (props) => { const Popover = (props) => {
const isOpen = useSignal(false); const isOpen = useSignal(false);
@ -1054,4 +1066,3 @@
</body> </body>
</html> </html>

View File

@ -1,7 +1,7 @@
<!DOCTYPE html> <!DOCTYPE html>
<html lang="en"> <html lang="en">
<head> <head>
<title>SimpleChat (LlamaCPP, ...) </title> <title>SimpleChat LlamaCppEtal </title>
<meta charset="UTF-8" /> <meta charset="UTF-8" />
<meta name="viewport" content="width=device-width, initial-scale=1" /> <meta name="viewport" content="width=device-width, initial-scale=1" />
<meta name="message" content="Save Nature Save Earth" /> <meta name="message" content="Save Nature Save Earth" />
@ -30,20 +30,17 @@
<hr> <hr>
<div class="sameline"> <div class="sameline">
<label for="system-in">System</label> <label for="system-in">System</label>
<input type="text" name="system" id="system-in" class="flex-grow"/> <input type="text" name="system" id="system-in" placeholder="e.g. you are a helpful ai assistant, who provides concise answers" class="flex-grow"/>
</div> </div>
<hr> <hr>
<div id="chat-div"> <div id="chat-div">
<p> Enter the system prompt above, before entering/submitting any user query.</p> <p> You need to have javascript enabled.</p>
<p> Enter your text to the ai assistant below.</p>
<p> Use shift+enter for inserting enter.</p>
<p> Refresh the page to start over fresh.</p>
</div> </div>
<hr> <hr>
<div class="sameline"> <div class="sameline">
<textarea id="user-in" class="flex-grow" rows="3"></textarea> <textarea id="user-in" class="flex-grow" rows="3" placeholder="enter your query to the ai model here" ></textarea>
<button id="user-btn">submit</button> <button id="user-btn">submit</button>
</div> </div>

View File

@ -14,11 +14,15 @@ own system prompts.
The UI follows a responsive web design so that the layout can adapt to available display space in a usable The UI follows a responsive web design so that the layout can adapt to available display space in a usable
enough manner, in general. enough manner, in general.
NOTE: Given that the idea is for basic minimal testing, it doesnt bother with any model context length and Allows developer/end-user to control some of the behaviour by updating gMe members from browser's devel-tool
culling of old messages from the chat. console.
NOTE: It doesnt set any parameters other than temperature for now. However if someone wants they can update NOTE: Given that the idea is for basic minimal testing, it doesnt bother with any model context length and
the js file as needed. culling of old messages from the chat by default. However by enabling the sliding window chat logic, a crude
form of old messages culling can be achieved.
NOTE: It doesnt set any parameters other than temperature and max_tokens for now. However if someone wants
they can update the js file or equivalent member in gMe as needed.
## usage ## usage
@ -43,11 +47,33 @@ next run this web front end in examples/server/public_simplechat
### using the front end ### using the front end
Open this simple web front end from your local browser Open this simple web front end from your local browser
* http://127.0.0.1:PORT/index.html * http://127.0.0.1:PORT/index.html
Once inside Once inside
* Select between chat and completion mode. By default it is set to chat mode. * Select between chat and completion mode. By default it is set to chat mode.
* In completion mode
* logic by default doesnt insert any role specific "ROLE: " prefix wrt each role's message.
If the model requires any prefix wrt user role messages, then the end user has to
explicitly add the needed prefix, when they enter their chat message.
Similarly if the model requires any prefix to trigger assistant/ai-model response,
then the end user needs to enter the same.
This keeps the logic simple, while still giving flexibility to the end user to
manage any templating/tagging requirement wrt their messages to the model.
* the logic doesnt insert newline at the begining and end wrt the prompt message generated.
However if the chat being sent to /completions end point has more than one role's message,
then insert newline when moving from one role's message to the next role's message, so
that it can be clearly identified/distinguished.
* given that /completions endpoint normally doesnt add additional chat-templating of its
own, the above ensures that end user can create a custom single/multi message combo with
any tags/special-tokens related chat templating to test out model handshake. Or enduser
can use it just for normal completion related/based query.
* If you want to provide a system prompt, then ideally enter it first, before entering any user query. * If you want to provide a system prompt, then ideally enter it first, before entering any user query.
Normally Completion mode doesnt need system prompt, while Chat mode can generate better/interesting
responses with a suitable system prompt.
* if chat.add_system_begin is used * if chat.add_system_begin is used
* you cant change the system prompt, after it is has been submitted once along with user query. * you cant change the system prompt, after it is has been submitted once along with user query.
* you cant set a system prompt, after you have submitted any user query * you cant set a system prompt, after you have submitted any user query
@ -55,27 +81,121 @@ Once inside
* one can change the system prompt any time during chat, by changing the contents of system prompt. * one can change the system prompt any time during chat, by changing the contents of system prompt.
* inturn the updated/changed system prompt will be inserted into the chat session. * inturn the updated/changed system prompt will be inserted into the chat session.
* this allows for the subsequent user chatting to be driven by the new system prompt set above. * this allows for the subsequent user chatting to be driven by the new system prompt set above.
* Enter your query and either press enter or click on the submit button. * Enter your query and either press enter or click on the submit button.
If you want to insert enter (\n) as part of your chat/query to ai model, use shift+enter. If you want to insert enter (\n) as part of your chat/query to ai model, use shift+enter.
* Wait for the logic to communicate with the server and get the response. * Wait for the logic to communicate with the server and get the response.
* the user is not allowed to enter any fresh query during this time. * the user is not allowed to enter any fresh query during this time.
* the user input box will be disabled and a working message will be shown in it. * the user input box will be disabled and a working message will be shown in it.
* just refresh the page, to reset wrt the chat history and or system prompt and start afresh. * just refresh the page, to reset wrt the chat history and or system prompt and start afresh.
* Using NewChat one can start independent chat sessions. * Using NewChat one can start independent chat sessions.
* two independent chat sessions are setup by default. * two independent chat sessions are setup by default.
## Devel note ## Devel note
### Reason behind this
The idea is to be easy enough to use for basic purposes, while also being simple and easily discernable
by developers who may not be from web frontend background (so inturn may not be familiar with template /
end-use-specific-language-extensions driven flows) so that they can use it to explore/experiment things.
And given that the idea is also to help explore/experiment for developers, some flexibility is provided
to change behaviour easily using the devel-tools/console, for now. And skeletal logic has been implemented
to explore some of the end points and ideas/implications around them.
### General
Me/gMe consolidates the settings which control the behaviour into one object.
One can see the current settings, as well as change/update them using browsers devel-tool/console.
bCompletionFreshChatAlways - whether Completion mode collates complete/sliding-window history when
communicating with the server or only sends the latest user query/message.
bCompletionInsertStandardRolePrefix - whether Completion mode inserts role related prefix wrt the
messages that get inserted into prompt field wrt /Completion endpoint.
chatRequestOptions - maintains the list of options/fields to send along with chat request,
irrespective of whether /chat/completions or /completions endpoint.
If you want to add additional options/fields to send to the server/ai-model, and or
modify the existing options value or remove them, for now you can update this global var
using browser's development-tools/console.
iRecentUserMsgCnt - a simple minded SlidingWindow to limit context window load at Ai Model end.
This is disabled by default. However if enabled, then in addition to latest system message, only
the last/latest iRecentUserMsgCnt user messages after the latest system prompt and its responses
from the ai model will be sent to the ai-model, when querying for a new response. IE if enabled,
only user messages after the latest system message/prompt will be considered.
This specified sliding window user message count also includes the latest user query.
<0 : Send entire chat history to server
0 : Send only the system message if any to the server
>0 : Send the latest chat history from the latest system prompt, limited to specified cnt.
By using gMe's iRecentUserMsgCnt and chatRequestOptions.max_tokens one can try to control the
implications of loading of the ai-model's context window by chat history, wrt chat response to
some extent in a simple crude way.
Sometimes the browser may be stuborn with caching of the file, so your updates to html/css/js Sometimes the browser may be stuborn with caching of the file, so your updates to html/css/js
may not be visible. Also remember that just refreshing/reloading page in browser or for that may not be visible. Also remember that just refreshing/reloading page in browser or for that
matter clearing site data, dont directly override site caching in all cases. Worst case you may matter clearing site data, dont directly override site caching in all cases. Worst case you may
have to change port. Or in dev tools of browser, you may be able to disable caching fully. have to change port. Or in dev tools of browser, you may be able to disable caching fully.
Concept of multiple chat sessions with different servers, as well as saving and restoring of Concept of multiple chat sessions with different servers, as well as saving and restoring of
those across browser usage sessions, can be woven around the SimpleChat/MultiChatUI class and those across browser usage sessions, can be woven around the SimpleChat/MultiChatUI class and
its instances relatively easily, however given the current goal of keeping this simple, it has its instances relatively easily, however given the current goal of keeping this simple, it has
not been added, for now. not been added, for now.
By switching between chat.add_system_begin/anytime, one can control whether one can change By switching between chat.add_system_begin/anytime, one can control whether one can change
the system prompt, anytime during the conversation or only at the beginning. the system prompt, anytime during the conversation or only at the beginning.
read_json_early, is to experiment with reading json response data early on, if available,
so that user can be shown generated data, as and when it is being generated, rather than
at the end when full data is available.
the server flow doesnt seem to be sending back data early, atleast for request (inc options)
that is currently sent.
if able to read json data early on in future, as and when ai model is generating data, then
this helper needs to indirectly update the chat div with the recieved data, without waiting
for the overall data to be available.
### Default setup
By default things are setup to try and make the user experience a bit better, if possible.
However a developer when testing the server of ai-model may want to change these value.
Using iRecentUserMsgCnt reduce chat history context sent to the server/ai-model to be
just the system-prompt, prev-user-request-and-ai-response and cur-user-request, instead of
full chat history. This way if there is any response with garbage/repeatation, it doesnt
mess with things beyond the next question/request/query, in some ways.
Set max_tokens to 1024, so that a relatively large previous reponse doesnt eat up the space
available wrt next query-response. However dont forget that the server when started should
also be started with a model context size of 1k or more, to be on safe side.
The /completions endpoint of examples/server doesnt take max_tokens, instead it takes the
internal n_predict, for now add the same here on the client side, maybe later add max_tokens
to /completions endpoint handling code on server side.
Frequency and presence penalty fields are set to 1.2 in the set of fields sent to server
along with the user query. So that the model is partly set to try avoid repeating text in
its response.
A end-user can change these behaviour by editing gMe from browser's devel-tool/console.
## At the end
Also a thank you to all open source and open model developers, who strive for the common good.

View File

@ -48,6 +48,13 @@ button {
flex-direction: column; flex-direction: column;
} }
.ul1 {
padding-inline-start: 2vw;
}
.ul2 {
padding-inline-start: 2vw;
}
* { * {
margin: 0.6vmin; margin: 0.6vmin;
} }

View File

@ -14,23 +14,86 @@ class ApiEP {
} }
let gUsageMsg = ` let gUsageMsg = `
<p> Enter the system prompt above, before entering/submitting any user query.</p> <p class="role-system">Usage</p>
<p> Enter your text to the ai assistant below.</p> <ul class="ul1">
<p> Use shift+enter for inserting enter.</p> <li> Set system prompt above, to try control ai response charactersitic, if model supports same.</li>
<p> Refresh the page to start over fresh.</p> <ul class="ul2">
<li> Completion mode normally wont have a system prompt.</li>
</ul>
<li> Enter your query to ai assistant below.</li>
<ul class="ul2">
<li> Completion mode doesnt insert user/role: prefix implicitly.</li>
<li> Use shift+enter for inserting enter/newline.</li>
</ul>
<li> Default ContextWindow = [System, Last Query+Resp, Cur Query].</li>
<ul class="ul2">
<li> experiment iRecentUserMsgCnt, max_tokens, model ctxt window to expand</li>
</ul>
</ul>
`; `;
/** @typedef {{role: string, content: string}[]} ChatMessages */
class SimpleChat { class SimpleChat {
constructor() { constructor() {
/** /**
* Maintain in a form suitable for common LLM web service chat/completions' messages entry * Maintain in a form suitable for common LLM web service chat/completions' messages entry
* @type {{role: string, content: string}[]} * @type {ChatMessages}
*/ */
this.xchat = []; this.xchat = [];
this.iLastSys = -1; this.iLastSys = -1;
} }
clear() {
this.xchat = [];
this.iLastSys = -1;
}
/**
* Recent chat messages.
* If iRecentUserMsgCnt < 0
* Then return the full chat history
* Else
* Return chat messages from latest going back till the last/latest system prompt.
* While keeping track that the number of user queries/messages doesnt exceed iRecentUserMsgCnt.
* @param {number} iRecentUserMsgCnt
*/
recent_chat(iRecentUserMsgCnt) {
if (iRecentUserMsgCnt < 0) {
return this.xchat;
}
if (iRecentUserMsgCnt == 0) {
console.warn("WARN:SimpleChat:SC:RecentChat:iRecentUsermsgCnt of 0 means no user message/query sent");
}
/** @type{ChatMessages} */
let rchat = [];
let sysMsg = this.get_system_latest();
if (sysMsg.length != 0) {
rchat.push({role: Roles.System, content: sysMsg});
}
let iUserCnt = 0;
let iStart = this.xchat.length;
for(let i=this.xchat.length-1; i > this.iLastSys; i--) {
if (iUserCnt >= iRecentUserMsgCnt) {
break;
}
let msg = this.xchat[i];
if (msg.role == Roles.User) {
iStart = i;
iUserCnt += 1;
}
}
for(let i = iStart; i < this.xchat.length; i++) {
let msg = this.xchat[i];
if (msg.role == Roles.System) {
continue;
}
rchat.push({role: msg.role, content: msg.content});
}
return rchat;
}
/** /**
* Add an entry into xchat * Add an entry into xchat
* @param {string} role * @param {string} role
@ -57,7 +120,7 @@ class SimpleChat {
div.replaceChildren(); div.replaceChildren();
} }
let last = undefined; let last = undefined;
for(const x of this.xchat) { for(const x of this.recent_chat(gMe.iRecentUserMsgCnt)) {
let entry = document.createElement("p"); let entry = document.createElement("p");
entry.className = `role-${x.role}`; entry.className = `role-${x.role}`;
entry.innerText = `${x.role}: ${x.content}`; entry.innerText = `${x.role}: ${x.content}`;
@ -69,17 +132,21 @@ class SimpleChat {
} else { } else {
if (bClear) { if (bClear) {
div.innerHTML = gUsageMsg; div.innerHTML = gUsageMsg;
gMe.show_info(div);
} }
} }
} }
/** /**
* Add needed fields wrt json object to be sent wrt LLM web services completions endpoint * Add needed fields wrt json object to be sent wrt LLM web services completions endpoint.
* The needed fields/options are picked from a global object.
* Convert the json into string. * Convert the json into string.
* @param {Object} obj * @param {Object} obj
*/ */
request_jsonstr(obj) { request_jsonstr(obj) {
obj["temperature"] = 0.7; for(let k in gMe.chatRequestOptions) {
obj[k] = gMe.chatRequestOptions[k];
}
return JSON.stringify(obj); return JSON.stringify(obj);
} }
@ -88,18 +155,27 @@ class SimpleChat {
*/ */
request_messages_jsonstr() { request_messages_jsonstr() {
let req = { let req = {
messages: this.xchat, messages: this.recent_chat(gMe.iRecentUserMsgCnt),
} }
return this.request_jsonstr(req); return this.request_jsonstr(req);
} }
/** /**
* Return a string form of json object suitable for /completions * Return a string form of json object suitable for /completions
* @param {boolean} bInsertStandardRolePrefix Insert "<THE_ROLE>: " as prefix wrt each role's message
*/ */
request_prompt_jsonstr() { request_prompt_jsonstr(bInsertStandardRolePrefix) {
let prompt = ""; let prompt = "";
for(const chat of this.xchat) { let iCnt = 0;
prompt += `${chat.role}: ${chat.content}\n`; for(const chat of this.recent_chat(gMe.iRecentUserMsgCnt)) {
iCnt += 1;
if (iCnt > 1) {
prompt += "\n";
}
if (bInsertStandardRolePrefix) {
prompt += `${chat.role}: `;
}
prompt += `${chat.content}`;
} }
let req = { let req = {
prompt: prompt, prompt: prompt,
@ -171,7 +247,6 @@ let gChatURL = {
'chat': `${gBaseURL}/chat/completions`, 'chat': `${gBaseURL}/chat/completions`,
'completion': `${gBaseURL}/completions`, 'completion': `${gBaseURL}/completions`,
} }
const gbCompletionFreshChatAlways = true;
/** /**
@ -291,6 +366,8 @@ class MultiChatUI {
// allow user to insert enter into their message using shift+enter. // allow user to insert enter into their message using shift+enter.
// while just pressing enter key will lead to submitting. // while just pressing enter key will lead to submitting.
if ((ev.key === "Enter") && (!ev.shiftKey)) { if ((ev.key === "Enter") && (!ev.shiftKey)) {
let value = this.elInUser.value;
this.elInUser.value = value.substring(0,value.length-1);
this.elBtnUser.click(); this.elBtnUser.click();
ev.preventDefault(); ev.preventDefault();
} }
@ -321,6 +398,29 @@ class MultiChatUI {
} }
} }
/**
* Try read json response early, if available.
* @param {Response} resp
*/
async read_json_early(resp) {
if (!resp.body) {
throw Error("ERRR:SimpleChat:MCUI:ReadJsonEarly:No body...");
}
let tdUtf8 = new TextDecoder("utf-8");
let rr = resp.body.getReader();
let gotBody = "";
while(true) {
let { value: cur, done: done} = await rr.read();
let curBody = tdUtf8.decode(cur);
console.debug("DBUG:SC:PART:", curBody);
gotBody += curBody;
if (done) {
break;
}
}
return JSON.parse(gotBody);
}
/** /**
* Handle user query submit request, wrt specified chat session. * Handle user query submit request, wrt specified chat session.
* @param {string} chatId * @param {string} chatId
@ -330,6 +430,14 @@ class MultiChatUI {
let chat = this.simpleChats[chatId]; let chat = this.simpleChats[chatId];
// In completion mode, if configured, clear any previous chat history.
// So if user wants to simulate a multi-chat based completion query,
// they will have to enter the full thing, as a suitable multiline
// user input/query.
if ((apiEP == ApiEP.Completion) && (gMe.bCompletionFreshChatAlways)) {
chat.clear();
}
chat.add_system_anytime(this.elInSystem.value, chatId); chat.add_system_anytime(this.elInSystem.value, chatId);
let content = this.elInUser.value; let content = this.elInUser.value;
@ -344,7 +452,7 @@ class MultiChatUI {
if (apiEP == ApiEP.Chat) { if (apiEP == ApiEP.Chat) {
theBody = chat.request_messages_jsonstr(); theBody = chat.request_messages_jsonstr();
} else { } else {
theBody = chat.request_prompt_jsonstr(); theBody = chat.request_prompt_jsonstr(gMe.bCompletionInsertStandardRolePrefix);
} }
this.elInUser.value = "working..."; this.elInUser.value = "working...";
@ -359,6 +467,7 @@ class MultiChatUI {
}); });
let respBody = await resp.json(); let respBody = await resp.json();
//let respBody = await this.read_json_early(resp);
console.debug(`DBUG:SimpleChat:MCUI:${chatId}:HandleUserSubmit:RespBody:${JSON.stringify(respBody)}`); console.debug(`DBUG:SimpleChat:MCUI:${chatId}:HandleUserSubmit:RespBody:${JSON.stringify(respBody)}`);
let assistantMsg; let assistantMsg;
if (apiEP == ApiEP.Chat) { if (apiEP == ApiEP.Chat) {
@ -376,13 +485,6 @@ class MultiChatUI {
} else { } else {
console.debug(`DBUG:SimpleChat:MCUI:HandleUserSubmit:ChatId has changed:[${chatId}] [${this.curChatId}]`); console.debug(`DBUG:SimpleChat:MCUI:HandleUserSubmit:ChatId has changed:[${chatId}] [${this.curChatId}]`);
} }
// Purposefully clear at end rather than begin of this function
// so that one can switch from chat to completion mode and sequece
// in a completion mode with multiple user-assistant chat data
// from before to be sent/occur once.
if ((apiEP == ApiEP.Completion) && (gbCompletionFreshChatAlways)) {
chat.xchat.length = 0;
}
this.ui_reset_userinput(); this.ui_reset_userinput();
} }
@ -462,17 +564,66 @@ class MultiChatUI {
} }
let gMuitChat; class Me {
const gChatIds = [ "Default", "Other" ];
constructor() {
this.defaultChatIds = [ "Default", "Other" ];
this.multiChat = new MultiChatUI();
this.bCompletionFreshChatAlways = true;
this.bCompletionInsertStandardRolePrefix = false;
this.iRecentUserMsgCnt = 2;
// Add needed fields wrt json object to be sent wrt LLM web services completions endpoint.
this.chatRequestOptions = {
"temperature": 0.7,
"max_tokens": 1024,
"frequency_penalty": 1.2,
"presence_penalty": 1.2,
"n_predict": 1024
};
}
/**
* @param {HTMLDivElement} elDiv
*/
show_info(elDiv) {
var p = document.createElement("p");
p.innerText = "Settings (devel-tools-console gMe)";
p.className = "role-system";
elDiv.appendChild(p);
var p = document.createElement("p");
p.innerText = `bCompletionFreshChatAlways:${this.bCompletionFreshChatAlways}`;
elDiv.appendChild(p);
p = document.createElement("p");
p.innerText = `bCompletionInsertStandardRolePrefix:${this.bCompletionInsertStandardRolePrefix}`;
elDiv.appendChild(p);
p = document.createElement("p");
p.innerText = `iRecentUserMsgCnt:${this.iRecentUserMsgCnt}`;
elDiv.appendChild(p);
p = document.createElement("p");
p.innerText = `chatRequestOptions:${JSON.stringify(this.chatRequestOptions)}`;
elDiv.appendChild(p);
}
}
/** @type {Me} */
let gMe;
function startme() { function startme() {
console.log("INFO:SimpleChat:StartMe:Starting..."); console.log("INFO:SimpleChat:StartMe:Starting...");
gMuitChat = new MultiChatUI(); gMe = new Me();
for (let cid of gChatIds) { for (let cid of gMe.defaultChatIds) {
gMuitChat.new_chat_session(cid); gMe.multiChat.new_chat_session(cid);
} }
gMuitChat.setup_ui(gChatIds[0]); gMe.multiChat.setup_ui(gMe.defaultChatIds[0], true);
gMuitChat.show_sessions(); gMe.multiChat.show_sessions();
} }
document.addEventListener("DOMContentLoaded", startme); document.addEventListener("DOMContentLoaded", startme);

View File

@ -13,10 +13,10 @@ if %errorlevel% neq 0 goto ERROR
:: for FP16 :: for FP16
:: faster for long-prompt inference :: faster for long-prompt inference
:: cmake -G "MinGW Makefiles" .. -DLLAMA_SYCL=ON -DCMAKE_C_COMPILER=icx -DCMAKE_CXX_COMPILER=icx -DCMAKE_BUILD_TYPE=Release -DLLAMA_SYCL_F16=ON :: cmake -G "MinGW Makefiles" .. -DLLAMA_SYCL=ON -DCMAKE_C_COMPILER=icx -DCMAKE_CXX_COMPILER=icx -DBUILD_SHARED_LIBS=ON -DCMAKE_BUILD_TYPE=Release -DLLAMA_SYCL_F16=ON
:: for FP32 :: for FP32
cmake -G "MinGW Makefiles" .. -DLLAMA_SYCL=ON -DCMAKE_C_COMPILER=icx -DCMAKE_CXX_COMPILER=icx -DCMAKE_BUILD_TYPE=Release cmake -G "MinGW Makefiles" .. -DLLAMA_SYCL=ON -DCMAKE_C_COMPILER=icx -DCMAKE_CXX_COMPILER=icx -DBUILD_SHARED_LIBS=ON -DCMAKE_BUILD_TYPE=Release
if %errorlevel% neq 0 goto ERROR if %errorlevel% neq 0 goto ERROR
:: build example/main only :: build example/main only
:: make main :: make main

View File

@ -3,40 +3,390 @@
#include <cmath> #include <cmath>
#include <cstdio> #include <cstdio>
#include <fstream>
#include <string> #include <string>
#include <vector> #include <vector>
int main(int argc, char ** argv) { #if defined(_WIN32)
if (argc < 3 || argv[1][0] == '-') { #define WIN32_LEAN_AND_MEAN
printf("usage: %s MODEL_PATH PROMPT [--ids]\n" , argv[0]); #include <windows.h>
#include <shellapi.h> // For CommandLineToArgvW
#endif
static void print_usage_information(const char * argv0, FILE * stream) {
fprintf(stream, "usage: %s [options]\n\n", argv0);
fprintf(stream, "The tokenize program tokenizes a prompt using a given model,\n");
fprintf(stream, "and prints the resulting tokens to standard output.\n\n");
fprintf(stream, "It needs a model file, a prompt, and optionally other flags\n");
fprintf(stream, "to control the behavior of the tokenizer.\n\n");
fprintf(stream, " The possible options are:\n");
fprintf(stream, "\n");
fprintf(stream, " -h, --help print this help and exit\n");
fprintf(stream, " -m MODEL_PATH, --model MODEL_PATH path to model.\n");
fprintf(stream, " --ids if given, only print numerical token IDs, and not token strings.\n");
fprintf(stream, " The output format looks like [1, 2, 3], i.e. parseable by Python.\n");
fprintf(stream, " -f PROMPT_FNAME, --file PROMPT_FNAME read prompt from a file.\n");
fprintf(stream, " -p PROMPT, --prompt PROMPT read prompt from the argument.\n");
fprintf(stream, " --stdin read prompt from standard input.\n");
fprintf(stream, " --no-bos do not ever add a BOS token to the prompt, even if normally the model uses a BOS token.\n");
fprintf(stream, " --log-disable disable logs. Makes stderr quiet when loading the model.\n");
}
static void llama_log_callback_null(ggml_log_level level, const char * text, void * user_data) {
(void) level;
(void) text;
(void) user_data;
}
static std::string read_prompt_from_file(const char * filepath, bool & success) {
success = false;
std::ifstream in(filepath, std::ios::binary);
if (!in) {
fprintf(stderr, "%s: could not open file '%s' for reading: %s\n", __func__, filepath, strerror(errno));
return std::string();
}
// do not assume the file is seekable (e.g. /dev/stdin)
std::stringstream buffer;
buffer << in.rdbuf();
if (in.fail()) {
fprintf(stderr, "%s: could not read the entire file '%s': %s\n", __func__, filepath, strerror(errno));
return std::string();
}
success = true;
return buffer.str();
}
//
// Function: ingest_args(...) -> vector<string>
//
// Takes argc and argv arguments, and converts them to a vector of UTF-8 encoded
// strings, as an STL vector<string>.
//
// In particular, it handles character encoding shenanigans on Windows.
//
// Note: raw_argc and raw_argv are not actually read at all on Windows.
// On Windows we call GetCommandLineW to get the arguments in wchar_t
// format, ignoring the regular argc/argv arguments to main().
//
// TODO: potential opportunity to roll common stuff into common/console.cpp
// in relation to Windows wchar_t shenanigans.
static std::vector<std::string> ingest_args(int raw_argc, char ** raw_argv) {
std::vector<std::string> argv;
// Handle Windows, if given non-ASCII arguments.
// We convert wchar_t arguments into UTF-8 char* on this platform.
// Lets you invoke 'tokenize' on Windows cmd.exe with non-ASCII characters
// without throwing tantrums.
#if defined(_WIN32)
int argc;
const LPWSTR cmdline_wargv = GetCommandLineW();
LPWSTR * wargv = CommandLineToArgvW(cmdline_wargv, &argc);
// silence unused arg warnings
(void) raw_argc;
(void) raw_argv;
for (int i = 0; i < argc; ++i) {
int length_needed = WideCharToMultiByte(CP_UTF8, 0, wargv[i], wcslen(wargv[i]), 0, 0, NULL, NULL);
char * output_buf = (char *) calloc(length_needed+1, sizeof(char));
GGML_ASSERT(output_buf);
WideCharToMultiByte(CP_UTF8, 0, wargv[i], wcslen(wargv[i]), output_buf, length_needed, NULL, NULL);
output_buf[length_needed] = '\0';
argv.push_back(output_buf);
free(output_buf);
}
LocalFree((HLOCAL) wargv);
#else
int argc = raw_argc;
for (int i = 0; i < argc; ++i) {
argv.push_back(raw_argv[i]);
}
#endif
GGML_ASSERT((unsigned int) argc == argv.size());
return argv;
}
//
// Function: write_utf8_cstr_to_stdout(const char *) -> <writes to stdout>
//
// writes a string to standard output; taking into account that on Windows
// to display correctly you have to use special handling. Works even if the
// user has not set a unicode code page on a Windows cmd.exe.
//
// In case of invalid UTF-8, invalid_utf8 is set to true on Windows, and something
// a human-readable is written instead.
//
// On non-Windows systems, simply printfs() the string.
static void write_utf8_cstr_to_stdout(const char * str, bool & invalid_utf8) {
invalid_utf8 = false;
#if defined(_WIN32)
// Are we in a console?
HANDLE hConsole = GetStdHandle(STD_OUTPUT_HANDLE);
DWORD dwMode = 0;
// According to Microsoft docs:
// "WriteConsole fails if it is used with a standard handle that is redirected to a file."
// Also according to the docs, you can use GetConsoleMode to check for that.
if (hConsole == INVALID_HANDLE_VALUE || !GetConsoleMode(hConsole, &dwMode)) {
printf("%s", str);
return;
}
// MultiByteToWideChar reports an error if str is empty, don't report
// them as invalid_utf8.
if (*str == 0) {
return;
}
int length_needed = MultiByteToWideChar(CP_UTF8, MB_ERR_INVALID_CHARS, str, strlen(str), NULL, 0);
if (length_needed == 0) {
DWORD err = GetLastError();
if (err == ERROR_NO_UNICODE_TRANSLATION) {
invalid_utf8 = true;
int len = strlen(str);
printf("<");
for (int i = 0; i < len; ++i) {
if (i > 0) {
printf(" ");
}
printf("%02x", (uint8_t) str[i]);
}
printf(">");
return;
}
GGML_ASSERT(false && "MultiByteToWideChar() failed in an unexpected way.");
}
LPWSTR wstr = (LPWSTR) calloc(length_needed+1, sizeof(*wstr));
GGML_ASSERT(wstr);
MultiByteToWideChar(CP_UTF8, 0, str, strlen(str), wstr, length_needed);
WriteConsoleW(hConsole, wstr, length_needed, NULL, NULL);
free(wstr);
#else
// TODO: reporting invalid_utf8 would be useful on non-Windows too.
// printf will silently just write bad unicode.
printf("%s", str);
#endif
}
int main(int raw_argc, char ** raw_argv) {
const std::vector<std::string> argv = ingest_args(raw_argc, raw_argv);
const int argc = argv.size();
if (argc <= 1) {
print_usage_information(argv[0].c_str(), stderr);
return 1; return 1;
} }
const char * model_path = argv[1]; //////
const char * prompt = argv[2]; // Read out all the command line arguments.
//////
const bool printing_ids = argc > 3 && std::string(argv[3]) == "--ids"; // variables where to put any arguments we see.
bool printing_ids = false;
bool no_bos = false;
bool disable_logging = false;
const char * model_path = NULL;
const char * prompt_path = NULL;
const char * prompt_arg = NULL;
// track which arguments were explicitly given
// used for sanity checking down the line
bool model_path_set = false;
bool prompt_path_set = false;
bool prompt_set = false;
bool stdin_set = false;
int iarg = 1;
for (; iarg < argc; ++iarg) {
std::string arg{argv[iarg]};
if (arg == "-h" || arg == "--help") {
print_usage_information(argv[0].c_str(), stdout);
return 0;
}
else if (arg == "--ids") {
printing_ids = true;
}
else if (arg == "-m" || arg == "--model") {
if (model_path_set) {
fprintf(stderr, "Error: -m or --model specified multiple times.\n");
return 1;
}
model_path = argv[++iarg].c_str();
model_path_set = true;
}
else if (arg == "--no-bos") {
no_bos = true;
}
else if (arg == "-p" || arg == "--prompt") {
if (prompt_set) {
fprintf(stderr, "Error: -p or --prompt specified multiple times.\n");
return 1;
}
prompt_arg = argv[++iarg].c_str();
prompt_set = true;
}
else if (arg == "-f" || arg == "--file") {
if (prompt_path_set) {
fprintf(stderr, "Error: -f or --file specified multiple times.\n");
return 1;
}
prompt_path = argv[++iarg].c_str();
prompt_path_set = true;
}
else if (arg == "--stdin") {
stdin_set = true;
}
else if (arg == "--log-disable") {
disable_logging = true;
}
else {
fprintf(stderr, "Error: unknown option '%s'\n", argv[iarg].c_str());
return 1;
}
}
//////
// Sanity check the command line arguments.
//////
// Check that we have the required stuff set.
if (model_path_set && model_path == NULL) {
fprintf(stderr, "Error: --model requires an argument.\n");
return 1;
}
if (!model_path_set) {
fprintf(stderr, "Error: must specify --model.\n");
return 1;
}
if (prompt_path_set && prompt_path == NULL) {
fprintf(stderr, "Error: --file requires an argument.\n");
return 1;
}
if (prompt_set && prompt_arg == NULL) {
fprintf(stderr, "Error: --prompt requires an argument.\n");
return 1;
}
const int prompts_set = !!(prompt_path_set) + !!(prompt_set) + !!(stdin_set);
if (prompts_set > 1) {
fprintf(stderr, "Error: --stdin, --file and --prompt are mutually exclusive.\n");
return 1;
}
// Must have some prompt.
if (prompts_set == 0) {
fprintf(stderr, "Error: must specify one of: --stdin, --file or --prompt.\n");
return 1;
}
GGML_ASSERT(model_path);
GGML_ASSERT(prompt_path || prompt_arg || stdin_set);
//////
// Figure out where will the prompt come from.
//////
std::string prompt;
if (prompt_path_set) {
bool success = false;
prompt = read_prompt_from_file(prompt_path, success);
if (!success) {
return 1;
}
} else if (prompt_set) {
prompt = prompt_arg;
} else {
GGML_ASSERT(stdin_set);
// we read stdin *after* loading model (early exit if model cannot
// be loaded, which can be a nicer user experience)
}
//////
// Start actually doing the tokenizing stuff.
//////
#ifdef LOG_DISABLE_LOGS
disable_logging = true;
#endif
if (disable_logging) {
llama_log_set(llama_log_callback_null, NULL);
}
llama_backend_init(); llama_backend_init();
llama_model_params model_params = llama_model_default_params(); llama_model_params model_params = llama_model_default_params();
model_params.vocab_only = true; model_params.vocab_only = true;
llama_model * model = llama_load_model_from_file(model_path, model_params); llama_model * model = llama_load_model_from_file(model_path, model_params);
if (!model) {
fprintf(stderr, "Error: could not load model from file '%s'.\n", model_path);
return 1;
}
llama_context_params ctx_params = llama_context_default_params(); llama_context_params ctx_params = llama_context_default_params();
llama_context * ctx = llama_new_context_with_model(model, ctx_params); llama_context * ctx = llama_new_context_with_model(model, ctx_params);
if (!ctx) {
fprintf(stderr, "Error: could not create context.\n");
return 1;
}
// read entire prompt from stdin?
if (stdin_set) {
GGML_ASSERT(!prompt_path_set && !prompt_set);
std::stringstream stdin_buffer;
stdin_buffer << std::cin.rdbuf();
if (std::cin.fail()) {
fprintf(stderr, "Error: could not read the entire standard input.\n");
return 1;
}
prompt = stdin_buffer.str();
}
const bool model_wants_add_bos = llama_should_add_bos_token(model);
const bool add_bos = model_wants_add_bos && !no_bos;
std::vector<llama_token> tokens; std::vector<llama_token> tokens;
tokens = ::llama_tokenize(model, prompt, add_bos, true);
tokens = ::llama_tokenize(model, prompt, true, true); if (printing_ids) {
printf("[");
}
for (int i = 0; i < (int) tokens.size(); i++) { for (int i = 0; i < (int) tokens.size(); i++) {
if (printing_ids) { if (printing_ids) {
printf("%d\n", tokens[i]); if (i > 0) {
printf(", ");
}
printf("%d", tokens[i]);
} else { } else {
printf("%6d -> '%s'\n", tokens[i], llama_token_to_piece(ctx, tokens[i]).c_str()); bool invalid_utf8 = false;
printf("%6d -> '", tokens[i]);
write_utf8_cstr_to_stdout(llama_token_to_piece(ctx, tokens[i]).c_str(), invalid_utf8);
if (invalid_utf8) {
printf("' (utf-8 decode failure)\n");
} else {
printf("'\n");
}
} }
} }
if (printing_ids) {
printf("]\n");
}
// silence valgrind
llama_free(ctx);
llama_free_model(model);
return 0; return 0;
} }

12
flake.lock generated
View File

@ -5,11 +5,11 @@
"nixpkgs-lib": "nixpkgs-lib" "nixpkgs-lib": "nixpkgs-lib"
}, },
"locked": { "locked": {
"lastModified": 1714641030, "lastModified": 1715865404,
"narHash": "sha256-yzcRNDoyVP7+SCNX0wmuDju1NUCt8Dz9+lyUXEI0dbI=", "narHash": "sha256-/GJvTdTpuDjNn84j82cU6bXztE0MSkdnTWClUCRub78=",
"owner": "hercules-ci", "owner": "hercules-ci",
"repo": "flake-parts", "repo": "flake-parts",
"rev": "e5d10a24b66c3ea8f150e47dfdb0416ab7c3390e", "rev": "8dc45382d5206bd292f9c2768b8058a8fd8311d9",
"type": "github" "type": "github"
}, },
"original": { "original": {
@ -20,11 +20,11 @@
}, },
"nixpkgs": { "nixpkgs": {
"locked": { "locked": {
"lastModified": 1714635257, "lastModified": 1716509168,
"narHash": "sha256-4cPymbty65RvF1DWQfc+Bc8B233A1BWxJnNULJKQ1EY=", "narHash": "sha256-4zSIhSRRIoEBwjbPm3YiGtbd8HDWzFxJjw5DYSDy1n8=",
"owner": "NixOS", "owner": "NixOS",
"repo": "nixpkgs", "repo": "nixpkgs",
"rev": "63c3a29ca82437c87573e4c6919b09a24ea61b0f", "rev": "bfb7a882678e518398ce9a31a881538679f6f092",
"type": "github" "type": "github"
}, },
"original": { "original": {

View File

@ -119,6 +119,20 @@ int ggml_cuda_get_device() {
return id; return id;
} }
static cudaError_t ggml_cuda_device_malloc(void ** ptr, size_t size, int device) {
ggml_cuda_set_device(device);
#if defined(GGML_USE_HIPBLAS) && defined(GGML_HIP_UMA)
auto res = hipMallocManaged(ptr, size);
if (res == hipSuccess) {
// if error we "need" to know why...
CUDA_CHECK(hipMemAdvise(*ptr, size, hipMemAdviseSetCoarseGrain, device));
}
return res;
#else
return cudaMalloc(ptr, size);
#endif
}
static ggml_cuda_device_info ggml_cuda_init() { static ggml_cuda_device_info ggml_cuda_init() {
#ifdef __HIP_PLATFORM_AMD__ #ifdef __HIP_PLATFORM_AMD__
// Workaround for a rocBLAS bug when using multiple graphics cards: // Workaround for a rocBLAS bug when using multiple graphics cards:
@ -271,7 +285,7 @@ struct ggml_cuda_pool_leg : public ggml_cuda_pool {
size_t look_ahead_size = (size_t) (1.05 * size); size_t look_ahead_size = (size_t) (1.05 * size);
look_ahead_size = 256 * ((look_ahead_size + 255)/256); look_ahead_size = 256 * ((look_ahead_size + 255)/256);
ggml_cuda_set_device(device); ggml_cuda_set_device(device);
CUDA_CHECK(cudaMalloc((void **) &ptr, look_ahead_size)); CUDA_CHECK(ggml_cuda_device_malloc(&ptr, look_ahead_size, device));
*actual_size = look_ahead_size; *actual_size = look_ahead_size;
pool_size += look_ahead_size; pool_size += look_ahead_size;
#ifdef DEBUG_CUDA_MALLOC #ifdef DEBUG_CUDA_MALLOC
@ -537,7 +551,7 @@ GGML_CALL static ggml_backend_buffer_t ggml_backend_cuda_buffer_type_alloc_buffe
size = std::max(size, (size_t)1); // cudaMalloc returns null for size 0 size = std::max(size, (size_t)1); // cudaMalloc returns null for size 0
void * dev_ptr; void * dev_ptr;
cudaError_t err = cudaMalloc(&dev_ptr, size); cudaError_t err = ggml_cuda_device_malloc(&dev_ptr, size, buft_ctx->device);
if (err != cudaSuccess) { if (err != cudaSuccess) {
// clear the error // clear the error
cudaGetLastError(); cudaGetLastError();
@ -798,7 +812,7 @@ GGML_CALL static void ggml_backend_cuda_split_buffer_init_tensor(ggml_backend_bu
// currently, init_tensor cannot fail, it needs to be fixed in ggml-backend first // currently, init_tensor cannot fail, it needs to be fixed in ggml-backend first
ggml_cuda_set_device(id); ggml_cuda_set_device(id);
char * buf; char * buf;
CUDA_CHECK(cudaMalloc(&buf, size)); CUDA_CHECK(ggml_cuda_device_malloc((void**)&buf, size, id));
// set padding to 0 to avoid possible NaN values // set padding to 0 to avoid possible NaN values
if (size > original_size) { if (size > original_size) {
@ -2510,9 +2524,9 @@ GGML_CALL static enum ggml_status ggml_backend_cuda_graph_compute(ggml_backend_t
bool use_cuda_graph = true; bool use_cuda_graph = true;
bool cuda_graph_update_required = false; bool cuda_graph_update_required = false;
// pointer to CUDA cpy kernel, which is required to identify // vector of pointers to CUDA cpy kernels, which are required to identify
// kernel parameters which need updated in the graph for each token // kernel parameters which need updated in the graph for each token
void * ggml_cuda_cpy_fn_ptr = nullptr; std::vector<void *> ggml_cuda_cpy_fn_ptrs;
if (cuda_ctx->cuda_graph->graph == nullptr) { if (cuda_ctx->cuda_graph->graph == nullptr) {
if (ggml_cuda_info().devices[cuda_ctx->device].cc < CC_AMPERE) { if (ggml_cuda_info().devices[cuda_ctx->device].cc < CC_AMPERE) {
@ -2588,9 +2602,10 @@ GGML_CALL static enum ggml_status ggml_backend_cuda_graph_compute(ggml_backend_t
if (node->op == GGML_OP_CPY) { if (node->op == GGML_OP_CPY) {
// store the copy op parameter which changes with each token. // store the copy op parameter which changes with each token.
cuda_ctx->cuda_graph->updated_kernel_arg.push_back((char **) &(node->src[1]->data)); cuda_ctx->cuda_graph->updated_kernel_arg.push_back((char **) &(node->src[1]->data));
if (ggml_cuda_cpy_fn_ptr == nullptr) { // store a pointer to each copy op CUDA kernel to identify it later
// store a pointer to the copy op CUDA kernel to identify it later void * ptr = ggml_cuda_cpy_fn(node->src[0], node->src[1]);
ggml_cuda_cpy_fn_ptr = ggml_cuda_cpy_fn(node->src[0], node->src[1]); if (std::find(ggml_cuda_cpy_fn_ptrs.begin(), ggml_cuda_cpy_fn_ptrs.end(), ptr) == ggml_cuda_cpy_fn_ptrs.end()) {
ggml_cuda_cpy_fn_ptrs.push_back(ptr);
} }
} }
@ -2720,7 +2735,7 @@ GGML_CALL static enum ggml_status ggml_backend_cuda_graph_compute(ggml_backend_t
if (!cuda_graph_update_required) { // on update steps, the live parameters will already be captured if (!cuda_graph_update_required) { // on update steps, the live parameters will already be captured
int k = 0; int k = 0;
for (size_t i = 0; i < cuda_ctx->cuda_graph->num_nodes; i++) { for (size_t i = 0; i < cuda_ctx->cuda_graph->num_nodes; i++) {
if (cuda_ctx->cuda_graph->params[i].func == ggml_cuda_cpy_fn_ptr) { if(count(ggml_cuda_cpy_fn_ptrs.begin(), ggml_cuda_cpy_fn_ptrs.end(), cuda_ctx->cuda_graph->params[i].func) > 0) {
char ** updated_kernel_arg_ptr = cuda_ctx->cuda_graph->updated_kernel_arg.at(k++); char ** updated_kernel_arg_ptr = cuda_ctx->cuda_graph->updated_kernel_arg.at(k++);
cuda_ctx->cuda_graph->params[i].kernelParams[1] = updated_kernel_arg_ptr; cuda_ctx->cuda_graph->params[i].kernelParams[1] = updated_kernel_arg_ptr;
CUDA_CHECK(cudaGraphKernelNodeSetParams(cuda_ctx->cuda_graph->nodes[i], &cuda_ctx->cuda_graph->params[i])); CUDA_CHECK(cudaGraphKernelNodeSetParams(cuda_ctx->cuda_graph->nodes[i], &cuda_ctx->cuda_graph->params[i]));

View File

@ -79,13 +79,8 @@
#define cudaHostRegisterReadOnly hipHostRegisterReadOnly #define cudaHostRegisterReadOnly hipHostRegisterReadOnly
#define cudaHostUnregister hipHostUnregister #define cudaHostUnregister hipHostUnregister
#define cudaLaunchHostFunc hipLaunchHostFunc #define cudaLaunchHostFunc hipLaunchHostFunc
#ifdef GGML_HIP_UMA
#define cudaMalloc hipMallocManaged
#define cudaMallocHost(ptr, size) hipHostMalloc(ptr, size)
#else
#define cudaMalloc hipMalloc #define cudaMalloc hipMalloc
#define cudaMallocHost(ptr, size) hipHostMalloc(ptr, size, hipHostMallocDefault) #define cudaMallocHost(ptr, size) hipHostMalloc(ptr, size, hipHostMallocDefault)
#endif
#define cudaMemcpy hipMemcpy #define cudaMemcpy hipMemcpy
#define cudaMemcpyAsync hipMemcpyAsync #define cudaMemcpyAsync hipMemcpyAsync
#define cudaMemcpyPeerAsync hipMemcpyPeerAsync #define cudaMemcpyPeerAsync hipMemcpyPeerAsync

View File

@ -1,15 +1,68 @@
#include "concat.cuh" #include "concat.cuh"
static __global__ void concat_f32(const float * x,const float * y, float * dst, const int ne0, const int ne02) { static __global__ void concat_f32_dim0(const float * x, const float * y, float * dst, const int ne0, const int ne00) {
int nidx = threadIdx.x + blockIdx.x * blockDim.x; int nidx = threadIdx.x + blockIdx.x * blockDim.x;
if (nidx >= ne0) { if (nidx >= ne0) {
return; return;
} }
// operation
int offset_dst = int offset_dst =
nidx + nidx +
blockIdx.y * ne0 + blockIdx.y * ne0 +
blockIdx.z * ne0 * gridDim.y; blockIdx.z * ne0 * gridDim.y;
if (nidx < ne00) { // src0
int offset_src =
nidx +
blockIdx.y * ne00 +
blockIdx.z * ne00 * gridDim.y;
dst[offset_dst] = x[offset_src];
} else {
int offset_src =
(nidx - ne00) +
blockIdx.y * (ne0 - ne00) +
blockIdx.z * (ne0 - ne00) * gridDim.y;
dst[offset_dst] = y[offset_src];
}
}
static __global__ void concat_f32_dim1(const float * x, const float * y, float * dst, const int ne0, const int ne01) {
int nidx = threadIdx.x + blockIdx.x * blockDim.x;
if (nidx >= ne0) {
return;
}
int offset_dst =
nidx +
blockIdx.y * ne0 +
blockIdx.z * ne0 * gridDim.y;
if (blockIdx.y < ne01) { // src0
int offset_src =
nidx +
blockIdx.y * ne0 +
blockIdx.z * ne0 * ne01;
dst[offset_dst] = x[offset_src];
} else {
int offset_src =
nidx +
(blockIdx.y - ne01) * ne0 +
blockIdx.z * ne0 * (gridDim.y - ne01);
dst[offset_dst] = y[offset_src];
}
}
static __global__ void concat_f32_dim2(const float * x, const float * y, float * dst, const int ne0, const int ne02) {
int nidx = threadIdx.x + blockIdx.x * blockDim.x;
if (nidx >= ne0) {
return;
}
int offset_dst =
nidx +
blockIdx.y * ne0 +
blockIdx.z * ne0 * gridDim.y;
if (blockIdx.z < ne02) { // src0 if (blockIdx.z < ne02) { // src0
int offset_src = int offset_src =
nidx + nidx +
@ -25,25 +78,53 @@ static __global__ void concat_f32(const float * x,const float * y, float * dst,
} }
} }
static void concat_f32_cuda(const float * x, const float * y, float * dst, const int ne0, int ne1, int ne2, int ne02, cudaStream_t stream) { static void concat_f32_cuda(const float * x, const float * y, float * dst, int ne00, int ne01, int ne02, int ne0, int ne1, int ne2, int dim, cudaStream_t stream) {
int num_blocks = (ne0 + CUDA_CONCAT_BLOCK_SIZE - 1) / CUDA_CONCAT_BLOCK_SIZE; int num_blocks = (ne0 + CUDA_CONCAT_BLOCK_SIZE - 1) / CUDA_CONCAT_BLOCK_SIZE;
dim3 gridDim(num_blocks, ne1, ne2); dim3 gridDim(num_blocks, ne1, ne2);
concat_f32<<<gridDim, CUDA_CONCAT_BLOCK_SIZE, 0, stream>>>(x, y, dst, ne0, ne02); if (dim == 0) {
concat_f32_dim0<<<gridDim, CUDA_CONCAT_BLOCK_SIZE, 0, stream>>>(x, y, dst, ne0, ne00);
return;
}
if (dim == 1) {
concat_f32_dim1<<<gridDim, CUDA_CONCAT_BLOCK_SIZE, 0, stream>>>(x, y, dst, ne0, ne01);
return;
}
concat_f32_dim2<<<gridDim, CUDA_CONCAT_BLOCK_SIZE, 0, stream>>>(x, y, dst, ne0, ne02);
} }
void ggml_cuda_op_concat(ggml_backend_cuda_context & ctx, ggml_tensor * dst) { void ggml_cuda_op_concat(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
const ggml_tensor * src0 = dst->src[0]; const ggml_tensor * src0 = dst->src[0];
const ggml_tensor * src1 = dst->src[1]; const ggml_tensor * src1 = dst->src[1];
const float * src0_d = (const float *)src0->data; const float * src0_d = (const float *)src0->data;
const float * src1_d = (const float *)src1->data; const float * src1_d = (const float *)src1->data;
float * dst_d = (float *)dst->data; float * dst_d = (float *)dst->data;
cudaStream_t stream = ctx.stream(); cudaStream_t stream = ctx.stream();
const int32_t dim = ((int32_t *) dst->op_params)[0];
GGML_ASSERT(ggml_is_contiguous(src0));
GGML_ASSERT(ggml_is_contiguous(src1));
GGML_ASSERT(src0->type == GGML_TYPE_F32); GGML_ASSERT(src0->type == GGML_TYPE_F32);
GGML_ASSERT(src1->type == GGML_TYPE_F32); GGML_ASSERT(src1->type == GGML_TYPE_F32);
GGML_ASSERT(dst->type == GGML_TYPE_F32); GGML_ASSERT(dst->type == GGML_TYPE_F32);
for (int i3 = 0; i3 < dst->ne[3]; i3++) { if (dim != 3) {
concat_f32_cuda(src0_d + i3 * (src0->nb[3] / 4), src1_d + i3 * (src1->nb[3] / 4), dst_d + i3 * (dst->nb[3] / 4), dst->ne[0], dst->ne[1], dst->ne[2], src0->ne[2], stream); for (int i3 = 0; i3 < dst->ne[3]; i3++) {
concat_f32_cuda(
src0_d + i3 * (src0->nb[3] / 4),
src1_d + i3 * (src1->nb[3] / 4),
dst_d + i3 * ( dst->nb[3] / 4),
src0->ne[0], src0->ne[1], src0->ne[2],
dst->ne[0], dst->ne[1], dst->ne[2], dim, stream);
}
} else {
const size_t size0 = ggml_nbytes(src0);
const size_t size1 = ggml_nbytes(src1);
CUDA_CHECK(cudaMemcpyAsync(dst_d, src0_d, size0, cudaMemcpyDeviceToDevice, stream));
CUDA_CHECK(cudaMemcpyAsync(dst_d + size0/4, src1_d, size1, cudaMemcpyDeviceToDevice, stream));
} }
} }

View File

@ -144,6 +144,10 @@ extern "C" {
#endif #endif
#endif #endif
#if defined(__ARM_FEATURE_SVE)
#include <arm_sve.h>
#endif
// 16-bit float // 16-bit float
// on Arm, we use __fp16 // on Arm, we use __fp16
// on x86, we use uint16_t // on x86, we use uint16_t

View File

@ -35,6 +35,10 @@ enum ggml_metal_kernel_type {
GGML_METAL_KERNEL_TYPE_MUL_ROW, GGML_METAL_KERNEL_TYPE_MUL_ROW,
GGML_METAL_KERNEL_TYPE_DIV, GGML_METAL_KERNEL_TYPE_DIV,
GGML_METAL_KERNEL_TYPE_DIV_ROW, GGML_METAL_KERNEL_TYPE_DIV_ROW,
GGML_METAL_KERNEL_TYPE_REPEAT_F32,
GGML_METAL_KERNEL_TYPE_REPEAT_F16,
GGML_METAL_KERNEL_TYPE_REPEAT_I32,
GGML_METAL_KERNEL_TYPE_REPEAT_I16,
GGML_METAL_KERNEL_TYPE_SCALE, GGML_METAL_KERNEL_TYPE_SCALE,
GGML_METAL_KERNEL_TYPE_SCALE_4, GGML_METAL_KERNEL_TYPE_SCALE_4,
GGML_METAL_KERNEL_TYPE_CLAMP, GGML_METAL_KERNEL_TYPE_CLAMP,
@ -184,9 +188,9 @@ enum ggml_metal_kernel_type {
GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_F16_H96, GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_F16_H96,
GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_F16_H112, GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_F16_H112,
GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_F16_H128, GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_F16_H128,
GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_F16_H256, //GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_F16_H256, // https://github.com/ggerganov/llama.cpp/issues/7261
GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_VEC_F16_H128, GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_VEC_F16_H128,
GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_VEC_F16_H256, //GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_VEC_F16_H256, // https://github.com/ggerganov/llama.cpp/issues/7261
GGML_METAL_KERNEL_TYPE_CPY_F32_F16, GGML_METAL_KERNEL_TYPE_CPY_F32_F16,
GGML_METAL_KERNEL_TYPE_CPY_F32_F32, GGML_METAL_KERNEL_TYPE_CPY_F32_F32,
GGML_METAL_KERNEL_TYPE_CPY_F32_Q8_0, GGML_METAL_KERNEL_TYPE_CPY_F32_Q8_0,
@ -485,6 +489,10 @@ static struct ggml_metal_context * ggml_metal_init(int n_cb) {
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_ROW, mul_row, true); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_ROW, mul_row, true);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_DIV, div, true); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_DIV, div, true);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_DIV_ROW, div_row, true); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_DIV_ROW, div_row, true);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_REPEAT_F32, repeat_f32, true);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_REPEAT_F16, repeat_f16, true);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_REPEAT_I32, repeat_i32, true);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_REPEAT_I16, repeat_i16, true);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_SCALE, scale, true); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_SCALE, scale, true);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_SCALE_4, scale_4, true); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_SCALE_4, scale_4, true);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_CLAMP, clamp, true); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_CLAMP, clamp, true);
@ -634,9 +642,9 @@ static struct ggml_metal_context * ggml_metal_init(int n_cb) {
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_F16_H96, flash_attn_ext_f16_h96, ctx->support_simdgroup_mm); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_F16_H96, flash_attn_ext_f16_h96, ctx->support_simdgroup_mm);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_F16_H112, flash_attn_ext_f16_h112, ctx->support_simdgroup_mm); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_F16_H112, flash_attn_ext_f16_h112, ctx->support_simdgroup_mm);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_F16_H128, flash_attn_ext_f16_h128, ctx->support_simdgroup_mm); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_F16_H128, flash_attn_ext_f16_h128, ctx->support_simdgroup_mm);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_F16_H256, flash_attn_ext_f16_h256, ctx->support_simdgroup_mm); //GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_F16_H256, flash_attn_ext_f16_h256, ctx->support_simdgroup_mm);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_VEC_F16_H128, flash_attn_ext_vec_f16_h128, ctx->support_simdgroup_reduction); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_VEC_F16_H128, flash_attn_ext_vec_f16_h128, ctx->support_simdgroup_reduction);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_VEC_F16_H256, flash_attn_ext_vec_f16_h256, ctx->support_simdgroup_reduction); //GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_VEC_F16_H256, flash_attn_ext_vec_f16_h256, ctx->support_simdgroup_reduction);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_CPY_F32_F16, cpy_f32_f16, true); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_CPY_F32_F16, cpy_f32_f16, true);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_CPY_F32_F32, cpy_f32_f32, true); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_CPY_F32_F32, cpy_f32_f32, true);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_CPY_F32_Q8_0, cpy_f32_q8_0, true); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_CPY_F32_Q8_0, cpy_f32_q8_0, true);
@ -746,6 +754,7 @@ static bool ggml_metal_supports_op(const struct ggml_metal_context * ctx, const
case GGML_OP_ACC: case GGML_OP_ACC:
case GGML_OP_MUL: case GGML_OP_MUL:
case GGML_OP_DIV: case GGML_OP_DIV:
case GGML_OP_REPEAT:
case GGML_OP_SCALE: case GGML_OP_SCALE:
case GGML_OP_CLAMP: case GGML_OP_CLAMP:
case GGML_OP_SQR: case GGML_OP_SQR:
@ -770,6 +779,9 @@ static bool ggml_metal_supports_op(const struct ggml_metal_context * ctx, const
case GGML_OP_LEAKY_RELU: case GGML_OP_LEAKY_RELU:
return true; return true;
case GGML_OP_FLASH_ATTN_EXT: case GGML_OP_FLASH_ATTN_EXT:
if (op->src[0]->ne[0] == 256) {
return false;
}
return ctx->support_simdgroup_mm; // TODO: over-restricted for vec-kernels return ctx->support_simdgroup_mm; // TODO: over-restricted for vec-kernels
case GGML_OP_MUL_MAT: case GGML_OP_MUL_MAT:
case GGML_OP_MUL_MAT_ID: case GGML_OP_MUL_MAT_ID:
@ -976,10 +988,10 @@ static enum ggml_status ggml_metal_graph_compute(
switch (dst->op) { switch (dst->op) {
case GGML_OP_CONCAT: case GGML_OP_CONCAT:
{ {
const int64_t nb = ne00;
id<MTLComputePipelineState> pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_CONCAT].pipeline; id<MTLComputePipelineState> pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_CONCAT].pipeline;
const int32_t dim = ((int32_t *) dst->op_params)[0];
[encoder setComputePipelineState:pipeline]; [encoder setComputePipelineState:pipeline];
[encoder setBuffer:id_src0 offset:offs_src0 atIndex:0]; [encoder setBuffer:id_src0 offset:offs_src0 atIndex:0];
[encoder setBuffer:id_src1 offset:offs_src1 atIndex:1]; [encoder setBuffer:id_src1 offset:offs_src1 atIndex:1];
@ -1008,7 +1020,7 @@ static enum ggml_status ggml_metal_graph_compute(
[encoder setBytes:&nb1 length:sizeof(nb1) atIndex:24]; [encoder setBytes:&nb1 length:sizeof(nb1) atIndex:24];
[encoder setBytes:&nb2 length:sizeof(nb2) atIndex:25]; [encoder setBytes:&nb2 length:sizeof(nb2) atIndex:25];
[encoder setBytes:&nb3 length:sizeof(nb3) atIndex:26]; [encoder setBytes:&nb3 length:sizeof(nb3) atIndex:26];
[encoder setBytes:&nb length:sizeof(nb) atIndex:27]; [encoder setBytes:&dim length:sizeof(dim) atIndex:27];
const int nth = MIN(1024, ne0); const int nth = MIN(1024, ne0);
@ -1018,11 +1030,14 @@ static enum ggml_status ggml_metal_graph_compute(
case GGML_OP_MUL: case GGML_OP_MUL:
case GGML_OP_DIV: case GGML_OP_DIV:
{ {
GGML_ASSERT(src0t == GGML_TYPE_F32);
GGML_ASSERT(src1t == GGML_TYPE_F32);
const size_t offs = 0; const size_t offs = 0;
bool bcast_row = false; bool bcast_row = false;
int64_t nb = ne00; int64_t nb = ne00; // used by the "row" kernels
id<MTLComputePipelineState> pipeline = nil; id<MTLComputePipelineState> pipeline = nil;
@ -1091,6 +1106,42 @@ static enum ggml_status ggml_metal_graph_compute(
[encoder dispatchThreadgroups:MTLSizeMake(ne01, ne02, ne03) threadsPerThreadgroup:MTLSizeMake(nth, 1, 1)]; [encoder dispatchThreadgroups:MTLSizeMake(ne01, ne02, ne03) threadsPerThreadgroup:MTLSizeMake(nth, 1, 1)];
} }
} break; } break;
case GGML_OP_REPEAT:
{
id<MTLComputePipelineState> pipeline;
switch (src0t) {
case GGML_TYPE_F32: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_REPEAT_F32].pipeline; break;
case GGML_TYPE_F16: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_REPEAT_F16].pipeline; break;
case GGML_TYPE_I32: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_REPEAT_I32].pipeline; break;
case GGML_TYPE_I16: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_REPEAT_I16].pipeline; break;
default: GGML_ASSERT(false);
}
[encoder setComputePipelineState:pipeline];
[encoder setBuffer:id_src0 offset:offs_src0 atIndex:0];
[encoder setBuffer:id_dst offset:offs_dst atIndex:1];
[encoder setBytes:&ne00 length:sizeof(ne00) atIndex:2];
[encoder setBytes:&ne01 length:sizeof(ne01) atIndex:3];
[encoder setBytes:&ne02 length:sizeof(ne02) atIndex:4];
[encoder setBytes:&ne03 length:sizeof(ne03) atIndex:5];
[encoder setBytes:&nb00 length:sizeof(nb00) atIndex:6];
[encoder setBytes:&nb01 length:sizeof(nb01) atIndex:7];
[encoder setBytes:&nb02 length:sizeof(nb02) atIndex:8];
[encoder setBytes:&nb03 length:sizeof(nb03) atIndex:9];
[encoder setBytes:&ne0 length:sizeof(ne0) atIndex:10];
[encoder setBytes:&ne1 length:sizeof(ne1) atIndex:11];
[encoder setBytes:&ne2 length:sizeof(ne2) atIndex:12];
[encoder setBytes:&ne3 length:sizeof(ne3) atIndex:13];
[encoder setBytes:&nb0 length:sizeof(nb0) atIndex:14];
[encoder setBytes:&nb1 length:sizeof(nb1) atIndex:15];
[encoder setBytes:&nb2 length:sizeof(nb2) atIndex:16];
[encoder setBytes:&nb3 length:sizeof(nb3) atIndex:17];
const int nth = MIN((int) pipeline.maxTotalThreadsPerThreadgroup, ne0);
[encoder dispatchThreadgroups:MTLSizeMake(ne1, ne2, ne3) threadsPerThreadgroup:MTLSizeMake(nth, 1, 1)];
} break;
case GGML_OP_ACC: case GGML_OP_ACC:
{ {
GGML_ASSERT(src0t == GGML_TYPE_F32); GGML_ASSERT(src0t == GGML_TYPE_F32);
@ -2573,7 +2624,7 @@ static enum ggml_status ggml_metal_graph_compute(
case 96: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_F16_H96 ].pipeline; break; case 96: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_F16_H96 ].pipeline; break;
case 112: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_F16_H112].pipeline; break; case 112: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_F16_H112].pipeline; break;
case 128: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_F16_H128].pipeline; break; case 128: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_F16_H128].pipeline; break;
case 256: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_F16_H256].pipeline; break; //case 256: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_F16_H256].pipeline; break;
default: default:
{ {
GGML_METAL_LOG_ERROR("unsupported size: %lld\n", ne00); GGML_METAL_LOG_ERROR("unsupported size: %lld\n", ne00);
@ -2586,7 +2637,7 @@ static enum ggml_status ggml_metal_graph_compute(
switch (ne00) { switch (ne00) {
case 128: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_VEC_F16_H128].pipeline; break; case 128: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_VEC_F16_H128].pipeline; break;
case 256: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_VEC_F16_H256].pipeline; break; //case 256: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_VEC_F16_H256].pipeline; break;
default: default:
{ {
GGML_METAL_LOG_ERROR("unsupported size: %lld\n", ne00); GGML_METAL_LOG_ERROR("unsupported size: %lld\n", ne00);

View File

@ -168,6 +168,53 @@ kernel void kernel_div(
} }
} }
template<typename T>
kernel void kernel_repeat(
device const char * src0,
device char * dst,
constant int64_t & ne00,
constant int64_t & ne01,
constant int64_t & ne02,
constant int64_t & ne03,
constant uint64_t & nb00,
constant uint64_t & nb01,
constant uint64_t & nb02,
constant uint64_t & nb03,
constant int64_t & ne0,
constant int64_t & ne1,
constant int64_t & ne2,
constant int64_t & ne3,
constant uint64_t & nb0,
constant uint64_t & nb1,
constant uint64_t & nb2,
constant uint64_t & nb3,
uint3 tgpig[[threadgroup_position_in_grid]],
uint3 tpitg[[thread_position_in_threadgroup]],
uint3 ntg[[threads_per_threadgroup]]) {
const int64_t i3 = tgpig.z;
const int64_t i2 = tgpig.y;
const int64_t i1 = tgpig.x;
const int64_t i03 = i3 % ne03;
const int64_t i02 = i2 % ne02;
const int64_t i01 = i1 % ne01;
device const char * src0_ptr = src0 + i03*nb03 + i02*nb02 + i01*nb01;
device char * dst_ptr = dst + i3*nb3 + i2*nb2 + i1*nb1 ;
for (int i0 = tpitg.x; i0 < ne0; i0 += ntg.x) {
const int i00 = i0 % ne00;
*((device T *)(dst_ptr + i0*nb0)) = *((device T *)(src0_ptr + i00*nb00));
}
}
typedef decltype(kernel_repeat<float>) kernel_repeat_t;
template [[host_name("kernel_repeat_f32")]] kernel kernel_repeat_t kernel_repeat<float>;
template [[host_name("kernel_repeat_f16")]] kernel kernel_repeat_t kernel_repeat<half>;
template [[host_name("kernel_repeat_i32")]] kernel kernel_repeat_t kernel_repeat<int>;
template [[host_name("kernel_repeat_i16")]] kernel kernel_repeat_t kernel_repeat<short>;
// assumption: src1 is a row // assumption: src1 is a row
// broadcast src1 into src0 // broadcast src1 into src0
kernel void kernel_add_row( kernel void kernel_add_row(
@ -2418,7 +2465,7 @@ template [[host_name("kernel_flash_attn_ext_f16_h80" )]] kernel flash_attn_ext_f
template [[host_name("kernel_flash_attn_ext_f16_h96" )]] kernel flash_attn_ext_f16_t kernel_flash_attn_ext_f16<96>; template [[host_name("kernel_flash_attn_ext_f16_h96" )]] kernel flash_attn_ext_f16_t kernel_flash_attn_ext_f16<96>;
template [[host_name("kernel_flash_attn_ext_f16_h112")]] kernel flash_attn_ext_f16_t kernel_flash_attn_ext_f16<112>; template [[host_name("kernel_flash_attn_ext_f16_h112")]] kernel flash_attn_ext_f16_t kernel_flash_attn_ext_f16<112>;
template [[host_name("kernel_flash_attn_ext_f16_h128")]] kernel flash_attn_ext_f16_t kernel_flash_attn_ext_f16<128>; template [[host_name("kernel_flash_attn_ext_f16_h128")]] kernel flash_attn_ext_f16_t kernel_flash_attn_ext_f16<128>;
template [[host_name("kernel_flash_attn_ext_f16_h256")]] kernel flash_attn_ext_f16_t kernel_flash_attn_ext_f16<256>; //template [[host_name("kernel_flash_attn_ext_f16_h256")]] kernel flash_attn_ext_f16_t kernel_flash_attn_ext_f16<256>;
template<int64_t D, int64_t Q = 1, int64_t C = 32> // head size, queries per threadgroup, cache items per threadgroup template<int64_t D, int64_t Q = 1, int64_t C = 32> // head size, queries per threadgroup, cache items per threadgroup
kernel void kernel_flash_attn_ext_vec_f16( kernel void kernel_flash_attn_ext_vec_f16(
@ -2696,7 +2743,7 @@ kernel void kernel_flash_attn_ext_vec_f16(
} }
template [[host_name("kernel_flash_attn_ext_vec_f16_h128")]] kernel flash_attn_ext_f16_t kernel_flash_attn_ext_vec_f16<128>; template [[host_name("kernel_flash_attn_ext_vec_f16_h128")]] kernel flash_attn_ext_f16_t kernel_flash_attn_ext_vec_f16<128>;
template [[host_name("kernel_flash_attn_ext_vec_f16_h256")]] kernel flash_attn_ext_f16_t kernel_flash_attn_ext_vec_f16<256>; //template [[host_name("kernel_flash_attn_ext_vec_f16_h256")]] kernel flash_attn_ext_f16_t kernel_flash_attn_ext_vec_f16<256>;
kernel void kernel_cpy_f16_f16( kernel void kernel_cpy_f16_f16(
device const half * src0, device const half * src0,
@ -3319,31 +3366,30 @@ kernel void kernel_concat(
constant uint64_t & nb1, constant uint64_t & nb1,
constant uint64_t & nb2, constant uint64_t & nb2,
constant uint64_t & nb3, constant uint64_t & nb3,
constant int32_t & dim,
uint3 tgpig[[threadgroup_position_in_grid]], uint3 tgpig[[threadgroup_position_in_grid]],
uint3 tpitg[[thread_position_in_threadgroup]], uint3 tpitg[[thread_position_in_threadgroup]],
uint3 ntg[[threads_per_threadgroup]]) { uint3 ntg[[threads_per_threadgroup]]) {
const int64_t i03 = tgpig.z; const int64_t i3 = tgpig.z;
const int64_t i02 = tgpig.y; const int64_t i2 = tgpig.y;
const int64_t i01 = tgpig.x; const int64_t i1 = tgpig.x;
const int64_t i13 = i03 % ne13; int64_t o[4] = {0, 0, 0, 0};
const int64_t i12 = i02 % ne12; o[dim] = dim == 0 ? ne00 : (dim == 1 ? ne01 : (dim == 2 ? ne02 : ne03));
const int64_t i11 = i01 % ne11;
device const char * src0_ptr = src0 + i03*nb03 + i02*nb02 + i01*nb01 + tpitg.x*nb00; device const float * x;
device const char * src1_ptr = src1 + i13*nb13 + i12*nb12 + i11*nb11 + tpitg.x*nb10;
device char * dst_ptr = dst + i03*nb3 + i02*nb2 + i01*nb1 + tpitg.x*nb0;
for (int i0 = tpitg.x; i0 < ne0; i0 += ntg.x) { for (int i0 = tpitg.x; i0 < ne0; i0 += ntg.x) {
if (i02 < ne02) { if (i0 < ne00 && i1 < ne01 && i2 < ne02 && i3 < ne03) {
((device float *)dst_ptr)[0] = ((device float *)src0_ptr)[0]; x = (device const float *)(src0 + (i3 )*nb03 + (i2 )*nb02 + (i1 )*nb01 + (i0 )*nb00);
src0_ptr += ntg.x*nb00;
} else { } else {
((device float *)dst_ptr)[0] = ((device float *)src1_ptr)[0]; x = (device const float *)(src1 + (i3 - o[3])*nb13 + (i2 - o[2])*nb12 + (i1 - o[1])*nb11 + (i0 - o[0])*nb10);
src1_ptr += ntg.x*nb10;
} }
dst_ptr += ntg.x*nb0;
device float * y = (device float *)(dst + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
*y = *x;
} }
} }

View File

@ -3813,7 +3813,44 @@ void ggml_vec_dot_q4_0_q8_0(int n, float * restrict s, size_t bs, const void * r
return; return;
} }
#endif #endif
#if defined(__ARM_NEON) #if defined(__ARM_FEATURE_SVE)
const svbool_t ptrueh = svptrue_pat_b8(SV_VL16);
const svbool_t ptruel = svnot_b_z(svptrue_b8(), ptrueh);
svfloat32_t sumv0 = svdup_n_f32(0.0f);
svfloat32_t sumv1 = svdup_n_f32(0.0f);
assert(nb % 2 == 0); // TODO: handle odd nb
for (int i = 0; i < nb; i += 2) {
const block_q4_0 * restrict x0 = &x[i + 0];
const block_q4_0 * restrict x1 = &x[i + 1];
const block_q8_0 * restrict y0 = &y[i + 0];
const block_q8_0 * restrict y1 = &y[i + 1];
// load x
const svuint8_t qx0r = svld1rq_u8(svptrue_b8(), x0->qs);
const svuint8_t qx1r = svld1rq_u8(svptrue_b8(), x1->qs);
// 4-bit -> 8-bit
const svint8_t qx0 = svreinterpret_s8_u8(svlsr_n_u8_m(ptruel, svand_n_u8_m(ptrueh, qx0r, 0x0F), 0x04));
const svint8_t qx1 = svreinterpret_s8_u8(svlsr_n_u8_m(ptruel, svand_n_u8_m(ptrueh, qx1r, 0x0F), 0x04));
// sub 8
const svint8_t qx0s = svsub_n_s8_x(svptrue_b8(), qx0, 8);
const svint8_t qx1s = svsub_n_s8_x(svptrue_b8(), qx1, 8);
// load y
const svint8_t qy0 = svld1_s8(svptrue_b8(), y0->qs);
const svint8_t qy1 = svld1_s8(svptrue_b8(), y1->qs);
// dot product
sumv0 = svmla_n_f32_x(svptrue_b32(), sumv0, svcvt_f32_s32_x(svptrue_b32(), svdot_s32(svdup_n_s32(0), qx0s, qy0)), GGML_FP16_TO_FP32(x0->d)*GGML_FP16_TO_FP32(y0->d));
sumv1 = svmla_n_f32_x(svptrue_b32(), sumv1, svcvt_f32_s32_x(svptrue_b32(), svdot_s32(svdup_n_s32(0), qx1s, qy1)), GGML_FP16_TO_FP32(x1->d)*GGML_FP16_TO_FP32(y1->d));
}
*s = svaddv_f32(svptrue_b32(), svadd_f32_x(svptrue_b32(), sumv0, sumv1));
#elif defined(__ARM_NEON)
float32x4_t sumv0 = vdupq_n_f32(0.0f); float32x4_t sumv0 = vdupq_n_f32(0.0f);
float32x4_t sumv1 = vdupq_n_f32(0.0f); float32x4_t sumv1 = vdupq_n_f32(0.0f);
@ -5384,7 +5421,32 @@ void ggml_vec_dot_q8_0_q8_0(int n, float * restrict s, size_t bs, const void * r
return; return;
} }
#endif #endif
#if defined(__ARM_NEON) #if defined(__ARM_FEATURE_SVE)
svfloat32_t sumv0 = svdup_n_f32(0.0f);
svfloat32_t sumv1 = svdup_n_f32(0.0f);
assert(nb % 2 == 0); // TODO: handle odd nb
for (int i = 0; i < nb; i += 2) {
const block_q8_0 * restrict x0 = &x[i + 0];
const block_q8_0 * restrict x1 = &x[i + 1];
const block_q8_0 * restrict y0 = &y[i + 0];
const block_q8_0 * restrict y1 = &y[i + 1];
// load x
const svint8_t qx0 = svld1_s8(svptrue_b8(), x0->qs);
const svint8_t qx1 = svld1_s8(svptrue_b8(), x1->qs);
// load y
const svint8_t qy0 = svld1_s8(svptrue_b8(), y0->qs);
const svint8_t qy1 = svld1_s8(svptrue_b8(), y1->qs);
sumv0 = svmla_n_f32_x(svptrue_b32(), sumv0, svcvt_f32_s32_x(svptrue_b32(), svdot_s32(svdup_n_s32(0), qx0, qy0)), GGML_FP16_TO_FP32(x0->d)*GGML_FP16_TO_FP32(y0->d));
sumv1 = svmla_n_f32_x(svptrue_b32(), sumv1, svcvt_f32_s32_x(svptrue_b32(), svdot_s32(svdup_n_s32(0), qx1, qy1)), GGML_FP16_TO_FP32(x1->d)*GGML_FP16_TO_FP32(y1->d));
}
*s = svaddv_f32(svptrue_b32(), svadd_f32_x(svptrue_b32(), sumv0, sumv1));
#elif defined(__ARM_NEON)
float32x4_t sumv0 = vdupq_n_f32(0.0f); float32x4_t sumv0 = vdupq_n_f32(0.0f);
float32x4_t sumv1 = vdupq_n_f32(0.0f); float32x4_t sumv1 = vdupq_n_f32(0.0f);
@ -12144,7 +12206,7 @@ static void quantize_row_iq2_xxs_impl(const float * restrict x, void * restrict
printf("\n"); printf("\n");
GGML_ASSERT(false); GGML_ASSERT(false);
} }
q2[2*ib+0] |= (grid_index << 8*k); q2[2*ib+0] |= ((uint32_t) grid_index << 8*k);
q2[2*ib+1] |= (block_signs[k] << 7*k); q2[2*ib+1] |= (block_signs[k] << 7*k);
} }
GGML_ASSERT(scale >= 0); GGML_ASSERT(scale >= 0);

View File

@ -6,6 +6,7 @@
#include <string> #include <string>
#include <vector> #include <vector>
#include <memory> #include <memory>
#include <mutex>
#include <unordered_map> #include <unordered_map>
#include <unordered_set> #include <unordered_set>
#ifdef _WIN32 #ifdef _WIN32
@ -47,6 +48,7 @@ struct socket_t {
sockfd_t fd; sockfd_t fd;
socket_t(sockfd_t fd) : fd(fd) {} socket_t(sockfd_t fd) : fd(fd) {}
~socket_t() { ~socket_t() {
GGML_PRINT_DEBUG("[%s] closing socket %d\n", __func__, this->fd);
#ifdef _WIN32 #ifdef _WIN32
closesocket(this->fd); closesocket(this->fd);
#else #else
@ -97,7 +99,7 @@ static ggml_guid_t ggml_backend_rpc_guid() {
} }
struct ggml_backend_rpc_buffer_type_context { struct ggml_backend_rpc_buffer_type_context {
std::shared_ptr<socket_t> sock; std::string endpoint;
std::string name; std::string name;
size_t alignment; size_t alignment;
size_t max_size; size_t max_size;
@ -106,8 +108,6 @@ struct ggml_backend_rpc_buffer_type_context {
struct ggml_backend_rpc_context { struct ggml_backend_rpc_context {
std::string endpoint; std::string endpoint;
std::string name; std::string name;
std::shared_ptr<socket_t> sock;
ggml_backend_buffer_type_t buft;
}; };
struct ggml_backend_rpc_buffer_context { struct ggml_backend_rpc_buffer_context {
@ -231,14 +231,13 @@ static bool recv_data(sockfd_t sockfd, void * data, size_t size) {
return true; return true;
} }
static bool parse_endpoint(const char * endpoint, std::string & host, int & port) { static bool parse_endpoint(const std::string & endpoint, std::string & host, int & port) {
std::string str(endpoint); size_t pos = endpoint.find(':');
size_t pos = str.find(':');
if (pos == std::string::npos) { if (pos == std::string::npos) {
return false; return false;
} }
host = str.substr(0, pos); host = endpoint.substr(0, pos);
port = std::stoi(str.substr(pos + 1)); port = std::stoi(endpoint.substr(pos + 1));
return true; return true;
} }
@ -273,6 +272,44 @@ static bool send_rpc_cmd(const std::shared_ptr<socket_t> & sock, enum rpc_cmd cm
// RPC client-side implementation // RPC client-side implementation
static std::shared_ptr<socket_t> get_socket(const std::string & endpoint) {
static std::mutex mutex;
std::lock_guard<std::mutex> lock(mutex);
static std::unordered_map<std::string, std::weak_ptr<socket_t>> sockets;
static bool initialized = false;
auto it = sockets.find(endpoint);
if (it != sockets.end()) {
if (auto sock = it->second.lock()) {
return sock;
}
}
std::string host;
int port;
if (!parse_endpoint(endpoint, host, port)) {
return nullptr;
}
#ifdef _WIN32
if (!initialized) {
WSADATA wsaData;
int res = WSAStartup(MAKEWORD(2, 2), &wsaData);
if (res != 0) {
return nullptr;
}
initialized = true;
}
#else
UNUSED(initialized);
#endif
auto sock = socket_connect(host.c_str(), port);
if (sock == nullptr) {
return nullptr;
}
GGML_PRINT_DEBUG("[%s] connected to %s, sockfd=%d\n", __func__, endpoint.c_str(), sock->fd);
sockets[endpoint] = sock;
return sock;
}
GGML_CALL static const char * ggml_backend_rpc_buffer_get_name(ggml_backend_buffer_t buffer) { GGML_CALL static const char * ggml_backend_rpc_buffer_get_name(ggml_backend_buffer_t buffer) {
ggml_backend_rpc_buffer_context * ctx = (ggml_backend_rpc_buffer_context *)buffer->context; ggml_backend_rpc_buffer_context * ctx = (ggml_backend_rpc_buffer_context *)buffer->context;
return ctx->name.c_str(); return ctx->name.c_str();
@ -442,7 +479,8 @@ GGML_CALL static ggml_backend_buffer_t ggml_backend_rpc_buffer_type_alloc_buffer
std::vector<uint8_t> input(input_size, 0); std::vector<uint8_t> input(input_size, 0);
memcpy(input.data(), &size, sizeof(size)); memcpy(input.data(), &size, sizeof(size));
std::vector<uint8_t> output; std::vector<uint8_t> output;
bool status = send_rpc_cmd(buft_ctx->sock, ALLOC_BUFFER, input, output); auto sock = get_socket(buft_ctx->endpoint);
bool status = send_rpc_cmd(sock, ALLOC_BUFFER, input, output);
GGML_ASSERT(status); GGML_ASSERT(status);
GGML_ASSERT(output.size() == 2*sizeof(uint64_t)); GGML_ASSERT(output.size() == 2*sizeof(uint64_t));
// output serialization format: | remote_ptr (8 bytes) | remote_size (8 bytes) | // output serialization format: | remote_ptr (8 bytes) | remote_size (8 bytes) |
@ -453,7 +491,7 @@ GGML_CALL static ggml_backend_buffer_t ggml_backend_rpc_buffer_type_alloc_buffer
if (remote_ptr != 0) { if (remote_ptr != 0) {
ggml_backend_buffer_t buffer = ggml_backend_buffer_init(buft, ggml_backend_buffer_t buffer = ggml_backend_buffer_init(buft,
ggml_backend_rpc_buffer_interface, ggml_backend_rpc_buffer_interface,
new ggml_backend_rpc_buffer_context{buft_ctx->sock, {}, remote_ptr, "RPC"}, new ggml_backend_rpc_buffer_context{sock, {}, remote_ptr, "RPC"},
remote_size); remote_size);
return buffer; return buffer;
} else { } else {
@ -508,7 +546,7 @@ GGML_CALL static bool ggml_backend_rpc_buffer_type_supports_backend(ggml_backend
} }
ggml_backend_rpc_buffer_type_context * buft_ctx = (ggml_backend_rpc_buffer_type_context *)buft->context; ggml_backend_rpc_buffer_type_context * buft_ctx = (ggml_backend_rpc_buffer_type_context *)buft->context;
ggml_backend_rpc_context * rpc_ctx = (ggml_backend_rpc_context *)backend->context; ggml_backend_rpc_context * rpc_ctx = (ggml_backend_rpc_context *)backend->context;
return buft_ctx->sock == rpc_ctx->sock; return buft_ctx->endpoint == rpc_ctx->endpoint;
} }
static ggml_backend_buffer_type_i ggml_backend_rpc_buffer_type_interface = { static ggml_backend_buffer_type_i ggml_backend_rpc_buffer_type_interface = {
@ -521,7 +559,6 @@ static ggml_backend_buffer_type_i ggml_backend_rpc_buffer_type_interface = {
/* .is_host = */ NULL, /* .is_host = */ NULL,
}; };
GGML_CALL static const char * ggml_backend_rpc_name(ggml_backend_t backend) { GGML_CALL static const char * ggml_backend_rpc_name(ggml_backend_t backend) {
ggml_backend_rpc_context * rpc_ctx = (ggml_backend_rpc_context *)backend->context; ggml_backend_rpc_context * rpc_ctx = (ggml_backend_rpc_context *)backend->context;
@ -530,16 +567,13 @@ GGML_CALL static const char * ggml_backend_rpc_name(ggml_backend_t backend) {
GGML_CALL static void ggml_backend_rpc_free(ggml_backend_t backend) { GGML_CALL static void ggml_backend_rpc_free(ggml_backend_t backend) {
ggml_backend_rpc_context * rpc_ctx = (ggml_backend_rpc_context *)backend->context; ggml_backend_rpc_context * rpc_ctx = (ggml_backend_rpc_context *)backend->context;
ggml_backend_rpc_buffer_type_context * buft_ctx = (ggml_backend_rpc_buffer_type_context *)rpc_ctx->buft->context;
delete buft_ctx;
delete rpc_ctx->buft;
delete rpc_ctx; delete rpc_ctx;
delete backend; delete backend;
} }
GGML_CALL static ggml_backend_buffer_type_t ggml_backend_rpc_get_default_buffer_type(ggml_backend_t backend) { GGML_CALL static ggml_backend_buffer_type_t ggml_backend_rpc_get_default_buffer_type(ggml_backend_t backend) {
ggml_backend_rpc_context * ctx = (ggml_backend_rpc_context *)backend->context; ggml_backend_rpc_context * ctx = (ggml_backend_rpc_context *)backend->context;
return ctx->buft; return ggml_backend_rpc_buffer_type(ctx->endpoint.c_str());
} }
GGML_CALL static void ggml_backend_rpc_synchronize(ggml_backend_t backend) { GGML_CALL static void ggml_backend_rpc_synchronize(ggml_backend_t backend) {
@ -590,7 +624,8 @@ GGML_CALL static enum ggml_status ggml_backend_rpc_graph_compute(ggml_backend_t
std::vector<uint8_t> input; std::vector<uint8_t> input;
serialize_graph(cgraph, input); serialize_graph(cgraph, input);
std::vector<uint8_t> output; std::vector<uint8_t> output;
bool status = send_rpc_cmd(rpc_ctx->sock, GRAPH_COMPUTE, input, output); auto sock = get_socket(rpc_ctx->endpoint);
bool status = send_rpc_cmd(sock, GRAPH_COMPUTE, input, output);
GGML_ASSERT(status); GGML_ASSERT(status);
GGML_ASSERT(output.size() == 1); GGML_ASSERT(output.size() == 1);
return (enum ggml_status)output[0]; return (enum ggml_status)output[0];
@ -624,65 +659,48 @@ static ggml_backend_i ggml_backend_rpc_interface = {
/* .event_synchronize = */ NULL, /* .event_synchronize = */ NULL,
}; };
static std::unordered_map<std::string, ggml_backend_t> instances;
GGML_API GGML_CALL ggml_backend_buffer_type_t ggml_backend_rpc_buffer_type(const char * endpoint) { GGML_API GGML_CALL ggml_backend_buffer_type_t ggml_backend_rpc_buffer_type(const char * endpoint) {
ggml_backend_t backend = ggml_backend_rpc_init(endpoint); static std::mutex mutex;
return backend != nullptr ? ggml_backend_rpc_get_default_buffer_type(backend) : nullptr; std::lock_guard<std::mutex> lock(mutex);
} // NOTE: buffer types are allocated and never freed; this is by design
static std::unordered_map<std::string, ggml_backend_buffer_type_t> buft_map;
GGML_CALL ggml_backend_t ggml_backend_rpc_init(const char * endpoint) { auto it = buft_map.find(endpoint);
std::string endpoint_str(endpoint); if (it != buft_map.end()) {
if (instances.find(endpoint_str) != instances.end()) { return it->second;
return instances[endpoint_str];
} }
#ifdef _WIN32 auto sock = get_socket(endpoint);
{
WSADATA wsaData;
int res = WSAStartup(MAKEWORD(2, 2), &wsaData);
if (res != 0) {
return nullptr;
}
}
#endif
fprintf(stderr, "Connecting to %s\n", endpoint);
std::string host;
int port;
if (!parse_endpoint(endpoint, host, port)) {
return nullptr;
}
auto sock = socket_connect(host.c_str(), port);
if (sock == nullptr) { if (sock == nullptr) {
return nullptr; return nullptr;
} }
size_t alignment = get_alignment(sock); size_t alignment = get_alignment(sock);
size_t max_size = get_max_size(sock); size_t max_size = get_max_size(sock);
ggml_backend_rpc_buffer_type_context * buft_ctx = new ggml_backend_rpc_buffer_type_context { ggml_backend_rpc_buffer_type_context * buft_ctx = new ggml_backend_rpc_buffer_type_context {
/* .sock = */ sock, /* .endpoint = */ endpoint,
/* .name = */ "RPC" + std::to_string(sock->fd), /* .name = */ "RPC[" + std::string(endpoint) + "]",
/* .alignment = */ alignment, /* .alignment = */ alignment,
/* .max_size = */ max_size /* .max_size = */ max_size
}; };
ggml_backend_buffer_type_t buft = new ggml_backend_buffer_type { ggml_backend_buffer_type_t buft = new ggml_backend_buffer_type {
/* .iface = */ ggml_backend_rpc_buffer_type_interface, /* .iface = */ ggml_backend_rpc_buffer_type_interface,
/* .context = */ buft_ctx /* .context = */ buft_ctx
}; };
buft_map[endpoint] = buft;
return buft;
}
GGML_CALL ggml_backend_t ggml_backend_rpc_init(const char * endpoint) {
ggml_backend_rpc_context * ctx = new ggml_backend_rpc_context { ggml_backend_rpc_context * ctx = new ggml_backend_rpc_context {
/* .endpoint = */ endpoint, /* .endpoint = */ endpoint,
/* .name = */ "RPC" + std::to_string(sock->fd), /* .name = */ "RPC",
/* .sock = */ sock,
/* .buft = */ buft
}; };
instances[endpoint] = new ggml_backend { ggml_backend_t backend = new ggml_backend {
/* .guid = */ ggml_backend_rpc_guid(), /* .guid = */ ggml_backend_rpc_guid(),
/* .interface = */ ggml_backend_rpc_interface, /* .interface = */ ggml_backend_rpc_interface,
/* .context = */ ctx /* .context = */ ctx
}; };
return backend;
return instances[endpoint];
} }
GGML_API GGML_CALL bool ggml_backend_is_rpc(ggml_backend_t backend) { GGML_API GGML_CALL bool ggml_backend_is_rpc(ggml_backend_t backend) {
@ -706,14 +724,13 @@ static void get_device_memory(const std::shared_ptr<socket_t> & sock, size_t * f
} }
GGML_API GGML_CALL void ggml_backend_rpc_get_device_memory(const char * endpoint, size_t * free, size_t * total) { GGML_API GGML_CALL void ggml_backend_rpc_get_device_memory(const char * endpoint, size_t * free, size_t * total) {
ggml_backend_t backend = ggml_backend_rpc_init(endpoint); auto sock = get_socket(endpoint);
if (backend == nullptr) { if (sock == nullptr) {
*free = 0; *free = 0;
*total = 0; *total = 0;
return; return;
} }
ggml_backend_rpc_context * ctx = (ggml_backend_rpc_context *)backend->context; get_device_memory(sock, free, total);
get_device_memory(ctx->sock, free, total);
} }
// RPC server-side implementation // RPC server-side implementation

View File

@ -2944,6 +2944,57 @@ namespace dpct
using shared_memory = detail::device_memory<T, shared, Dimension>; using shared_memory = detail::device_memory<T, shared, Dimension>;
template <typename T,
sycl::access::address_space addressSpace =
sycl::access::address_space::global_space,
sycl::memory_order memoryOrder = sycl::memory_order::relaxed,
sycl::memory_scope memoryScope = sycl::memory_scope::device>
inline T atomic_fetch_add(T *addr, T operand) {
auto atm =
sycl::atomic_ref<T, memoryOrder, memoryScope, addressSpace>(addr[0]);
return atm.fetch_add(operand);
}
template <sycl::access::address_space addressSpace =
sycl::access::address_space::global_space,
sycl::memory_order memoryOrder = sycl::memory_order::relaxed,
sycl::memory_scope memoryScope = sycl::memory_scope::device,
typename T1, typename T2>
inline T1 atomic_fetch_add(T1 *addr, T2 operand) {
auto atm =
sycl::atomic_ref<T1, memoryOrder, memoryScope, addressSpace>(addr[0]);
return atm.fetch_add(operand);
}
template <typename T, sycl::access::address_space addressSpace =
sycl::access::address_space::global_space>
inline T atomic_fetch_add(T *addr, T operand,
sycl::memory_order memoryOrder) {
switch (memoryOrder) {
case sycl::memory_order::relaxed:
return atomic_fetch_add<T, addressSpace, sycl::memory_order::relaxed,
sycl::memory_scope::device>(addr, operand);
case sycl::memory_order::acq_rel:
return atomic_fetch_add<T, addressSpace, sycl::memory_order::acq_rel,
sycl::memory_scope::device>(addr, operand);
case sycl::memory_order::seq_cst:
return atomic_fetch_add<T, addressSpace, sycl::memory_order::seq_cst,
sycl::memory_scope::device>(addr, operand);
default:
assert(false && "Invalid memory_order for atomics. Valid memory_order for "
"atomics are: sycl::memory_order::relaxed, "
"sycl::memory_order::acq_rel, sycl::memory_order::seq_cst!");
}
}
template <sycl::access::address_space addressSpace =
sycl::access::address_space::global_space,
typename T1, typename T2>
inline T1 atomic_fetch_add(T1 *addr, T2 operand,
sycl::memory_order memoryOrder) {
atomic_fetch_add<T1, addressSpace>(addr, operand, memoryOrder);
}
} // COPY from DPCT head files } // COPY from DPCT head files
#define GGML_COMMON_DECL_SYCL #define GGML_COMMON_DECL_SYCL
@ -3060,6 +3111,7 @@ void ggml_sycl_get_device_description(int device, char * description, size_t d
bool ggml_backend_is_sycl(ggml_backend_t backend); bool ggml_backend_is_sycl(ggml_backend_t backend);
int ggml_backend_sycl_get_device(ggml_backend_t backend); int ggml_backend_sycl_get_device(ggml_backend_t backend);
int get_main_device(); int get_main_device();
static bool ggml_backend_buffer_is_sycl_split(ggml_backend_buffer_t buffer);
void print_ggml_tensor(const char*name, struct ggml_tensor *src); void print_ggml_tensor(const char*name, struct ggml_tensor *src);
void log_tensor_with_cnt(const char* name, struct ggml_tensor * src, int stop_cnt); void log_tensor_with_cnt(const char* name, struct ggml_tensor * src, int stop_cnt);
@ -8830,12 +8882,11 @@ static void rope(
dst[i + 1] = x0*sin_theta + x1*cos_theta; dst[i + 1] = x0*sin_theta + x1*cos_theta;
} }
template<typename T, bool has_pos> template<typename T, bool has_pos, bool has_freq_facs>
static void rope_neox( static void rope_neox(
const T * x, T * dst, int ncols, int n_dims, const int32_t * pos, float freq_scale, int p_delta_rows, const T * x, T * dst, int ncols, int n_dims, const int32_t * pos, float freq_scale, int p_delta_rows,
float ext_factor, float attn_factor, rope_corr_dims corr_dims, float theta_scale, float inv_ndims float ext_factor, float attn_factor, rope_corr_dims corr_dims, float theta_scale, float inv_ndims,
, const float * freq_factors, const sycl::nd_item<3> &item_ct1) {
const sycl::nd_item<3> &item_ct1) {
const int col = 2 * (item_ct1.get_local_range(1) * item_ct1.get_group(1) + const int col = 2 * (item_ct1.get_local_range(1) * item_ct1.get_group(1) +
item_ct1.get_local_id(1)); item_ct1.get_local_id(1));
@ -8863,8 +8914,10 @@ static void rope_neox(
float cur_rot = inv_ndims * ic - ib; float cur_rot = inv_ndims * ic - ib;
const int p = has_pos ? pos[i2] : 0; const int p = has_pos ? pos[i2] : 0;
const float freq_factor = has_freq_facs ? freq_factors[ic/2] : 1.0f;
const float theta_base = const float theta_base =
p * freq_scale * dpct::pow(theta_scale, col / 2.0f); p * freq_scale * dpct::pow(theta_scale, col / 2.0f)/freq_factor;
float cos_theta, sin_theta; float cos_theta, sin_theta;
rope_yarn(theta_base, freq_scale, corr_dims, cur_rot, ext_factor, attn_factor, &cos_theta, &sin_theta); rope_yarn(theta_base, freq_scale, corr_dims, cur_rot, ext_factor, attn_factor, &cos_theta, &sin_theta);
@ -12413,7 +12466,7 @@ static void rope_neox_sycl(const T *x, T *dst, int ncols, int n_dims, int nrows,
const int32_t *pos, float freq_scale, const int32_t *pos, float freq_scale,
int p_delta_rows, float freq_base, float ext_factor, int p_delta_rows, float freq_base, float ext_factor,
float attn_factor, rope_corr_dims corr_dims, float attn_factor, rope_corr_dims corr_dims,
dpct::queue_ptr stream) { const float * freq_factors, dpct::queue_ptr stream) {
GGML_ASSERT(ncols % 2 == 0); GGML_ASSERT(ncols % 2 == 0);
const sycl::range<3> block_dims(1, SYCL_ROPE_BLOCK_SIZE, 1); const sycl::range<3> block_dims(1, SYCL_ROPE_BLOCK_SIZE, 1);
const int num_blocks_x = (ncols + 2*SYCL_ROPE_BLOCK_SIZE - 1) / (2*SYCL_ROPE_BLOCK_SIZE); const int num_blocks_x = (ncols + 2*SYCL_ROPE_BLOCK_SIZE - 1) / (2*SYCL_ROPE_BLOCK_SIZE);
@ -12423,38 +12476,48 @@ static void rope_neox_sycl(const T *x, T *dst, int ncols, int n_dims, int nrows,
const float inv_ndims = -1.0f / n_dims; const float inv_ndims = -1.0f / n_dims;
if (pos == nullptr) { if (pos == nullptr) {
/*
DPCT1049:42: The work-group size passed to the SYCL kernel may exceed
the limit. To get the device limit, query
info::device::max_work_group_size. Adjust the work-group size if needed.
*/
dpct::has_capability_or_fail(stream->get_device(), dpct::has_capability_or_fail(stream->get_device(),
{sycl::aspect::fp16}); {sycl::aspect::fp16});
if (freq_factors == nullptr) {
stream->parallel_for( stream->parallel_for(
sycl::nd_range<3>(block_nums * block_dims, block_dims), sycl::nd_range<3>(block_nums * block_dims, block_dims),
[=](sycl::nd_item<3> item_ct1) { [=](sycl::nd_item<3> item_ct1) {
rope_neox<T, false>(x, dst, ncols, n_dims, pos, freq_scale, rope_neox<T, false, false>(x, dst, ncols, n_dims, pos, freq_scale,
p_delta_rows, ext_factor, attn_factor, p_delta_rows, ext_factor, attn_factor,
corr_dims, theta_scale, inv_ndims, corr_dims, theta_scale, inv_ndims, freq_factors,
item_ct1); item_ct1);
}); });
} else {
stream->parallel_for(
sycl::nd_range<3>(block_nums * block_dims, block_dims),
[=](sycl::nd_item<3> item_ct1) {
rope_neox<T, false, true>(x, dst, ncols, n_dims, pos, freq_scale,
p_delta_rows, ext_factor, attn_factor,
corr_dims, theta_scale, inv_ndims, freq_factors,
item_ct1);
});
}
} else { } else {
/*
DPCT1049:43: The work-group size passed to the SYCL kernel may exceed
the limit. To get the device limit, query
info::device::max_work_group_size. Adjust the work-group size if needed.
*/
dpct::has_capability_or_fail(stream->get_device(), dpct::has_capability_or_fail(stream->get_device(),
{sycl::aspect::fp16}); {sycl::aspect::fp16});
stream->parallel_for( if (freq_factors == nullptr) {
sycl::nd_range<3>(block_nums * block_dims, block_dims), stream->parallel_for(
[=](sycl::nd_item<3> item_ct1) { sycl::nd_range<3>(block_nums * block_dims, block_dims),
rope_neox<T, true>(x, dst, ncols, n_dims, pos, freq_scale, [=](sycl::nd_item<3> item_ct1) {
p_delta_rows, ext_factor, attn_factor, rope_neox<T, true, false>(x, dst, ncols, n_dims, pos, freq_scale,
corr_dims, theta_scale, inv_ndims, item_ct1); p_delta_rows, ext_factor, attn_factor,
}); corr_dims, theta_scale, inv_ndims, freq_factors, item_ct1);
});
} else {
stream->parallel_for(
sycl::nd_range<3>(block_nums * block_dims, block_dims),
[=](sycl::nd_item<3> item_ct1) {
rope_neox<T, true, true>(x, dst, ncols, n_dims, pos, freq_scale,
p_delta_rows, ext_factor, attn_factor,
corr_dims, theta_scale, inv_ndims, freq_factors, item_ct1);
});
}
} }
} }
@ -13501,6 +13564,10 @@ inline void ggml_sycl_op_concat(const ggml_tensor *src0,
const float *src0_dd, const float *src1_dd, const float *src0_dd, const float *src1_dd,
float *dst_dd, float *dst_dd,
const dpct::queue_ptr &main_stream) { const dpct::queue_ptr &main_stream) {
#pragma message("TODO: generalize concat kernel for dim != 2")
#pragma message(" https://github.com/ggerganov/llama.cpp/pull/7563")
int dim = dst->op_params[0];
GGML_ASSERT(dim != 2);
GGML_ASSERT(src0->type == GGML_TYPE_F32); GGML_ASSERT(src0->type == GGML_TYPE_F32);
GGML_ASSERT(src1->type == GGML_TYPE_F32); GGML_ASSERT(src1->type == GGML_TYPE_F32);
@ -13986,9 +14053,7 @@ inline void ggml_sycl_op_rope(const ggml_tensor *src0, const ggml_tensor *src1,
ggml_tensor *dst, const float *src0_dd, ggml_tensor *dst, const float *src0_dd,
const float *src1_dd, float *dst_dd, const float *src1_dd, float *dst_dd,
const dpct::queue_ptr &main_stream) { const dpct::queue_ptr &main_stream) {
#pragma message("TODO: implement phi3 frequency factors support") const ggml_tensor * src2 = dst->src[2];
#pragma message(" https://github.com/ggerganov/llama.cpp/pull/7225")
GGML_ASSERT(dst->src[2] == nullptr && "phi3 frequency factors not implemented yet");
GGML_ASSERT(src0->type == GGML_TYPE_F32 || src0->type == GGML_TYPE_F16); GGML_ASSERT(src0->type == GGML_TYPE_F32 || src0->type == GGML_TYPE_F16);
GGML_ASSERT( dst->type == GGML_TYPE_F32 || dst->type == GGML_TYPE_F16); GGML_ASSERT( dst->type == GGML_TYPE_F32 || dst->type == GGML_TYPE_F16);
@ -14014,6 +14079,7 @@ inline void ggml_sycl_op_rope(const ggml_tensor *src0, const ggml_tensor *src1,
memcpy(&beta_fast, (int32_t *) dst->op_params + 9, sizeof(float)); memcpy(&beta_fast, (int32_t *) dst->op_params + 9, sizeof(float));
memcpy(&beta_slow, (int32_t *) dst->op_params + 10, sizeof(float)); memcpy(&beta_slow, (int32_t *) dst->op_params + 10, sizeof(float));
const float * freq_factors = nullptr;
const int32_t * pos = nullptr; const int32_t * pos = nullptr;
if ((mode & 1) == 0) { if ((mode & 1) == 0) {
GGML_ASSERT(src1->type == GGML_TYPE_I32); GGML_ASSERT(src1->type == GGML_TYPE_I32);
@ -14024,6 +14090,16 @@ inline void ggml_sycl_op_rope(const ggml_tensor *src0, const ggml_tensor *src1,
const bool is_neox = mode & 2; const bool is_neox = mode & 2;
const bool is_glm = mode & 4; const bool is_glm = mode & 4;
if (is_neox) {
pos = (const int32_t *) src1_dd;
if (src2 != nullptr) {
freq_factors = (const float *) src2->data;
}
} else {
GGML_ASSERT(src2 == nullptr && "TODO: freq_factors not implemented for !is_neox");
}
rope_corr_dims corr_dims; rope_corr_dims corr_dims;
ggml_rope_yarn_corr_dims(n_dims, n_orig_ctx, freq_base, beta_fast, beta_slow, corr_dims.v); ggml_rope_yarn_corr_dims(n_dims, n_orig_ctx, freq_base, beta_fast, beta_slow, corr_dims.v);
@ -14035,13 +14111,13 @@ inline void ggml_sycl_op_rope(const ggml_tensor *src0, const ggml_tensor *src1,
if (src0->type == GGML_TYPE_F32) { if (src0->type == GGML_TYPE_F32) {
rope_neox_sycl( rope_neox_sycl(
(const float *)src0_dd, (float *)dst_dd, ne00, n_dims, nrows, pos, freq_scale, ne01, freq_base, ext_factor, (const float *)src0_dd, (float *)dst_dd, ne00, n_dims, nrows, pos, freq_scale, ne01, freq_base, ext_factor,
attn_factor, corr_dims, main_stream attn_factor, corr_dims, freq_factors, main_stream
); );
} else if (src0->type == GGML_TYPE_F16) { } else if (src0->type == GGML_TYPE_F16) {
rope_neox_sycl((const sycl::half *)src0_dd, (sycl::half *)dst_dd, rope_neox_sycl((const sycl::half *)src0_dd, (sycl::half *)dst_dd,
ne00, n_dims, nrows, pos, freq_scale, ne01, ne00, n_dims, nrows, pos, freq_scale, ne01,
freq_base, ext_factor, attn_factor, corr_dims, freq_base, ext_factor, attn_factor, corr_dims,
main_stream); freq_factors, main_stream);
} else { } else {
GGML_ASSERT(false); GGML_ASSERT(false);
} }
@ -15243,6 +15319,7 @@ static void ggml_sycl_mul_mat(const ggml_tensor * src0, const ggml_tensor * src1
} }
} else { } else {
bool use_mul_mat_q = min_compute_capability >= VER_4VEC && ggml_is_quantized(src0->type); bool use_mul_mat_q = min_compute_capability >= VER_4VEC && ggml_is_quantized(src0->type);
use_mul_mat_q = use_mul_mat_q && (src0->type != GGML_TYPE_IQ2_XXS);
if (use_xmx && min_compute_capability >= VER_GEN9 && src1->ne[1] > XMX_MAX_BATCH_SIZE) { if (use_xmx && min_compute_capability >= VER_GEN9 && src1->ne[1] > XMX_MAX_BATCH_SIZE) {
use_mul_mat_q = false; use_mul_mat_q = false;
@ -15434,22 +15511,86 @@ static void ggml_sycl_mul_mat_id_sycl(ggml_tensor * dst) {
} }
#endif #endif
struct mmid_row_mapping {
int32_t i1;
int32_t i2;
};
__dpct_inline__ static void k_copy_src1_to_contiguous(
const char *__restrict__ src1_original, char *__restrict__ src1_contiguous,
int *__restrict__ cur_src1_row, mmid_row_mapping *__restrict__ row_mapping,
const char *__restrict ids, int64_t i02, size_t ids_nb1, size_t ids_nb0,
int64_t ne11, int64_t ne10, size_t nb11, size_t nb12,
const sycl::nd_item<3> &item_ct1, int &src1_row) {
int32_t iid1 = item_ct1.get_group(2);
int32_t id = item_ct1.get_group(1);
const int32_t row_id_i = *(const int32_t *) (ids + iid1*ids_nb1 + id*ids_nb0);
if (row_id_i != i02) {
return;
}
const int64_t i11 = id % ne11;
const int64_t i12 = iid1;
if (item_ct1.get_local_id(2) == 0) {
src1_row =
dpct::atomic_fetch_add<sycl::access::address_space::generic_space>(
cur_src1_row, 1);
row_mapping[src1_row] = {id, iid1};
}
/*
DPCT1065:194: Consider replacing sycl::nd_item::barrier() with
sycl::nd_item::barrier(sycl::access::fence_space::local_space) for better
performance if there is no access to global memory.
*/
item_ct1.barrier();
const float * src1_row_original = (const float *)(src1_original + i11*nb11 + i12*nb12);
float * src1_row_contiguous = (float *)(src1_contiguous + src1_row*nb11);
#pragma unroll
for (int i = item_ct1.get_local_id(2); i < ne10;
i += item_ct1.get_local_range(2)) {
src1_row_contiguous[i] = src1_row_original[i];
}
}
__dpct_inline__ static void k_copy_dst_from_contiguous(
char *__restrict__ dst_original, const char *__restrict__ dst_contiguous,
const mmid_row_mapping *__restrict__ row_mapping, int64_t ne0, size_t nb1,
size_t nb2, const sycl::nd_item<3> &item_ct1) {
int32_t i = item_ct1.get_group(2);
const int32_t i1 = row_mapping[i].i1;
const int32_t i2 = row_mapping[i].i2;
const float * dst_row_contiguous = (const float *)(dst_contiguous + i*nb1);
float * dst_row_original = (float *)(dst_original + i1*nb1 + i2*nb2);
#pragma unroll
for (int j = item_ct1.get_local_id(2); j < ne0;
j += item_ct1.get_local_range(2)) {
dst_row_original[j] = dst_row_contiguous[j];
}
}
static void ggml_sycl_mul_mat_id(const ggml_tensor *src0, static void ggml_sycl_mul_mat_id(const ggml_tensor *src0,
const ggml_tensor *src1, const ggml_tensor *src1,
ggml_tensor *dst) try { ggml_tensor *dst) try {
GGML_ASSERT(src0->backend != GGML_BACKEND_TYPE_GPU_SPLIT && GGML_ASSERT(!ggml_backend_buffer_is_sycl_split(src0->buffer) && "mul_mat_id does not support split buffers");
"mul_mat_id does not support split buffers");
const ggml_tensor *ids = dst->src[2]; const ggml_tensor *ids = dst->src[2];
GGML_TENSOR_BINARY_OP_LOCALS
const dpct::queue_ptr stream = g_syclStreams[g_main_device][0]; const dpct::queue_ptr stream = g_syclStreams[g_main_device][0];
const size_t nb11 = src1->nb[1]; const int64_t n_as = ne02;
const size_t nb1 = dst->nb[1]; const int64_t n_ids = ids->ne[0];
const int32_t id = ((int32_t *)dst->op_params)[0];
const int32_t n_as = src0->ne[2];
std::vector<char> ids_host(ggml_nbytes(ids)); std::vector<char> ids_host(ggml_nbytes(ids));
const char *ids_dev = (const char *)ids->data; const char * ids_dev = (const char *) ids->data;
SYCL_CHECK(CHECK_TRY_ERROR( SYCL_CHECK(CHECK_TRY_ERROR(
stream->memcpy(ids_host.data(), ids_dev, ggml_nbytes(ids)))); stream->memcpy(ids_host.data(), ids_dev, ggml_nbytes(ids))));
@ -15489,24 +15630,40 @@ static void ggml_sycl_mul_mat_id(const ggml_tensor *src0,
src0_row.ne[2] = 1; src0_row.ne[2] = 1;
src0_row.ne[3] = 1; src0_row.ne[3] = 1;
src0_row.nb[3] = src0->nb[2]; src0_row.nb[3] = nb02;
if (src1->ne[1] == 1) { src1_row.ne[1] = 1;
for (int64_t i01 = 0; i01 < ids->ne[1]; i01++) { src1_row.ne[2] = 1;
const int32_t row_id = src1_row.ne[3] = 1;
*(const int32_t *)(ids_host.data() + i01 * ids->nb[1] + src1_row.nb[2] = nb11;
id * ids->nb[0]); src1_row.nb[3] = nb11;
GGML_ASSERT(row_id >= 0 && row_id < n_as); dst_row.ne[1] = 1;
dst_row.ne[2] = 1;
dst_row.ne[3] = 1;
dst_row.nb[2] = nb1;
dst_row.nb[3] = nb1;
if (ne12 == 1) {
for (int64_t iid1 = 0; iid1 < ids->ne[1]; iid1++) {
for (int64_t id = 0; id < n_ids; id++) {
const int32_t i02 = *(const int32_t *) (ids_host.data() + iid1*ids->nb[1] + id*ids->nb[0]);
GGML_ASSERT(i02 >= 0 && i02 < n_as);
const int64_t i11 = id % ne11;
const int64_t i12 = iid1;
const int64_t i1 = id;
const int64_t i2 = i12;
src0_row_extra.data_device[g_main_device] = src0_row_extra.data_device[g_main_device] =
src0_original + row_id * src0->nb[2]; src0_original + i02*nb02;
src1_row_extra.data_device[g_main_device] = src1_row_extra.data_device[g_main_device] =
src1_original + i01 * src1->nb[1]; src1_original + + i11*nb11 + i12*nb12;
dst_row_extra.data_device[g_main_device] = dst_row_extra.data_device[g_main_device] =
dst_original + i01 * dst->nb[1]; dst_original + i1*nb1 + i2*nb2;
ggml_sycl_mul_mat(&src0_row, &src1_row, &dst_row); ggml_sycl_mul_mat(&src0_row, &src1_row, &dst_row);
}
} }
} else { } else {
sycl_pool_alloc<char> src1_contiguous(sizeof(float)*ggml_nelements(src1)); sycl_pool_alloc<char> src1_contiguous(sizeof(float)*ggml_nelements(src1));
@ -15515,64 +15672,98 @@ static void ggml_sycl_mul_mat_id(const ggml_tensor *src0,
src1_row_extra.data_device[g_main_device] = src1_contiguous.get(); src1_row_extra.data_device[g_main_device] = src1_contiguous.get();
dst_row_extra.data_device[g_main_device] = dst_contiguous.get(); dst_row_extra.data_device[g_main_device] = dst_contiguous.get();
for (int32_t row_id = 0; row_id < n_as; ++row_id) { for (int64_t i02 = 0; i02 < n_as; i02++) {
int64_t num_src1_rows = 0; int64_t num_src1_rows = 0;
for (int64_t i01 = 0; i01 < ids->ne[1]; i01++) { for (int64_t iid1 = 0; iid1 < ids->ne[1]; iid1++) {
const int32_t row_id_i = *(const int32_t *) (ids_host.data() + i01*ids->nb[1] + id*ids->nb[0]); for (int64_t id = 0; id < n_ids; id++) {
const int32_t row_id_i = *(const int32_t *) (ids_host.data() + iid1*ids->nb[1] + id*ids->nb[0]);
if (row_id_i != row_id) { GGML_ASSERT(row_id_i >= 0 && row_id_i < n_as);
continue;
if (row_id_i != i02) {
continue;
}
num_src1_rows++;
} }
GGML_ASSERT(row_id >= 0 && row_id < n_as);
SYCL_CHECK(CHECK_TRY_ERROR(
stream->memcpy(src1_contiguous.get() + num_src1_rows * nb11,
src1_original + i01 * nb11, nb11)));
num_src1_rows++;
} }
if (num_src1_rows == 0) { if (num_src1_rows == 0) {
continue; continue;
} }
src0_row_extra.data_device[g_main_device] =
src0_original + row_id * src0->nb[2];
sycl_pool_alloc<int> dev_cur_src1_row(1);
sycl_pool_alloc<mmid_row_mapping> dev_row_mapping(num_src1_rows);
SYCL_CHECK(CHECK_TRY_ERROR(
stream->memset(dev_cur_src1_row.get(), 0, sizeof(int))));
{
sycl::range<3> block_dims(1, 1, std::min((unsigned int)ne10, 768u));
sycl::range<3> grid_dims(1, n_ids, ids->ne[1]);
stream->submit([&](sycl::handler &cgh) {
sycl::local_accessor<int, 0> src1_row_acc(cgh);
char *__restrict src1_contiguous_get =
src1_contiguous.get();
int *__restrict dev_cur_src1_row_get =
dev_cur_src1_row.get();
mmid_row_mapping *__restrict dev_row_mapping_get =
dev_row_mapping.get();
size_t ids_nb_ct6 = ids->nb[1];
size_t ids_nb_ct7 = ids->nb[0];
cgh.parallel_for(
sycl::nd_range<3>(grid_dims * block_dims, block_dims),
[=](sycl::nd_item<3> item_ct1) {
k_copy_src1_to_contiguous(
src1_original, src1_contiguous_get,
dev_cur_src1_row_get,
dev_row_mapping_get, ids_dev, i02,
ids_nb_ct6, ids_nb_ct7, ne11, ne10, nb11, nb12,
item_ct1, src1_row_acc);
});
});
}
src0_row_extra.data_device[g_main_device] = src0_original + i02*nb02;
GGML_ASSERT(nb11 == sizeof(float)*ne10);
GGML_ASSERT(nb1 == sizeof(float)*ne0);
src1_row.ne[1] = num_src1_rows; src1_row.ne[1] = num_src1_rows;
dst_row.ne[1] = num_src1_rows;
src1_row.nb[1] = nb11; src1_row.nb[1] = nb11;
src1_row.nb[2] = num_src1_rows*nb11; src1_row.nb[2] = num_src1_rows*nb11;
src1_row.nb[3] = num_src1_rows*nb11; src1_row.nb[3] = num_src1_rows*nb11;
dst_row.ne[1] = num_src1_rows;
dst_row.nb[1] = nb1; dst_row.nb[1] = nb1;
dst_row.nb[2] = num_src1_rows*nb1; dst_row.nb[2] = num_src1_rows*nb1;
dst_row.nb[3] = num_src1_rows*nb1; dst_row.nb[3] = num_src1_rows*nb1;
ggml_sycl_mul_mat(&src0_row, &src1_row, &dst_row); ggml_sycl_mul_mat(&src0_row, &src1_row, &dst_row);
num_src1_rows = 0; {
for (int64_t i01 = 0; i01 < ids->ne[1]; i01++) { sycl::range<3> block_dims(1, 1, std::min((unsigned int)ne0, 768u));
const int32_t row_id_i = *(const int32_t *) (ids_host.data() + i01*ids->nb[1] + id*ids->nb[0]); sycl::range<3> grid_dims(1, 1, num_src1_rows);
stream->submit([&](sycl::handler &cgh) {
const char *__restrict dst_contiguous_get =
dst_contiguous.get();
const mmid_row_mapping *__restrict dev_row_mapping_get =
dev_row_mapping.get();
if (row_id_i != row_id) { cgh.parallel_for(
continue; sycl::nd_range<3>(grid_dims * block_dims, block_dims),
} [=](sycl::nd_item<3> item_ct1) {
k_copy_dst_from_contiguous(dst_original,
GGML_ASSERT(row_id >= 0 && row_id < n_as); dst_contiguous_get,
dev_row_mapping_get,
SYCL_CHECK(CHECK_TRY_ERROR(stream->memcpy( ne0, nb1, nb2, item_ct1);
dst_original + i01 * nb1, });
dst_contiguous.get() + num_src1_rows * nb1, nb1))); });
num_src1_rows++;
} }
} }
} }
if (dst->backend == GGML_BACKEND_TYPE_CPU) {
SYCL_CHECK(CHECK_TRY_ERROR(stream->wait()));
}
} }
catch (sycl::exception const &exc) { catch (sycl::exception const &exc) {
std::cerr << exc.what() << "Exception caught at file:" << __FILE__ std::cerr << exc.what() << "Exception caught at file:" << __FILE__
@ -16555,10 +16746,9 @@ GGML_CALL static const char * ggml_backend_sycl_split_buffer_get_name(ggml_backe
UNUSED(buffer); UNUSED(buffer);
} }
// unused at the moment static bool ggml_backend_buffer_is_sycl_split(ggml_backend_buffer_t buffer) {
//static bool ggml_backend_buffer_is_sycl_split(ggml_backend_buffer_t buffer) { return buffer->iface.get_name == ggml_backend_sycl_split_buffer_get_name;
// return buffer->iface.get_name == ggml_backend_sycl_split_buffer_get_name; }
//}
GGML_CALL static void ggml_backend_sycl_split_buffer_free_buffer(ggml_backend_buffer_t buffer) { GGML_CALL static void ggml_backend_sycl_split_buffer_free_buffer(ggml_backend_buffer_t buffer) {
ggml_backend_sycl_split_buffer_context * ctx = (ggml_backend_sycl_split_buffer_context *)buffer->context; ggml_backend_sycl_split_buffer_context * ctx = (ggml_backend_sycl_split_buffer_context *)buffer->context;

View File

@ -6012,6 +6012,8 @@ static ggml_backend_buffer_type_i ggml_backend_vk_buffer_type_interface = {
}; };
GGML_CALL ggml_backend_buffer_type_t ggml_backend_vk_buffer_type(size_t dev_num) { GGML_CALL ggml_backend_buffer_type_t ggml_backend_vk_buffer_type(size_t dev_num) {
ggml_vk_instance_init();
#ifdef GGML_VULKAN_DEBUG #ifdef GGML_VULKAN_DEBUG
std::cerr << "ggml_backend_vk_buffer_type(" << dev_num << ")" << std::endl; std::cerr << "ggml_backend_vk_buffer_type(" << dev_num << ")" << std::endl;
#endif #endif

71
ggml.c
View File

@ -4882,10 +4882,21 @@ struct ggml_tensor * ggml_repeat_back(
// ggml_concat // ggml_concat
struct ggml_tensor * ggml_concat( struct ggml_tensor * ggml_concat(
struct ggml_context* ctx, struct ggml_context * ctx,
struct ggml_tensor* a, struct ggml_tensor * a,
struct ggml_tensor* b) { struct ggml_tensor * b,
GGML_ASSERT(a->ne[0] == b->ne[0] && a->ne[1] == b->ne[1] && a->ne[3] == b->ne[3]); int dim) {
GGML_ASSERT(dim >= 0 && dim < GGML_MAX_DIMS);
int64_t ne[GGML_MAX_DIMS];
for (int d = 0; d < GGML_MAX_DIMS; ++d) {
if (d == dim) {
ne[d] = a->ne[d] + b->ne[d];
continue;
}
GGML_ASSERT(a->ne[d] == b->ne[d]);
ne[d] = a->ne[d];
}
bool is_node = false; bool is_node = false;
@ -4893,7 +4904,9 @@ struct ggml_tensor * ggml_concat(
is_node = true; is_node = true;
} }
struct ggml_tensor * result = ggml_new_tensor_4d(ctx, a->type, a->ne[0], a->ne[1], a->ne[2] + b->ne[2], a->ne[3]); struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, GGML_MAX_DIMS, ne);
ggml_set_op_params_i32(result, 0, dim);
result->op = GGML_OP_CONCAT; result->op = GGML_OP_CONCAT;
result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL; result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
@ -5013,6 +5026,7 @@ struct ggml_tensor * ggml_leaky_relu(
} }
struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a); struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
ggml_set_op_params(result, &negative_slope, sizeof(negative_slope)); ggml_set_op_params(result, &negative_slope, sizeof(negative_slope));
result->op = GGML_OP_LEAKY_RELU; result->op = GGML_OP_LEAKY_RELU;
@ -10967,26 +10981,29 @@ static void ggml_compute_forward_concat_f32(
GGML_ASSERT(nb00 == sizeof(float)); GGML_ASSERT(nb00 == sizeof(float));
GGML_ASSERT(nb10 == sizeof(float)); GGML_ASSERT(nb10 == sizeof(float));
const int32_t dim = ggml_get_op_params_i32(dst, 0);
GGML_ASSERT(dim >= 0 && dim < 4);
int64_t o[4] = {0, 0, 0, 0};
o[dim] = src0->ne[dim];
const float * x;
// TODO: smarter multi-theading
for (int i3 = 0; i3 < ne3; i3++) { for (int i3 = 0; i3 < ne3; i3++) {
for (int i2 = ith; i2 < ne2; i2 += nth) { for (int i2 = ith; i2 < ne2; i2 += nth) {
if (i2 < ne02) { // src0 for (int i1 = 0; i1 < ne1; i1++) {
for (int i1 = 0; i1 < ne1; i1++) { for (int i0 = 0; i0 < ne0; i0++) {
for (int i0 = 0; i0 < ne0; i0++) { if (i0 < ne00 && i1 < ne01 && i2 < ne02 && i3 < ne03) {
const float * x = (float *)((char *) src0->data + i0 * nb00 + i1 * nb01 + i2 * nb02 + i3 * nb03); x = (const float *) ((const char *)src0->data + (i0 )*nb00 + (i1 )*nb01 + (i2 )*nb02 + (i3 )*nb03);
} else {
float * y = (float *)((char *)dst->data + i0 * nb0 + i1 * nb1 + i2 * nb2 + i3 * nb3); x = (const float *) ((const char *)src1->data + (i0 - o[0])*nb10 + (i1 - o[1])*nb11 + (i2 - o[2])*nb12 + (i3 - o[3])*nb13);
*y = *x;
} }
}
} // src1
else {
for (int i1 = 0; i1 < ne1; i1++) {
for (int i0 = 0; i0 < ne0; i0++) {
const float * x = (float *)((char *) src1->data + i0 * nb10 + i1 * nb11 + (i2 - ne02) * nb12 + i3 * nb13);
float * y = (float *)((char *)dst->data + i0 * nb0 + i1 * nb1 + i2 * nb2 + i3 * nb3); float * y = (float *)((char *)dst->data + i0*nb0 + i1*nb1 + i2*nb2 + i3*nb3);
*y = *x;
} *y = *x;
} }
} }
} }
@ -10994,7 +11011,7 @@ static void ggml_compute_forward_concat_f32(
} }
static void ggml_compute_forward_concat( static void ggml_compute_forward_concat(
const struct ggml_compute_params* params, const struct ggml_compute_params * params,
struct ggml_tensor* dst) { struct ggml_tensor* dst) {
const struct ggml_tensor * src0 = dst->src[0]; const struct ggml_tensor * src0 = dst->src[0];
@ -22742,6 +22759,16 @@ int ggml_cpu_has_neon(void) {
#endif #endif
} }
int ggml_cpu_has_sve(void) {
#if defined(__ARM_FEATURE_SVE)
// TODO: Currently, SVE 256 bit is only supported.
GGML_ASSERT(svcntb() == QK8_0);
return 1;
#else
return 0;
#endif
}
int ggml_cpu_has_arm_fma(void) { int ggml_cpu_has_arm_fma(void) {
#if defined(__ARM_FEATURE_FMA) #if defined(__ARM_FEATURE_FMA)
return 1; return 1;

6
ggml.h
View File

@ -1007,12 +1007,13 @@ extern "C" {
struct ggml_tensor * a, struct ggml_tensor * a,
struct ggml_tensor * b); struct ggml_tensor * b);
// concat a and b on dim 2 // concat a and b along dim
// used in stable-diffusion // used in stable-diffusion
GGML_API struct ggml_tensor * ggml_concat( GGML_API struct ggml_tensor * ggml_concat(
struct ggml_context * ctx, struct ggml_context * ctx,
struct ggml_tensor * a, struct ggml_tensor * a,
struct ggml_tensor * b); struct ggml_tensor * b,
int dim);
GGML_API struct ggml_tensor * ggml_abs( GGML_API struct ggml_tensor * ggml_abs(
struct ggml_context * ctx, struct ggml_context * ctx,
@ -2404,6 +2405,7 @@ extern "C" {
GGML_API int ggml_cpu_has_avx512_bf16(void); GGML_API int ggml_cpu_has_avx512_bf16(void);
GGML_API int ggml_cpu_has_fma (void); GGML_API int ggml_cpu_has_fma (void);
GGML_API int ggml_cpu_has_neon (void); GGML_API int ggml_cpu_has_neon (void);
GGML_API int ggml_cpu_has_sve (void);
GGML_API int ggml_cpu_has_arm_fma (void); GGML_API int ggml_cpu_has_arm_fma (void);
GGML_API int ggml_cpu_has_metal (void); GGML_API int ggml_cpu_has_metal (void);
GGML_API int ggml_cpu_has_f16c (void); GGML_API int ggml_cpu_has_f16c (void);

View File

@ -33,17 +33,21 @@ class Keys:
FILE_TYPE = "general.file_type" FILE_TYPE = "general.file_type"
class LLM: class LLM:
VOCAB_SIZE = "{arch}.vocab_size" VOCAB_SIZE = "{arch}.vocab_size"
CONTEXT_LENGTH = "{arch}.context_length" CONTEXT_LENGTH = "{arch}.context_length"
EMBEDDING_LENGTH = "{arch}.embedding_length" EMBEDDING_LENGTH = "{arch}.embedding_length"
BLOCK_COUNT = "{arch}.block_count" BLOCK_COUNT = "{arch}.block_count"
FEED_FORWARD_LENGTH = "{arch}.feed_forward_length" LEADING_DENSE_BLOCK_COUNT = "{arch}.leading_dense_block_count"
USE_PARALLEL_RESIDUAL = "{arch}.use_parallel_residual" FEED_FORWARD_LENGTH = "{arch}.feed_forward_length"
TENSOR_DATA_LAYOUT = "{arch}.tensor_data_layout" EXPERT_FEED_FORWARD_LENGTH = "{arch}.expert_feed_forward_length"
EXPERT_COUNT = "{arch}.expert_count" USE_PARALLEL_RESIDUAL = "{arch}.use_parallel_residual"
EXPERT_USED_COUNT = "{arch}.expert_used_count" TENSOR_DATA_LAYOUT = "{arch}.tensor_data_layout"
POOLING_TYPE = "{arch}.pooling_type" EXPERT_COUNT = "{arch}.expert_count"
LOGIT_SCALE = "{arch}.logit_scale" EXPERT_USED_COUNT = "{arch}.expert_used_count"
EXPERT_SHARED_COUNT = "{arch}.expert_shared_count"
EXPERT_WEIGHTS_SCALE = "{arch}.expert_weights_scale"
POOLING_TYPE = "{arch}.pooling_type"
LOGIT_SCALE = "{arch}.logit_scale"
class Attention: class Attention:
HEAD_COUNT = "{arch}.attention.head_count" HEAD_COUNT = "{arch}.attention.head_count"
@ -55,6 +59,8 @@ class Keys:
LAYERNORM_EPS = "{arch}.attention.layer_norm_epsilon" LAYERNORM_EPS = "{arch}.attention.layer_norm_epsilon"
LAYERNORM_RMS_EPS = "{arch}.attention.layer_norm_rms_epsilon" LAYERNORM_RMS_EPS = "{arch}.attention.layer_norm_rms_epsilon"
CAUSAL = "{arch}.attention.causal" CAUSAL = "{arch}.attention.causal"
Q_LORA_RANK = "{arch}.attention.q_lora_rank"
KV_LORA_RANK = "{arch}.attention.kv_lora_rank"
class Rope: class Rope:
DIMENSION_COUNT = "{arch}.rope.dimension_count" DIMENSION_COUNT = "{arch}.rope.dimension_count"
@ -64,6 +70,7 @@ class Keys:
SCALING_ATTN_FACTOR = "{arch}.rope.scaling.attn_factor" SCALING_ATTN_FACTOR = "{arch}.rope.scaling.attn_factor"
SCALING_ORIG_CTX_LEN = "{arch}.rope.scaling.original_context_length" SCALING_ORIG_CTX_LEN = "{arch}.rope.scaling.original_context_length"
SCALING_FINETUNED = "{arch}.rope.scaling.finetuned" SCALING_FINETUNED = "{arch}.rope.scaling.finetuned"
SCALING_YARN_LOG_MUL = "{arch}.rope.scaling.yarn_log_multiplier"
class SSM: class SSM:
CONV_KERNEL = "{arch}.ssm.conv_kernel" CONV_KERNEL = "{arch}.ssm.conv_kernel"
@ -139,6 +146,8 @@ class MODEL_ARCH(IntEnum):
COMMAND_R = auto() COMMAND_R = auto()
DBRX = auto() DBRX = auto()
OLMO = auto() OLMO = auto()
ARCTIC = auto()
DEEPSEEK2 = auto()
class MODEL_TENSOR(IntEnum): class MODEL_TENSOR(IntEnum):
@ -167,6 +176,7 @@ class MODEL_TENSOR(IntEnum):
FFN_DOWN = auto() FFN_DOWN = auto()
FFN_UP = auto() FFN_UP = auto()
FFN_ACT = auto() FFN_ACT = auto()
FFN_NORM_EXP = auto()
FFN_GATE_EXP = auto() FFN_GATE_EXP = auto()
FFN_DOWN_EXP = auto() FFN_DOWN_EXP = auto()
FFN_UP_EXP = auto() FFN_UP_EXP = auto()
@ -183,6 +193,12 @@ class MODEL_TENSOR(IntEnum):
SSM_A = auto() SSM_A = auto()
SSM_D = auto() SSM_D = auto()
SSM_OUT = auto() SSM_OUT = auto()
ATTN_Q_A = auto()
ATTN_Q_B = auto()
ATTN_KV_A_MQA = auto()
ATTN_KV_B = auto()
ATTN_Q_A_NORM = auto()
ATTN_KV_A_NORM = auto()
MODEL_ARCH_NAMES: dict[MODEL_ARCH, str] = { MODEL_ARCH_NAMES: dict[MODEL_ARCH, str] = {
@ -218,6 +234,8 @@ MODEL_ARCH_NAMES: dict[MODEL_ARCH, str] = {
MODEL_ARCH.COMMAND_R: "command-r", MODEL_ARCH.COMMAND_R: "command-r",
MODEL_ARCH.DBRX: "dbrx", MODEL_ARCH.DBRX: "dbrx",
MODEL_ARCH.OLMO: "olmo", MODEL_ARCH.OLMO: "olmo",
MODEL_ARCH.ARCTIC: "arctic",
MODEL_ARCH.DEEPSEEK2: "deepseek2",
} }
TENSOR_NAMES: dict[MODEL_TENSOR, str] = { TENSOR_NAMES: dict[MODEL_TENSOR, str] = {
@ -251,6 +269,7 @@ TENSOR_NAMES: dict[MODEL_TENSOR, str] = {
MODEL_TENSOR.FFN_DOWN_SHEXP: "blk.{bid}.ffn_down_shexp", MODEL_TENSOR.FFN_DOWN_SHEXP: "blk.{bid}.ffn_down_shexp",
MODEL_TENSOR.FFN_UP_SHEXP: "blk.{bid}.ffn_up_shexp", MODEL_TENSOR.FFN_UP_SHEXP: "blk.{bid}.ffn_up_shexp",
MODEL_TENSOR.FFN_ACT: "blk.{bid}.ffn", MODEL_TENSOR.FFN_ACT: "blk.{bid}.ffn",
MODEL_TENSOR.FFN_NORM_EXP: "blk.{bid}.ffn_norm_exps",
MODEL_TENSOR.FFN_GATE_EXP: "blk.{bid}.ffn_gate_exps", MODEL_TENSOR.FFN_GATE_EXP: "blk.{bid}.ffn_gate_exps",
MODEL_TENSOR.FFN_DOWN_EXP: "blk.{bid}.ffn_down_exps", MODEL_TENSOR.FFN_DOWN_EXP: "blk.{bid}.ffn_down_exps",
MODEL_TENSOR.FFN_UP_EXP: "blk.{bid}.ffn_up_exps", MODEL_TENSOR.FFN_UP_EXP: "blk.{bid}.ffn_up_exps",
@ -262,6 +281,12 @@ TENSOR_NAMES: dict[MODEL_TENSOR, str] = {
MODEL_TENSOR.SSM_A: "blk.{bid}.ssm_a", MODEL_TENSOR.SSM_A: "blk.{bid}.ssm_a",
MODEL_TENSOR.SSM_D: "blk.{bid}.ssm_d", MODEL_TENSOR.SSM_D: "blk.{bid}.ssm_d",
MODEL_TENSOR.SSM_OUT: "blk.{bid}.ssm_out", MODEL_TENSOR.SSM_OUT: "blk.{bid}.ssm_out",
MODEL_TENSOR.ATTN_Q_A: "blk.{bid}.attn_q_a",
MODEL_TENSOR.ATTN_Q_B: "blk.{bid}.attn_q_b",
MODEL_TENSOR.ATTN_KV_A_MQA: "blk.{bid}.attn_kv_a_mqa",
MODEL_TENSOR.ATTN_KV_B: "blk.{bid}.attn_kv_b",
MODEL_TENSOR.ATTN_Q_A_NORM: "blk.{bid}.attn_q_a_norm",
MODEL_TENSOR.ATTN_KV_A_NORM: "blk.{bid}.attn_kv_a_norm",
} }
MODEL_TENSORS: dict[MODEL_ARCH, list[MODEL_TENSOR]] = { MODEL_TENSORS: dict[MODEL_ARCH, list[MODEL_TENSOR]] = {
@ -733,6 +758,54 @@ MODEL_TENSORS: dict[MODEL_ARCH, list[MODEL_TENSOR]] = {
MODEL_TENSOR.FFN_DOWN, MODEL_TENSOR.FFN_DOWN,
MODEL_TENSOR.FFN_UP, MODEL_TENSOR.FFN_UP,
], ],
MODEL_ARCH.ARCTIC: [
MODEL_TENSOR.TOKEN_EMBD,
MODEL_TENSOR.OUTPUT_NORM,
MODEL_TENSOR.OUTPUT,
MODEL_TENSOR.ROPE_FREQS,
MODEL_TENSOR.ATTN_NORM,
MODEL_TENSOR.ATTN_Q,
MODEL_TENSOR.ATTN_K,
MODEL_TENSOR.ATTN_V,
MODEL_TENSOR.ATTN_OUT,
MODEL_TENSOR.ATTN_ROT_EMBD,
MODEL_TENSOR.FFN_GATE_INP,
MODEL_TENSOR.FFN_NORM,
MODEL_TENSOR.FFN_GATE,
MODEL_TENSOR.FFN_DOWN,
MODEL_TENSOR.FFN_UP,
MODEL_TENSOR.FFN_NORM_EXP,
MODEL_TENSOR.FFN_GATE_EXP,
MODEL_TENSOR.FFN_DOWN_EXP,
MODEL_TENSOR.FFN_UP_EXP,
],
MODEL_ARCH.DEEPSEEK2: [
MODEL_TENSOR.TOKEN_EMBD,
MODEL_TENSOR.OUTPUT_NORM,
MODEL_TENSOR.OUTPUT,
MODEL_TENSOR.ROPE_FREQS,
MODEL_TENSOR.ATTN_NORM,
MODEL_TENSOR.ATTN_Q,
MODEL_TENSOR.ATTN_Q_A,
MODEL_TENSOR.ATTN_Q_B,
MODEL_TENSOR.ATTN_KV_A_MQA,
MODEL_TENSOR.ATTN_KV_B,
MODEL_TENSOR.ATTN_Q_A_NORM,
MODEL_TENSOR.ATTN_KV_A_NORM,
MODEL_TENSOR.ATTN_OUT,
MODEL_TENSOR.ATTN_ROT_EMBD,
MODEL_TENSOR.FFN_GATE_INP,
MODEL_TENSOR.FFN_NORM,
MODEL_TENSOR.FFN_GATE,
MODEL_TENSOR.FFN_DOWN,
MODEL_TENSOR.FFN_UP,
MODEL_TENSOR.FFN_GATE_EXP,
MODEL_TENSOR.FFN_DOWN_EXP,
MODEL_TENSOR.FFN_UP_EXP,
MODEL_TENSOR.FFN_GATE_SHEXP,
MODEL_TENSOR.FFN_DOWN_SHEXP,
MODEL_TENSOR.FFN_UP_SHEXP,
],
# TODO # TODO
} }
@ -766,6 +839,10 @@ MODEL_TENSOR_SKIP: dict[MODEL_ARCH, list[MODEL_TENSOR]] = {
MODEL_TENSOR.ROPE_FREQS, MODEL_TENSOR.ROPE_FREQS,
MODEL_TENSOR.ATTN_ROT_EMBD, MODEL_TENSOR.ATTN_ROT_EMBD,
], ],
MODEL_ARCH.DEEPSEEK2: [
MODEL_TENSOR.ROPE_FREQS,
MODEL_TENSOR.ATTN_ROT_EMBD,
],
} }
# #

View File

@ -12,6 +12,8 @@ from typing import Any, Literal, NamedTuple, TypeVar, Union
import numpy as np import numpy as np
import numpy.typing as npt import numpy.typing as npt
from .quants import quant_shape_to_byte_shape
if __name__ == "__main__": if __name__ == "__main__":
import sys import sys
from pathlib import Path from pathlib import Path
@ -251,6 +253,7 @@ class GGUFReader:
tensor_names.add(tensor_name) tensor_names.add(tensor_name)
ggml_type = GGMLQuantizationType(raw_dtype[0]) ggml_type = GGMLQuantizationType(raw_dtype[0])
n_elems = int(np.prod(dims)) n_elems = int(np.prod(dims))
np_dims = tuple(reversed(dims.tolist()))
block_size, type_size = GGML_QUANT_SIZES[ggml_type] block_size, type_size = GGML_QUANT_SIZES[ggml_type]
n_bytes = n_elems * type_size // block_size n_bytes = n_elems * type_size // block_size
data_offs = int(start_offs + offset_tensor[0]) data_offs = int(start_offs + offset_tensor[0])
@ -279,6 +282,7 @@ class GGUFReader:
else: else:
item_count = n_bytes item_count = n_bytes
item_type = np.uint8 item_type = np.uint8
np_dims = quant_shape_to_byte_shape(np_dims, ggml_type)
tensors.append(ReaderTensor( tensors.append(ReaderTensor(
name = tensor_name, name = tensor_name,
tensor_type = ggml_type, tensor_type = ggml_type,
@ -286,7 +290,7 @@ class GGUFReader:
n_elements = n_elems, n_elements = n_elems,
n_bytes = n_bytes, n_bytes = n_bytes,
data_offset = data_offs, data_offset = data_offs,
data = self._get(data_offs, item_type, item_count), data = self._get(data_offs, item_type, item_count).reshape(np_dims),
field = field, field = field,
)) ))
self.tensors = tensors self.tensors = tensors

View File

@ -13,7 +13,6 @@ from string import ascii_letters, digits
import numpy as np import numpy as np
from .constants import ( from .constants import (
GGML_QUANT_SIZES,
GGUF_DEFAULT_ALIGNMENT, GGUF_DEFAULT_ALIGNMENT,
GGUF_MAGIC, GGUF_MAGIC,
GGUF_VERSION, GGUF_VERSION,
@ -26,6 +25,8 @@ from .constants import (
TokenType, TokenType,
) )
from .quants import quant_shape_from_byte_shape
logger = logging.getLogger(__name__) logger = logging.getLogger(__name__)
@ -229,10 +230,7 @@ class GGUFWriter:
else: else:
dtype = raw_dtype dtype = raw_dtype
if tensor_dtype == np.uint8: if tensor_dtype == np.uint8:
block_size, type_size = GGML_QUANT_SIZES[raw_dtype] tensor_shape = quant_shape_from_byte_shape(tensor_shape, raw_dtype)
if tensor_shape[-1] % type_size != 0:
raise ValueError(f"Quantized tensor row size ({tensor_shape[-1]}) is not a multiple of {dtype.name} type size ({type_size})")
tensor_shape = tuple(tensor_shape[:-1]) + (tensor_shape[-1] // type_size * block_size,)
n_dims = len(tensor_shape) n_dims = len(tensor_shape)
self.ti_data += self._pack("I", n_dims) self.ti_data += self._pack("I", n_dims)
for i in range(n_dims): for i in range(n_dims):
@ -376,9 +374,15 @@ class GGUFWriter:
def add_block_count(self, length: int) -> None: def add_block_count(self, length: int) -> None:
self.add_uint32(Keys.LLM.BLOCK_COUNT.format(arch=self.arch), length) self.add_uint32(Keys.LLM.BLOCK_COUNT.format(arch=self.arch), length)
def add_leading_dense_block_count(self, length: int) -> None:
self.add_uint32(Keys.LLM.LEADING_DENSE_BLOCK_COUNT.format(arch=self.arch), length)
def add_feed_forward_length(self, length: int) -> None: def add_feed_forward_length(self, length: int) -> None:
self.add_uint32(Keys.LLM.FEED_FORWARD_LENGTH.format(arch=self.arch), length) self.add_uint32(Keys.LLM.FEED_FORWARD_LENGTH.format(arch=self.arch), length)
def add_expert_feed_forward_length(self, length: int) -> None:
self.add_uint32(Keys.LLM.EXPERT_FEED_FORWARD_LENGTH.format(arch=self.arch), length)
def add_parallel_residual(self, use: bool) -> None: def add_parallel_residual(self, use: bool) -> None:
self.add_bool(Keys.LLM.USE_PARALLEL_RESIDUAL.format(arch=self.arch), use) self.add_bool(Keys.LLM.USE_PARALLEL_RESIDUAL.format(arch=self.arch), use)
@ -409,6 +413,12 @@ class GGUFWriter:
def add_expert_used_count(self, count: int) -> None: def add_expert_used_count(self, count: int) -> None:
self.add_uint32(Keys.LLM.EXPERT_USED_COUNT.format(arch=self.arch), count) self.add_uint32(Keys.LLM.EXPERT_USED_COUNT.format(arch=self.arch), count)
def add_expert_shared_count(self, count: int) -> None:
self.add_uint32(Keys.LLM.EXPERT_SHARED_COUNT.format(arch=self.arch), count)
def add_expert_weights_scale(self, value: float) -> None:
self.add_float32(Keys.LLM.EXPERT_WEIGHTS_SCALE.format(arch=self.arch), value)
def add_layer_norm_eps(self, value: float) -> None: def add_layer_norm_eps(self, value: float) -> None:
self.add_float32(Keys.Attention.LAYERNORM_EPS.format(arch=self.arch), value) self.add_float32(Keys.Attention.LAYERNORM_EPS.format(arch=self.arch), value)
@ -418,6 +428,12 @@ class GGUFWriter:
def add_causal_attention(self, value: bool) -> None: def add_causal_attention(self, value: bool) -> None:
self.add_bool(Keys.Attention.CAUSAL.format(arch=self.arch), value) self.add_bool(Keys.Attention.CAUSAL.format(arch=self.arch), value)
def add_q_lora_rank(self, length: int) -> None:
self.add_uint32(Keys.Attention.Q_LORA_RANK.format(arch=self.arch), length)
def add_kv_lora_rank(self, length: int) -> None:
self.add_uint32(Keys.Attention.KV_LORA_RANK.format(arch=self.arch), length)
def add_pooling_type(self, value: PoolingType) -> None: def add_pooling_type(self, value: PoolingType) -> None:
self.add_uint32(Keys.LLM.POOLING_TYPE.format(arch=self.arch), value.value) self.add_uint32(Keys.LLM.POOLING_TYPE.format(arch=self.arch), value.value)
@ -442,6 +458,9 @@ class GGUFWriter:
def add_rope_scaling_finetuned(self, value: bool) -> None: def add_rope_scaling_finetuned(self, value: bool) -> None:
self.add_bool(Keys.Rope.SCALING_FINETUNED.format(arch=self.arch), value) self.add_bool(Keys.Rope.SCALING_FINETUNED.format(arch=self.arch), value)
def add_rope_scaling_yarn_log_mul(self, value: float) -> None:
self.add_float32(Keys.Rope.SCALING_YARN_LOG_MUL.format(arch=self.arch), value)
def add_ssm_conv_kernel(self, value: int) -> None: def add_ssm_conv_kernel(self, value: int) -> None:
self.add_uint32(Keys.SSM.CONV_KERNEL.format(arch=self.arch), value) self.add_uint32(Keys.SSM.CONV_KERNEL.format(arch=self.arch), value)

View File

@ -1,5 +1,5 @@
from __future__ import annotations from __future__ import annotations
from typing import Callable from typing import Callable, Sequence
from numpy.typing import DTypeLike from numpy.typing import DTypeLike
@ -9,6 +9,20 @@ from .lazy import LazyNumpyTensor
import numpy as np import numpy as np
def quant_shape_to_byte_shape(shape: Sequence[int], quant_type: GGMLQuantizationType):
block_size, type_size = GGML_QUANT_SIZES[quant_type]
if shape[-1] % block_size != 0:
raise ValueError(f"Quantized tensor row size ({shape[-1]}) is not a multiple of {quant_type.name} block size ({block_size})")
return (*shape[:-1], shape[-1] // block_size * type_size)
def quant_shape_from_byte_shape(shape: Sequence[int], quant_type: GGMLQuantizationType):
block_size, type_size = GGML_QUANT_SIZES[quant_type]
if shape[-1] % type_size != 0:
raise ValueError(f"Quantized tensor bytes per row ({shape[-1]}) is not a multiple of {quant_type.name} type size ({type_size})")
return (*shape[:-1], shape[-1] // type_size * block_size)
# same as ggml_compute_fp32_to_bf16 in ggml-impl.h # same as ggml_compute_fp32_to_bf16 in ggml-impl.h
def __compute_fp32_to_bf16(n: np.ndarray) -> np.ndarray: def __compute_fp32_to_bf16(n: np.ndarray) -> np.ndarray:
n = n.astype(np.float32, copy=False).view(np.int32) n = n.astype(np.float32, copy=False).view(np.int32)

View File

@ -244,6 +244,7 @@ class TensorNameMap:
"encoder.layers.{bid}.mlp.fc11", # nomic-bert "encoder.layers.{bid}.mlp.fc11", # nomic-bert
"model.layers.{bid}.mlp.c_fc", # starcoder2 "model.layers.{bid}.mlp.c_fc", # starcoder2
"encoder.layer.{bid}.mlp.gated_layers_v", # jina-bert-v2 "encoder.layer.{bid}.mlp.gated_layers_v", # jina-bert-v2
"model.layers.{bid}.residual_mlp.w3", # arctic
), ),
MODEL_TENSOR.FFN_UP_EXP: ( MODEL_TENSOR.FFN_UP_EXP: (
@ -255,6 +256,7 @@ class TensorNameMap:
MODEL_TENSOR.FFN_UP_SHEXP: ( MODEL_TENSOR.FFN_UP_SHEXP: (
"model.layers.{bid}.mlp.shared_expert.up_proj", # qwen2moe "model.layers.{bid}.mlp.shared_expert.up_proj", # qwen2moe
"model.layers.{bid}.mlp.shared_experts.up_proj", # deepseek2
), ),
# AWQ-activation gate # AWQ-activation gate
@ -272,6 +274,7 @@ class TensorNameMap:
"encoder.layers.{bid}.mlp.fc12", # nomic-bert "encoder.layers.{bid}.mlp.fc12", # nomic-bert
"encoder.layer.{bid}.mlp.gated_layers_w", # jina-bert-v2 "encoder.layer.{bid}.mlp.gated_layers_w", # jina-bert-v2
"transformer.h.{bid}.mlp.linear_1", # refact "transformer.h.{bid}.mlp.linear_1", # refact
"model.layers.{bid}.residual_mlp.w1", # arctic
), ),
MODEL_TENSOR.FFN_GATE_EXP: ( MODEL_TENSOR.FFN_GATE_EXP: (
@ -283,6 +286,7 @@ class TensorNameMap:
MODEL_TENSOR.FFN_GATE_SHEXP: ( MODEL_TENSOR.FFN_GATE_SHEXP: (
"model.layers.{bid}.mlp.shared_expert.gate_proj", # qwen2moe "model.layers.{bid}.mlp.shared_expert.gate_proj", # qwen2moe
"model.layers.{bid}.mlp.shared_experts.gate_proj", # deepseek2
), ),
# Feed-forward down # Feed-forward down
@ -306,6 +310,7 @@ class TensorNameMap:
"encoder.layers.{bid}.mlp.fc2", # nomic-bert "encoder.layers.{bid}.mlp.fc2", # nomic-bert
"model.layers.{bid}.mlp.c_proj", # starcoder2 "model.layers.{bid}.mlp.c_proj", # starcoder2
"encoder.layer.{bid}.mlp.wo", # jina-bert-v2 "encoder.layer.{bid}.mlp.wo", # jina-bert-v2
"model.layers.{bid}.residual_mlp.w2", # arctic
), ),
MODEL_TENSOR.FFN_DOWN_EXP: ( MODEL_TENSOR.FFN_DOWN_EXP: (
@ -317,6 +322,7 @@ class TensorNameMap:
MODEL_TENSOR.FFN_DOWN_SHEXP: ( MODEL_TENSOR.FFN_DOWN_SHEXP: (
"model.layers.{bid}.mlp.shared_expert.down_proj", # qwen2moe "model.layers.{bid}.mlp.shared_expert.down_proj", # qwen2moe
"model.layers.{bid}.mlp.shared_experts.down_proj", # deepseek2
), ),
MODEL_TENSOR.ATTN_Q_NORM: ( MODEL_TENSOR.ATTN_Q_NORM: (
@ -380,6 +386,42 @@ class TensorNameMap:
"model.layers.{bid}.out_proj", "model.layers.{bid}.out_proj",
"backbone.layers.{bid}.mixer.out_proj", "backbone.layers.{bid}.mixer.out_proj",
), ),
MODEL_TENSOR.ATTN_Q_A: (
"model.layers.{bid}.self_attn.q_a_proj", # deepseek2
),
MODEL_TENSOR.ATTN_Q_B: (
"model.layers.{bid}.self_attn.q_b_proj", # deepseek2
),
MODEL_TENSOR.ATTN_KV_A_MQA: (
"model.layers.{bid}.self_attn.kv_a_proj_with_mqa", # deepseek2
),
MODEL_TENSOR.ATTN_KV_B: (
"model.layers.{bid}.self_attn.kv_b_proj", # deepseek2
),
MODEL_TENSOR.ATTN_Q_A_NORM: (
"model.layers.{bid}.self_attn.q_a_layernorm", # deepseek2
),
MODEL_TENSOR.ATTN_KV_A_NORM: (
"model.layers.{bid}.self_attn.kv_a_layernorm", # deepseek2
),
}
# architecture-specific block mappings
arch_block_mappings_cfg: dict[MODEL_ARCH, dict[MODEL_TENSOR, tuple[str, ...]]] = {
MODEL_ARCH.ARCTIC: {
MODEL_TENSOR.FFN_NORM: (
"model.layers.{bid}.residual_layernorm",
),
MODEL_TENSOR.FFN_NORM_EXP: (
"model.layers.{bid}.post_attention_layernorm",
),
},
} }
mapping: dict[str, tuple[MODEL_TENSOR, str]] mapping: dict[str, tuple[MODEL_TENSOR, str]]
@ -393,12 +435,14 @@ class TensorNameMap:
self.mapping[tensor_name] = (tensor, tensor_name) self.mapping[tensor_name] = (tensor, tensor_name)
for key in keys: for key in keys:
self.mapping[key] = (tensor, tensor_name) self.mapping[key] = (tensor, tensor_name)
if arch in self.arch_block_mappings_cfg:
self.block_mappings_cfg.update(self.arch_block_mappings_cfg[arch])
for bid in range(n_blocks): for bid in range(n_blocks):
for tensor, keys in self.block_mappings_cfg.items(): for tensor, keys in self.block_mappings_cfg.items():
if tensor not in MODEL_TENSORS[arch]: if tensor not in MODEL_TENSORS[arch]:
continue continue
# TODO: make this configurable # TODO: make this configurable
n_experts = 60 n_experts = 160
for xid in range(n_experts): for xid in range(n_experts):
tensor_name = TENSOR_NAMES[tensor].format(bid = bid, xid = xid) tensor_name = TENSOR_NAMES[tensor].format(bid = bid, xid = xid)
self.mapping[tensor_name] = (tensor, tensor_name) self.mapping[tensor_name] = (tensor, tensor_name)

View File

@ -118,9 +118,7 @@ def copy_with_new_metadata(reader: gguf.GGUFReader, writer: gguf.GGUFWriter, new
for tensor in reader.tensors: for tensor in reader.tensors:
total_bytes += tensor.n_bytes total_bytes += tensor.n_bytes
# Dimensions are written in reverse order, so flip them first writer.add_tensor_info(tensor.name, tensor.data.shape, tensor.data.dtype, tensor.data.nbytes, tensor.tensor_type)
shape = np.flipud(tensor.shape).tolist()
writer.add_tensor_info(tensor.name, shape, tensor.data.dtype, tensor.data.nbytes, tensor.tensor_type)
bar = tqdm(desc="Writing", total=total_bytes, unit="byte", unit_scale=True) bar = tqdm(desc="Writing", total=total_bytes, unit="byte", unit_scale=True)

986
llama.cpp

File diff suppressed because it is too large Load Diff

18
llama.h
View File

@ -85,6 +85,7 @@ extern "C" {
LLAMA_VOCAB_PRE_TYPE_QWEN2 = 11, LLAMA_VOCAB_PRE_TYPE_QWEN2 = 11,
LLAMA_VOCAB_PRE_TYPE_OLMO = 12, LLAMA_VOCAB_PRE_TYPE_OLMO = 12,
LLAMA_VOCAB_PRE_TYPE_DBRX = 13, LLAMA_VOCAB_PRE_TYPE_DBRX = 13,
LLAMA_VOCAB_PRE_TYPE_SMAUG = 14,
}; };
// note: these values should be synchronized with ggml_rope // note: these values should be synchronized with ggml_rope
@ -264,6 +265,8 @@ extern "C" {
bool check_tensors; // validate model tensor data bool check_tensors; // validate model tensor data
}; };
// NOTE: changing the default values of parameters marked as [EXPERIMENTAL] may cause crashes or incorrect results in certain configurations
// https://github.com/ggerganov/llama.cpp/pull/7544
struct llama_context_params { struct llama_context_params {
uint32_t seed; // RNG seed, -1 for random uint32_t seed; // RNG seed, -1 for random
uint32_t n_ctx; // text context, 0 = from model uint32_t n_ctx; // text context, 0 = from model
@ -290,14 +293,14 @@ extern "C" {
ggml_backend_sched_eval_callback cb_eval; ggml_backend_sched_eval_callback cb_eval;
void * cb_eval_user_data; void * cb_eval_user_data;
enum ggml_type type_k; // data type for K cache enum ggml_type type_k; // data type for K cache [EXPERIMENTAL]
enum ggml_type type_v; // data type for V cache enum ggml_type type_v; // data type for V cache [EXPERIMENTAL]
// Keep the booleans together to avoid misalignment during copy-by-value. // Keep the booleans together to avoid misalignment during copy-by-value.
bool logits_all; // the llama_decode() call computes all logits, not just the last one (DEPRECATED - set llama_batch.logits instead) bool logits_all; // the llama_decode() call computes all logits, not just the last one (DEPRECATED - set llama_batch.logits instead)
bool embeddings; // if true, extract embeddings (together with logits) bool embeddings; // if true, extract embeddings (together with logits)
bool offload_kqv; // whether to offload the KQV ops (including the KV cache) to GPU bool offload_kqv; // whether to offload the KQV ops (including the KV cache) to GPU
bool flash_attn; // whether to use flash attention bool flash_attn; // whether to use flash attention [EXPERIMENTAL]
// Abort callback // Abort callback
// if it returns true, execution of llama_decode() will be aborted // if it returns true, execution of llama_decode() will be aborted
@ -759,6 +762,12 @@ extern "C" {
// n_threads_batch is the number of threads used for prompt and batch processing (multiple tokens) // n_threads_batch is the number of threads used for prompt and batch processing (multiple tokens)
LLAMA_API void llama_set_n_threads(struct llama_context * ctx, uint32_t n_threads, uint32_t n_threads_batch); LLAMA_API void llama_set_n_threads(struct llama_context * ctx, uint32_t n_threads, uint32_t n_threads_batch);
// Get the number of threads used for generation of a single token.
LLAMA_API uint32_t llama_n_threads(struct llama_context * ctx);
// Get the number of threads used for prompt and batch processing (multiple token).
LLAMA_API uint32_t llama_n_threads_batch(struct llama_context * ctx);
// Set whether to use causal attention or not // Set whether to use causal attention or not
// If set to true, the model will only attend to the past tokens // If set to true, the model will only attend to the past tokens
LLAMA_API void llama_set_causal_attn(struct llama_context * ctx, bool causal_attn); LLAMA_API void llama_set_causal_attn(struct llama_context * ctx, bool causal_attn);
@ -817,6 +826,9 @@ extern "C" {
// Check if the token is supposed to end generation (end-of-generation, eg. EOS, EOT, etc.) // Check if the token is supposed to end generation (end-of-generation, eg. EOS, EOT, etc.)
LLAMA_API bool llama_token_is_eog(const struct llama_model * model, llama_token token); LLAMA_API bool llama_token_is_eog(const struct llama_model * model, llama_token token);
// Identify if Token Id is a control token or a render-able token
LLAMA_API bool llama_token_is_control(const struct llama_model * model, llama_token token);
// Special tokens // Special tokens
LLAMA_API llama_token llama_token_bos(const struct llama_model * model); // beginning-of-sentence LLAMA_API llama_token llama_token_bos(const struct llama_model * model); // beginning-of-sentence
LLAMA_API llama_token llama_token_eos(const struct llama_model * model); // end-of-sentence LLAMA_API llama_token llama_token_eos(const struct llama_model * model); // end-of-sentence

View File

@ -1259,22 +1259,26 @@ struct test_im2col : public test_case {
// GGML_OP_CONCAT // GGML_OP_CONCAT
struct test_concat : public test_case { struct test_concat : public test_case {
const ggml_type type; const ggml_type type;
const std::array<int64_t, 4> ne; const std::array<int64_t, 4> ne_a;
const int64_t b_ne2; const int64_t ne_b_d;
const int dim;
std::string vars() override { std::string vars() override {
return VARS_TO_STR3(type, ne, b_ne2); return VARS_TO_STR4(type, ne_a, ne_b_d, dim);
} }
test_concat(ggml_type type = GGML_TYPE_F32, test_concat(ggml_type type = GGML_TYPE_F32,
std::array<int64_t, 4> ne = {10, 10, 10, 10}, std::array<int64_t, 4> ne_a = {10, 10, 10, 10},
int64_t b_ne2 = 10) int64_t ne_b_d = 10,
: type(type), ne(ne), b_ne2(b_ne2) {} int dim = 2)
: type(type), ne_a(ne_a), ne_b_d(ne_b_d), dim(dim) {}
ggml_tensor * build_graph(ggml_context * ctx) override { ggml_tensor * build_graph(ggml_context * ctx) override {
ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data()); auto ne_b = ne_a;
ggml_tensor * b = ggml_new_tensor_4d(ctx, type, ne[0], ne[1], b_ne2, ne[3]); ne_b[dim] = ne_b_d;
ggml_tensor * out = ggml_concat(ctx, a, b); ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne_a.data());
ggml_tensor * b = ggml_new_tensor(ctx, type, 4, ne_b.data());
ggml_tensor * out = ggml_concat(ctx, a, b, dim);
return out; return out;
} }
}; };
@ -2211,8 +2215,10 @@ static bool test_backend(ggml_backend_t backend, test_mode mode, const char * op
} }
} }
test_cases.emplace_back(new test_concat(GGML_TYPE_F32)); for (int dim : { 0, 1, 2, 3, }) {
test_cases.emplace_back(new test_concat(GGML_TYPE_I32)); test_cases.emplace_back(new test_concat(GGML_TYPE_F32, {11, 12, 13, 14}, 7, dim));
test_cases.emplace_back(new test_concat(GGML_TYPE_I32, {11, 12, 13, 14}, 7, dim));
}
for (ggml_sort_order order : {GGML_SORT_ORDER_ASC, GGML_SORT_ORDER_DESC}) { for (ggml_sort_order order : {GGML_SORT_ORDER_ASC, GGML_SORT_ORDER_DESC}) {
test_cases.emplace_back(new test_argsort(GGML_TYPE_F32, {8, 1, 1, 1}, order)); test_cases.emplace_back(new test_argsort(GGML_TYPE_F32, {8, 1, 1, 1}, order));

View File

@ -49,8 +49,14 @@ int main(void) {
"{{ bos_token }}{% if messages[0]['role'] == 'system' %}{% set loop_messages = messages[1:] %}{% set system_message = messages[0]['content'] %}{% elif false == true %}{% set loop_messages = messages %}{% set system_message = 'You are Command-R, a brilliant, sophisticated, AI-assistant trained to assist human users by providing thorough responses. You are trained by Cohere.' %}{% else %}{% set loop_messages = messages %}{% set system_message = false %}{% endif %}{% if system_message != false %}{{ '<|START_OF_TURN_TOKEN|><|SYSTEM_TOKEN|>' + system_message + '<|END_OF_TURN_TOKEN|>' }}{% endif %}{% for message in loop_messages %}{% if (message['role'] == 'user') != (loop.index0 % 2 == 0) %}{{ raise_exception('Conversation roles must alternate user/assistant/user/assistant/...') }}{% endif %}{% set content = message['content'] %}{% if message['role'] == 'user' %}{{ '<|START_OF_TURN_TOKEN|><|USER_TOKEN|>' + content.strip() + '<|END_OF_TURN_TOKEN|>' }}{% elif message['role'] == 'assistant' %}{{ '<|START_OF_TURN_TOKEN|><|CHATBOT_TOKEN|>' + content.strip() + '<|END_OF_TURN_TOKEN|>' }}{% endif %}{% endfor %}{% if add_generation_prompt %}{{ '<|START_OF_TURN_TOKEN|><|CHATBOT_TOKEN|>' }}{% endif %}", "{{ bos_token }}{% if messages[0]['role'] == 'system' %}{% set loop_messages = messages[1:] %}{% set system_message = messages[0]['content'] %}{% elif false == true %}{% set loop_messages = messages %}{% set system_message = 'You are Command-R, a brilliant, sophisticated, AI-assistant trained to assist human users by providing thorough responses. You are trained by Cohere.' %}{% else %}{% set loop_messages = messages %}{% set system_message = false %}{% endif %}{% if system_message != false %}{{ '<|START_OF_TURN_TOKEN|><|SYSTEM_TOKEN|>' + system_message + '<|END_OF_TURN_TOKEN|>' }}{% endif %}{% for message in loop_messages %}{% if (message['role'] == 'user') != (loop.index0 % 2 == 0) %}{{ raise_exception('Conversation roles must alternate user/assistant/user/assistant/...') }}{% endif %}{% set content = message['content'] %}{% if message['role'] == 'user' %}{{ '<|START_OF_TURN_TOKEN|><|USER_TOKEN|>' + content.strip() + '<|END_OF_TURN_TOKEN|>' }}{% elif message['role'] == 'assistant' %}{{ '<|START_OF_TURN_TOKEN|><|CHATBOT_TOKEN|>' + content.strip() + '<|END_OF_TURN_TOKEN|>' }}{% endif %}{% endfor %}{% if add_generation_prompt %}{{ '<|START_OF_TURN_TOKEN|><|CHATBOT_TOKEN|>' }}{% endif %}",
// Llama-3 // Llama-3
"{% set loop_messages = messages %}{% for message in loop_messages %}{% set content = '<|start_header_id|>' + message['role'] + '<|end_header_id|>\n\n'+ message['content'] | trim + '<|eot_id|>' %}{% if loop.index0 == 0 %}{% set content = bos_token + content %}{% endif %}{{ content }}{% endfor %}{{ '<|start_header_id|>assistant<|end_header_id|>\n\n' }}", "{% set loop_messages = messages %}{% for message in loop_messages %}{% set content = '<|start_header_id|>' + message['role'] + '<|end_header_id|>\n\n'+ message['content'] | trim + '<|eot_id|>' %}{% if loop.index0 == 0 %}{% set content = bos_token + content %}{% endif %}{{ content }}{% endfor %}{{ '<|start_header_id|>assistant<|end_header_id|>\n\n' }}",
// Phi-3 //Phi-3-mini
"{{ bos_token }}{% for message in messages %}{{'<|' + message['role'] + '|>' + ' ' + message['content'] + '<|end|> ' }}{% endfor %}{% if add_generation_prompt %}{{ '<|assistant|> ' }}{% else %}{{ eos_token }}{% endif %}" "{{ bos_token }}{% for message in messages %}{% if (message['role'] == 'user') %}{{'<|user|>' + '\n' + message['content'] + '<|end|>' + '\n' + '<|assistant|>' + '\n'}}{% elif (message['role'] == 'assistant') %}{{message['content'] + '<|end|>' + '\n'}}{% endif %}{% endfor %}",
//Phi-3-small
"{{ bos_token }}{% for message in messages %}{{'<|' + message['role'] + '|>' + '\n' + message['content'] + '<|end|>\n' }}{% endfor %}{% if add_generation_prompt %}{{ '<|assistant|>\n' }}{% else %}{{ eos_token }}{% endif %}",
//Phi-3-medium
"{% for message in messages %}{% if (message['role'] == 'user') %}{{'<|user|>' + '\n' + message['content'] + '<|end|>' + '\n' + '<|assistant|>' + '\n'}}{% elif (message['role'] == 'assistant') %}{{message['content'] + '<|end|>' + '\n'}}{% endif %}{% endfor %}",
//Phi-3-vision
"{% for message in messages %}{{'<|' + message['role'] + '|>' + '\n' + message['content'] + '<|end|>\n' }}{% endfor %}{% if add_generation_prompt and messages[-1]['role'] != 'assistant' %}{{- '<|assistant|>\n' -}}{% endif %}"
}; };
std::vector<std::string> expected_output = { std::vector<std::string> expected_output = {
// teknium/OpenHermes-2.5-Mistral-7B // teknium/OpenHermes-2.5-Mistral-7B
@ -79,8 +85,14 @@ int main(void) {
"<|START_OF_TURN_TOKEN|><|SYSTEM_TOKEN|>You are a helpful assistant<|END_OF_TURN_TOKEN|><|START_OF_TURN_TOKEN|><|USER_TOKEN|>Hello<|END_OF_TURN_TOKEN|><|START_OF_TURN_TOKEN|><|CHATBOT_TOKEN|>Hi there<|END_OF_TURN_TOKEN|><|START_OF_TURN_TOKEN|><|USER_TOKEN|>Who are you<|END_OF_TURN_TOKEN|><|START_OF_TURN_TOKEN|><|CHATBOT_TOKEN|>I am an assistant<|END_OF_TURN_TOKEN|><|START_OF_TURN_TOKEN|><|USER_TOKEN|>Another question<|END_OF_TURN_TOKEN|><|START_OF_TURN_TOKEN|><|CHATBOT_TOKEN|>", "<|START_OF_TURN_TOKEN|><|SYSTEM_TOKEN|>You are a helpful assistant<|END_OF_TURN_TOKEN|><|START_OF_TURN_TOKEN|><|USER_TOKEN|>Hello<|END_OF_TURN_TOKEN|><|START_OF_TURN_TOKEN|><|CHATBOT_TOKEN|>Hi there<|END_OF_TURN_TOKEN|><|START_OF_TURN_TOKEN|><|USER_TOKEN|>Who are you<|END_OF_TURN_TOKEN|><|START_OF_TURN_TOKEN|><|CHATBOT_TOKEN|>I am an assistant<|END_OF_TURN_TOKEN|><|START_OF_TURN_TOKEN|><|USER_TOKEN|>Another question<|END_OF_TURN_TOKEN|><|START_OF_TURN_TOKEN|><|CHATBOT_TOKEN|>",
// Llama 3 // Llama 3
"<|start_header_id|>system<|end_header_id|>\n\nYou are a helpful assistant<|eot_id|><|start_header_id|>user<|end_header_id|>\n\nHello<|eot_id|><|start_header_id|>assistant<|end_header_id|>\n\nHi there<|eot_id|><|start_header_id|>user<|end_header_id|>\n\nWho are you<|eot_id|><|start_header_id|>assistant<|end_header_id|>\n\nI am an assistant<|eot_id|><|start_header_id|>user<|end_header_id|>\n\nAnother question<|eot_id|><|start_header_id|>assistant<|end_header_id|>\n\n", "<|start_header_id|>system<|end_header_id|>\n\nYou are a helpful assistant<|eot_id|><|start_header_id|>user<|end_header_id|>\n\nHello<|eot_id|><|start_header_id|>assistant<|end_header_id|>\n\nHi there<|eot_id|><|start_header_id|>user<|end_header_id|>\n\nWho are you<|eot_id|><|start_header_id|>assistant<|end_header_id|>\n\nI am an assistant<|eot_id|><|start_header_id|>user<|end_header_id|>\n\nAnother question<|eot_id|><|start_header_id|>assistant<|end_header_id|>\n\n",
// Phi 3 //Phi-3-mini
"<|system|>\nYou are a helpful assistant<|end|>\n<|user|>\nHello<|end|>\n<|assistant|>\nHi there<|end|>\n<|user|>\nWho are you<|end|>\n<|assistant|>\nI am an assistant<|end|>\n<|user|>\nAnother question<|end|>\n<|assistant|>\n", "<|system|>\nYou are a helpful assistant<|end|>\n<|user|>\nHello<|end|>\n<|assistant|>\nHi there<|end|>\n<|user|>\nWho are you<|end|>\n<|assistant|>\n I am an assistant <|end|>\n<|user|>\nAnother question<|end|>\n<|assistant|>\n",
//Phi-3-small
"<|system|>\nYou are a helpful assistant<|end|>\n<|user|>\nHello<|end|>\n<|assistant|>\nHi there<|end|>\n<|user|>\nWho are you<|end|>\n<|assistant|>\n I am an assistant <|end|>\n<|user|>\nAnother question<|end|>\n<|assistant|>\n",
//Phi-3-medium
"<|system|>\nYou are a helpful assistant<|end|>\n<|user|>\nHello<|end|>\n<|assistant|>\nHi there<|end|>\n<|user|>\nWho are you<|end|>\n<|assistant|>\n I am an assistant <|end|>\n<|user|>\nAnother question<|end|>\n<|assistant|>\n",
//Phi-3-vision
"<|system|>\nYou are a helpful assistant<|end|>\n<|user|>\nHello<|end|>\n<|assistant|>\nHi there<|end|>\n<|user|>\nWho are you<|end|>\n<|assistant|>\n I am an assistant <|end|>\n<|user|>\nAnother question<|end|>\n<|assistant|>\n",
}; };
std::vector<char> formatted_chat(1024); std::vector<char> formatted_chat(1024);
int32_t res; int32_t res;

View File

@ -28,6 +28,8 @@ printf "Tokenizing using (cpp) llama.cpp ...\n"
cat /tmp/test-tokenizer-0-$name-py.log | grep "tokenized in" cat /tmp/test-tokenizer-0-$name-py.log | grep "tokenized in"
cat /tmp/test-tokenizer-0-$name-cpp.log | grep "tokenized in" cat /tmp/test-tokenizer-0-$name-cpp.log | grep "tokenized in"
set +e
diff $input.tok $input.tokcpp > /dev/null 2>&1 diff $input.tok $input.tokcpp > /dev/null 2>&1
if [ $? -eq 0 ]; then if [ $? -eq 0 ]; then