mirror of
https://github.com/ggerganov/llama.cpp.git
synced 2025-01-26 12:21:40 +01:00
sync : ggml (Metal F32 support + reduce ggml-alloc size) (#3192)
* sync : ggml (Metal F32 support + reduce ggml-alloc size) ggml-ci * llama-bench : fix ggml_cpu_has_metal() duplicate function ggml-ci
This commit is contained in:
parent
7e50d34be6
commit
8c00b7a6ff
@ -74,14 +74,6 @@ static T stdev(const std::vector<T> & v) {
|
||||
return stdev;
|
||||
}
|
||||
|
||||
static bool ggml_cpu_has_metal() {
|
||||
#if defined(GGML_USE_METAL)
|
||||
return true;
|
||||
#else
|
||||
return false;
|
||||
#endif
|
||||
}
|
||||
|
||||
static std::string get_cpu_info() {
|
||||
std::string id;
|
||||
#ifdef __linux__
|
||||
|
12
ggml-alloc.c
12
ggml-alloc.c
@ -131,6 +131,10 @@ static bool ggml_allocr_is_own(struct ggml_allocr * alloc, const struct ggml_ten
|
||||
return ptr >= alloc->data && (char *)ptr < (char *)alloc->data + alloc->max_size;
|
||||
}
|
||||
|
||||
static bool ggml_is_view(struct ggml_tensor * t) {
|
||||
return t->view_src != NULL;
|
||||
}
|
||||
|
||||
void ggml_allocr_alloc(struct ggml_allocr * alloc, struct ggml_tensor * tensor) {
|
||||
#ifdef GGML_ALLOCATOR_DEBUG
|
||||
GGML_ASSERT(!ggml_is_view(tensor)); // views generally get data pointer from one of their sources
|
||||
@ -338,8 +342,8 @@ static void free_vmem(void * base_addr, size_t size) {
|
||||
|
||||
// allocate uncommitted virtual memory to measure the size of the graph
|
||||
static void alloc_measure_vmem(void ** base_addr, size_t * size) {
|
||||
// 1TB for 64-bit, 1GB for 32-bit
|
||||
*size = sizeof(void *) == 4 ? 1ULL<<30 : 1ULL<<40;
|
||||
// 128GB for 64-bit, 1GB for 32-bit
|
||||
*size = sizeof(void *) == 4 ? 1ULL<<30 : 1ULL<<37;
|
||||
do {
|
||||
*base_addr = alloc_vmem(*size);
|
||||
if (*base_addr != NULL) {
|
||||
@ -399,10 +403,6 @@ bool ggml_allocr_is_measure(struct ggml_allocr * alloc) {
|
||||
|
||||
//////////// compute graph allocator
|
||||
|
||||
static bool ggml_is_view(struct ggml_tensor * t) {
|
||||
return t->view_src != NULL;
|
||||
}
|
||||
|
||||
static bool ggml_are_same_layout(const struct ggml_tensor * a, const struct ggml_tensor * b) {
|
||||
if (a->type != b->type) {
|
||||
return false;
|
||||
|
12
ggml-metal.m
12
ggml-metal.m
@ -78,6 +78,7 @@ struct ggml_metal_context {
|
||||
GGML_METAL_DECL_KERNEL(get_rows_q6_K);
|
||||
GGML_METAL_DECL_KERNEL(rms_norm);
|
||||
GGML_METAL_DECL_KERNEL(norm);
|
||||
GGML_METAL_DECL_KERNEL(mul_mat_f32_f32);
|
||||
GGML_METAL_DECL_KERNEL(mul_mat_f16_f32);
|
||||
GGML_METAL_DECL_KERNEL(mul_mat_f16_f32_1row);
|
||||
GGML_METAL_DECL_KERNEL(mul_mat_f16_f32_l4);
|
||||
@ -89,6 +90,7 @@ struct ggml_metal_context {
|
||||
GGML_METAL_DECL_KERNEL(mul_mat_q4_K_f32);
|
||||
GGML_METAL_DECL_KERNEL(mul_mat_q5_K_f32);
|
||||
GGML_METAL_DECL_KERNEL(mul_mat_q6_K_f32);
|
||||
GGML_METAL_DECL_KERNEL(mul_mm_f32_f32);
|
||||
GGML_METAL_DECL_KERNEL(mul_mm_f16_f32);
|
||||
GGML_METAL_DECL_KERNEL(mul_mm_q4_0_f32);
|
||||
GGML_METAL_DECL_KERNEL(mul_mm_q4_1_f32);
|
||||
@ -237,6 +239,7 @@ struct ggml_metal_context * ggml_metal_init(int n_cb) {
|
||||
GGML_METAL_ADD_KERNEL(get_rows_q6_K);
|
||||
GGML_METAL_ADD_KERNEL(rms_norm);
|
||||
GGML_METAL_ADD_KERNEL(norm);
|
||||
GGML_METAL_ADD_KERNEL(mul_mat_f32_f32);
|
||||
GGML_METAL_ADD_KERNEL(mul_mat_f16_f32);
|
||||
GGML_METAL_ADD_KERNEL(mul_mat_f16_f32_1row);
|
||||
GGML_METAL_ADD_KERNEL(mul_mat_f16_f32_l4);
|
||||
@ -248,6 +251,7 @@ struct ggml_metal_context * ggml_metal_init(int n_cb) {
|
||||
GGML_METAL_ADD_KERNEL(mul_mat_q4_K_f32);
|
||||
GGML_METAL_ADD_KERNEL(mul_mat_q5_K_f32);
|
||||
GGML_METAL_ADD_KERNEL(mul_mat_q6_K_f32);
|
||||
GGML_METAL_ADD_KERNEL(mul_mm_f32_f32);
|
||||
GGML_METAL_ADD_KERNEL(mul_mm_f16_f32);
|
||||
GGML_METAL_ADD_KERNEL(mul_mm_q4_0_f32);
|
||||
GGML_METAL_ADD_KERNEL(mul_mm_q8_0_f32);
|
||||
@ -309,6 +313,7 @@ void ggml_metal_free(struct ggml_metal_context * ctx) {
|
||||
GGML_METAL_DEL_KERNEL(get_rows_q6_K);
|
||||
GGML_METAL_DEL_KERNEL(rms_norm);
|
||||
GGML_METAL_DEL_KERNEL(norm);
|
||||
GGML_METAL_DEL_KERNEL(mul_mat_f32_f32);
|
||||
GGML_METAL_DEL_KERNEL(mul_mat_f16_f32);
|
||||
GGML_METAL_DEL_KERNEL(mul_mat_f16_f32_1row);
|
||||
GGML_METAL_DEL_KERNEL(mul_mat_f16_f32_l4);
|
||||
@ -320,6 +325,7 @@ void ggml_metal_free(struct ggml_metal_context * ctx) {
|
||||
GGML_METAL_DEL_KERNEL(mul_mat_q4_K_f32);
|
||||
GGML_METAL_DEL_KERNEL(mul_mat_q5_K_f32);
|
||||
GGML_METAL_DEL_KERNEL(mul_mat_q6_K_f32);
|
||||
GGML_METAL_DEL_KERNEL(mul_mm_f32_f32);
|
||||
GGML_METAL_DEL_KERNEL(mul_mm_f16_f32);
|
||||
GGML_METAL_DEL_KERNEL(mul_mm_q4_0_f32);
|
||||
GGML_METAL_DEL_KERNEL(mul_mm_q8_0_f32);
|
||||
@ -885,6 +891,7 @@ void ggml_metal_graph_compute(
|
||||
ne00%32 == 0 &&
|
||||
ne11 > 1) {
|
||||
switch (src0->type) {
|
||||
case GGML_TYPE_F32: [encoder setComputePipelineState:ctx->pipeline_mul_mm_f32_f32]; break;
|
||||
case GGML_TYPE_F16: [encoder setComputePipelineState:ctx->pipeline_mul_mm_f16_f32]; break;
|
||||
case GGML_TYPE_Q4_0: [encoder setComputePipelineState:ctx->pipeline_mul_mm_q4_0_f32]; break;
|
||||
case GGML_TYPE_Q4_1: [encoder setComputePipelineState:ctx->pipeline_mul_mm_q4_1_f32]; break;
|
||||
@ -919,6 +926,11 @@ void ggml_metal_graph_compute(
|
||||
|
||||
// use custom matrix x vector kernel
|
||||
switch (src0t) {
|
||||
case GGML_TYPE_F32:
|
||||
{
|
||||
[encoder setComputePipelineState:ctx->pipeline_mul_mat_f32_f32];
|
||||
nrows = 4;
|
||||
} break;
|
||||
case GGML_TYPE_F16:
|
||||
{
|
||||
nth0 = 32;
|
||||
|
@ -523,6 +523,79 @@ kernel void kernel_mul_mat_q8_0_f32(
|
||||
}
|
||||
}
|
||||
|
||||
#define N_F32_F32 4
|
||||
|
||||
kernel void kernel_mul_mat_f32_f32(
|
||||
device const char * src0,
|
||||
device const char * src1,
|
||||
device float * dst,
|
||||
constant int64_t & ne00,
|
||||
constant int64_t & ne01,
|
||||
constant int64_t & ne02,
|
||||
constant uint64_t & nb00,
|
||||
constant uint64_t & nb01,
|
||||
constant uint64_t & nb02,
|
||||
constant int64_t & ne10,
|
||||
constant int64_t & ne11,
|
||||
constant int64_t & ne12,
|
||||
constant uint64_t & nb10,
|
||||
constant uint64_t & nb11,
|
||||
constant uint64_t & nb12,
|
||||
constant int64_t & ne0,
|
||||
constant int64_t & ne1,
|
||||
uint3 tgpig[[threadgroup_position_in_grid]],
|
||||
uint tiisg[[thread_index_in_simdgroup]]) {
|
||||
|
||||
const int64_t r0 = tgpig.x;
|
||||
const int64_t rb = tgpig.y*N_F32_F32;
|
||||
const int64_t im = tgpig.z;
|
||||
|
||||
device const float * x = (device const float *) (src0 + r0*nb01 + im/(ne12/ne02)*nb02);
|
||||
|
||||
if (ne00 < 128) {
|
||||
for (int row = 0; row < N_F32_F32; ++row) {
|
||||
int r1 = rb + row;
|
||||
if (r1 >= ne11) {
|
||||
break;
|
||||
}
|
||||
|
||||
device const float * y = (device const float *) (src1 + r1*nb11 + im*nb12);
|
||||
|
||||
float sumf = 0;
|
||||
for (int i = tiisg; i < ne00; i += 32) {
|
||||
sumf += (float) x[i] * (float) y[i];
|
||||
}
|
||||
|
||||
float all_sum = simd_sum(sumf);
|
||||
if (tiisg == 0) {
|
||||
dst[im*ne1*ne0 + r1*ne0 + r0] = all_sum;
|
||||
}
|
||||
}
|
||||
} else {
|
||||
device const float4 * x4 = (device const float4 *)x;
|
||||
for (int row = 0; row < N_F32_F32; ++row) {
|
||||
int r1 = rb + row;
|
||||
if (r1 >= ne11) {
|
||||
break;
|
||||
}
|
||||
|
||||
device const float * y = (device const float *) (src1 + r1*nb11 + im*nb12);
|
||||
device const float4 * y4 = (device const float4 *) y;
|
||||
|
||||
float sumf = 0;
|
||||
for (int i = tiisg; i < ne00/4; i += 32) {
|
||||
for (int k = 0; k < 4; ++k) sumf += (float) x4[i][k] * y4[i][k];
|
||||
}
|
||||
|
||||
float all_sum = simd_sum(sumf);
|
||||
if (tiisg == 0) {
|
||||
for (int i = 4*(ne00/4); i < ne00; ++i) all_sum += (float) x[i] * y[i];
|
||||
dst[im*ne1*ne0 + r1*ne0 + r0] = all_sum;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
kernel void kernel_mul_mat_f16_f32_1row(
|
||||
device const char * src0,
|
||||
device const char * src1,
|
||||
@ -1399,13 +1472,13 @@ kernel void kernel_mul_mat_q4_K_f32(
|
||||
device const float * src1,
|
||||
device float * dst,
|
||||
constant int64_t & ne00,
|
||||
constant int64_t & ne01[[buffer(4)]],
|
||||
constant int64_t & ne02[[buffer(5)]],
|
||||
constant int64_t & ne10[[buffer(9)]],
|
||||
constant int64_t & ne12[[buffer(11)]],
|
||||
constant int64_t & ne0[[buffer(15)]],
|
||||
constant int64_t & ne1[[buffer(16)]],
|
||||
constant uint & gqa[[buffer(17)]],
|
||||
constant int64_t & ne01 [[buffer(4)]],
|
||||
constant int64_t & ne02 [[buffer(5)]],
|
||||
constant int64_t & ne10 [[buffer(9)]],
|
||||
constant int64_t & ne12 [[buffer(11)]],
|
||||
constant int64_t & ne0 [[buffer(15)]],
|
||||
constant int64_t & ne1 [[buffer(16)]],
|
||||
constant uint & gqa [[buffer(17)]],
|
||||
uint3 tgpig[[threadgroup_position_in_grid]],
|
||||
uint tiisg[[thread_index_in_simdgroup]],
|
||||
uint sgitg[[simdgroup_index_in_threadgroup]]) {
|
||||
@ -2012,7 +2085,6 @@ void dequantize_q4_K(device const block_q4_K *xb, short il, thread type4x4 & reg
|
||||
for (int i = 0; i < 16; ++i) {
|
||||
reg[i/4][i%4] = dl * (q[i] & mask) - ml;
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
template <typename type4x4>
|
||||
@ -2269,6 +2341,7 @@ typedef void (mat_mm_t)(
|
||||
constant uint & gqa,
|
||||
threadgroup uchar *, uint3, uint, uint);
|
||||
|
||||
template [[host_name("kernel_mul_mm_f32_f32")]] kernel mat_mm_t kernel_mul_mm<float4x4, 1, dequantize_f32>;
|
||||
template [[host_name("kernel_mul_mm_f16_f32")]] kernel mat_mm_t kernel_mul_mm<half4x4, 1, dequantize_f16>;
|
||||
template [[host_name("kernel_mul_mm_q4_0_f32")]] kernel mat_mm_t kernel_mul_mm<block_q4_0, 2, dequantize_q4_0>;
|
||||
template [[host_name("kernel_mul_mm_q4_1_f32")]] kernel mat_mm_t kernel_mul_mm<block_q4_1, 2, dequantize_q4_1>;
|
||||
|
88
ggml.c
88
ggml.c
@ -17294,10 +17294,18 @@ static thread_ret_t ggml_graph_compute_thread(void * data) {
|
||||
} else {
|
||||
// wait for other threads to finish
|
||||
const int last = node_n;
|
||||
do {
|
||||
//sched_yield();
|
||||
while (true) {
|
||||
// TODO: this sched_yield can have significant impact on the performance - either positive or negative
|
||||
// depending on the workload and the operating system.
|
||||
// since it is not clear what is the best approach, it should potentially become user-configurable
|
||||
// ref: https://github.com/ggerganov/ggml/issues/291
|
||||
#if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
|
||||
sched_yield();
|
||||
#endif
|
||||
|
||||
node_n = atomic_load(&state->shared->node_n);
|
||||
} while (node_n == last);
|
||||
if (node_n != last) break;
|
||||
};
|
||||
}
|
||||
|
||||
// check if we should stop
|
||||
@ -18348,7 +18356,7 @@ void ggml_graph_print(const struct ggml_cgraph * cgraph) {
|
||||
for (int i = 0; i < cgraph->n_leafs; i++) {
|
||||
struct ggml_tensor * node = cgraph->leafs[i];
|
||||
|
||||
GGML_PRINT(" - %3d: [ %5" PRId64 ", %5" PRId64 "] %8s\n",
|
||||
GGML_PRINT(" - %3d: [ %5" PRId64 ", %5" PRId64 "] %8s %16s\n",
|
||||
i,
|
||||
node->ne[0], node->ne[1],
|
||||
ggml_op_name(node->op),
|
||||
@ -20111,27 +20119,27 @@ const char * gguf_type_name(enum gguf_type type) {
|
||||
return GGUF_TYPE_NAME[type];
|
||||
}
|
||||
|
||||
int gguf_get_version(struct gguf_context * ctx) {
|
||||
int gguf_get_version(const struct gguf_context * ctx) {
|
||||
return ctx->header.version;
|
||||
}
|
||||
|
||||
size_t gguf_get_alignment(struct gguf_context * ctx) {
|
||||
size_t gguf_get_alignment(const struct gguf_context * ctx) {
|
||||
return ctx->alignment;
|
||||
}
|
||||
|
||||
size_t gguf_get_data_offset(struct gguf_context * ctx) {
|
||||
size_t gguf_get_data_offset(const struct gguf_context * ctx) {
|
||||
return ctx->offset;
|
||||
}
|
||||
|
||||
void * gguf_get_data(struct gguf_context * ctx) {
|
||||
void * gguf_get_data(const struct gguf_context * ctx) {
|
||||
return ctx->data;
|
||||
}
|
||||
|
||||
int gguf_get_n_kv(struct gguf_context * ctx) {
|
||||
int gguf_get_n_kv(const struct gguf_context * ctx) {
|
||||
return ctx->header.n_kv;
|
||||
}
|
||||
|
||||
int gguf_find_key(struct gguf_context * ctx, const char * key) {
|
||||
int gguf_find_key(const struct gguf_context * ctx, const char * key) {
|
||||
// return -1 if key not found
|
||||
int keyfound = -1;
|
||||
|
||||
@ -20147,85 +20155,85 @@ int gguf_find_key(struct gguf_context * ctx, const char * key) {
|
||||
return keyfound;
|
||||
}
|
||||
|
||||
const char * gguf_get_key(struct gguf_context * ctx, int i) {
|
||||
const char * gguf_get_key(const struct gguf_context * ctx, int i) {
|
||||
return ctx->kv[i].key.data;
|
||||
}
|
||||
|
||||
enum gguf_type gguf_get_kv_type(struct gguf_context * ctx, int i) {
|
||||
enum gguf_type gguf_get_kv_type(const struct gguf_context * ctx, int i) {
|
||||
return ctx->kv[i].type;
|
||||
}
|
||||
|
||||
enum gguf_type gguf_get_arr_type(struct gguf_context * ctx, int i) {
|
||||
enum gguf_type gguf_get_arr_type(const struct gguf_context * ctx, int i) {
|
||||
return ctx->kv[i].value.arr.type;
|
||||
}
|
||||
|
||||
const void * gguf_get_arr_data(struct gguf_context * ctx, int i) {
|
||||
const void * gguf_get_arr_data(const struct gguf_context * ctx, int i) {
|
||||
return ctx->kv[i].value.arr.data;
|
||||
}
|
||||
|
||||
const char * gguf_get_arr_str(struct gguf_context * ctx, int key_id, int i) {
|
||||
const char * gguf_get_arr_str(const struct gguf_context * ctx, int key_id, int i) {
|
||||
struct gguf_kv * kv = &ctx->kv[key_id];
|
||||
struct gguf_str * str = &((struct gguf_str *) kv->value.arr.data)[i];
|
||||
return str->data;
|
||||
}
|
||||
|
||||
int gguf_get_arr_n(struct gguf_context * ctx, int i) {
|
||||
int gguf_get_arr_n(const struct gguf_context * ctx, int i) {
|
||||
return ctx->kv[i].value.arr.n;
|
||||
}
|
||||
|
||||
uint8_t gguf_get_val_u8(struct gguf_context * ctx, int i) {
|
||||
uint8_t gguf_get_val_u8(const struct gguf_context * ctx, int i) {
|
||||
return ctx->kv[i].value.uint8;
|
||||
}
|
||||
|
||||
int8_t gguf_get_val_i8(struct gguf_context * ctx, int i) {
|
||||
int8_t gguf_get_val_i8(const struct gguf_context * ctx, int i) {
|
||||
return ctx->kv[i].value.int8;
|
||||
}
|
||||
|
||||
uint16_t gguf_get_val_u16(struct gguf_context * ctx, int i) {
|
||||
uint16_t gguf_get_val_u16(const struct gguf_context * ctx, int i) {
|
||||
return ctx->kv[i].value.uint16;
|
||||
}
|
||||
|
||||
int16_t gguf_get_val_i16(struct gguf_context * ctx, int i) {
|
||||
int16_t gguf_get_val_i16(const struct gguf_context * ctx, int i) {
|
||||
return ctx->kv[i].value.int16;
|
||||
}
|
||||
|
||||
uint32_t gguf_get_val_u32(struct gguf_context * ctx, int i) {
|
||||
uint32_t gguf_get_val_u32(const struct gguf_context * ctx, int i) {
|
||||
return ctx->kv[i].value.uint32;
|
||||
}
|
||||
|
||||
int32_t gguf_get_val_i32(struct gguf_context * ctx, int i) {
|
||||
int32_t gguf_get_val_i32(const struct gguf_context * ctx, int i) {
|
||||
return ctx->kv[i].value.int32;
|
||||
}
|
||||
|
||||
float gguf_get_val_f32(struct gguf_context * ctx, int i) {
|
||||
float gguf_get_val_f32(const struct gguf_context * ctx, int i) {
|
||||
return ctx->kv[i].value.float32;
|
||||
}
|
||||
|
||||
uint64_t gguf_get_val_u64(struct gguf_context * ctx, int i) {
|
||||
uint64_t gguf_get_val_u64(const struct gguf_context * ctx, int i) {
|
||||
return ctx->kv[i].value.uint64;
|
||||
}
|
||||
|
||||
int64_t gguf_get_val_i64(struct gguf_context * ctx, int i) {
|
||||
int64_t gguf_get_val_i64(const struct gguf_context * ctx, int i) {
|
||||
return ctx->kv[i].value.int64;
|
||||
}
|
||||
|
||||
double gguf_get_val_f64(struct gguf_context * ctx, int i) {
|
||||
double gguf_get_val_f64(const struct gguf_context * ctx, int i) {
|
||||
return ctx->kv[i].value.float64;
|
||||
}
|
||||
|
||||
bool gguf_get_val_bool(struct gguf_context * ctx, int i) {
|
||||
bool gguf_get_val_bool(const struct gguf_context * ctx, int i) {
|
||||
return ctx->kv[i].value.bool_;
|
||||
}
|
||||
|
||||
const char * gguf_get_val_str (struct gguf_context * ctx, int i) {
|
||||
const char * gguf_get_val_str (const struct gguf_context * ctx, int i) {
|
||||
return ctx->kv[i].value.str.data;
|
||||
}
|
||||
|
||||
int gguf_get_n_tensors(struct gguf_context * ctx) {
|
||||
int gguf_get_n_tensors(const struct gguf_context * ctx) {
|
||||
return ctx->header.n_tensors;
|
||||
}
|
||||
|
||||
int gguf_find_tensor(struct gguf_context * ctx, const char * name) {
|
||||
int gguf_find_tensor(const struct gguf_context * ctx, const char * name) {
|
||||
// return -1 if tensor not found
|
||||
int tensorfound = -1;
|
||||
|
||||
@ -20241,11 +20249,11 @@ int gguf_find_tensor(struct gguf_context * ctx, const char * name) {
|
||||
return tensorfound;
|
||||
}
|
||||
|
||||
size_t gguf_get_tensor_offset(struct gguf_context * ctx, int i) {
|
||||
size_t gguf_get_tensor_offset(const struct gguf_context * ctx, int i) {
|
||||
return ctx->infos[i].offset;
|
||||
}
|
||||
|
||||
char * gguf_get_tensor_name(struct gguf_context * ctx, int i) {
|
||||
char * gguf_get_tensor_name(const struct gguf_context * ctx, int i) {
|
||||
return ctx->infos[i].name.data;
|
||||
}
|
||||
|
||||
@ -20528,7 +20536,7 @@ static void gguf_bwrite_el(struct gguf_buf * buf, const void * val, size_t el_si
|
||||
buf->offset += el_size;
|
||||
}
|
||||
|
||||
static void gguf_write_to_buf(struct gguf_context * ctx, struct gguf_buf * buf, bool only_meta) {
|
||||
static void gguf_write_to_buf(const struct gguf_context * ctx, struct gguf_buf * buf, bool only_meta) {
|
||||
// write header
|
||||
gguf_bwrite_el(buf, &ctx->header.magic, sizeof(ctx->header.magic));
|
||||
gguf_bwrite_el(buf, &ctx->header.version, sizeof(ctx->header.version));
|
||||
@ -20643,7 +20651,7 @@ static void gguf_write_to_buf(struct gguf_context * ctx, struct gguf_buf * buf,
|
||||
}
|
||||
}
|
||||
|
||||
void gguf_write_to_file(struct gguf_context * ctx, const char * fname, bool only_meta) {
|
||||
void gguf_write_to_file(const struct gguf_context * ctx, const char * fname, bool only_meta) {
|
||||
FILE * file = fopen(fname, "wb");
|
||||
if (!file) {
|
||||
GGML_ASSERT(false && "failed to open file for writing");
|
||||
@ -20660,7 +20668,7 @@ void gguf_write_to_file(struct gguf_context * ctx, const char * fname, bool only
|
||||
fclose(file);
|
||||
}
|
||||
|
||||
size_t gguf_get_meta_size(struct gguf_context * ctx) {
|
||||
size_t gguf_get_meta_size(const struct gguf_context * ctx) {
|
||||
// no allocs - only compute size
|
||||
struct gguf_buf buf = gguf_buf_init(0);
|
||||
|
||||
@ -20669,7 +20677,7 @@ size_t gguf_get_meta_size(struct gguf_context * ctx) {
|
||||
return buf.offset;
|
||||
}
|
||||
|
||||
void gguf_get_meta_data(struct gguf_context * ctx, void * data) {
|
||||
void gguf_get_meta_data(const struct gguf_context * ctx, void * data) {
|
||||
struct gguf_buf buf = gguf_buf_init(16*1024);
|
||||
|
||||
gguf_write_to_buf(ctx, &buf, true);
|
||||
@ -20745,6 +20753,14 @@ int ggml_cpu_has_arm_fma(void) {
|
||||
#endif
|
||||
}
|
||||
|
||||
int ggml_cpu_has_metal(void) {
|
||||
#if defined(GGML_USE_METAL)
|
||||
return 1;
|
||||
#else
|
||||
return 0;
|
||||
#endif
|
||||
}
|
||||
|
||||
int ggml_cpu_has_f16c(void) {
|
||||
#if defined(__F16C__)
|
||||
return 1;
|
||||
|
74
ggml.h
74
ggml.h
@ -195,6 +195,14 @@
|
||||
# define GGML_DEPRECATED(func, hint) func
|
||||
#endif
|
||||
|
||||
#ifndef __GNUC__
|
||||
# define GGML_ATTRIBUTE_FORMAT(...)
|
||||
#elif defined(__MINGW32__)
|
||||
# define GGML_ATTRIBUTE_FORMAT(...) __attribute__((format(gnu_printf, __VA_ARGS__)))
|
||||
#else
|
||||
# define GGML_ATTRIBUTE_FORMAT(...) __attribute__((format(printf, __VA_ARGS__)))
|
||||
#endif
|
||||
|
||||
#include <stdint.h>
|
||||
#include <stddef.h>
|
||||
#include <stdbool.h>
|
||||
@ -270,7 +278,7 @@ extern "C" {
|
||||
|
||||
#if defined(__ARM_NEON) && defined(__CUDACC__)
|
||||
typedef half ggml_fp16_t;
|
||||
#elif defined(__ARM_NEON) && !defined(_MSC_VER)
|
||||
#elif defined(__ARM_NEON)
|
||||
typedef __fp16 ggml_fp16_t;
|
||||
#else
|
||||
typedef uint16_t ggml_fp16_t;
|
||||
@ -685,6 +693,7 @@ extern "C" {
|
||||
|
||||
GGML_API const char * ggml_get_name (const struct ggml_tensor * tensor);
|
||||
GGML_API struct ggml_tensor * ggml_set_name ( struct ggml_tensor * tensor, const char * name);
|
||||
GGML_ATTRIBUTE_FORMAT(2, 3)
|
||||
GGML_API struct ggml_tensor * ggml_format_name( struct ggml_tensor * tensor, const char * fmt, ...);
|
||||
|
||||
//
|
||||
@ -1866,39 +1875,39 @@ extern "C" {
|
||||
|
||||
GGML_API const char * gguf_type_name(enum gguf_type type);
|
||||
|
||||
GGML_API int gguf_get_version (struct gguf_context * ctx);
|
||||
GGML_API size_t gguf_get_alignment (struct gguf_context * ctx);
|
||||
GGML_API size_t gguf_get_data_offset(struct gguf_context * ctx);
|
||||
GGML_API void * gguf_get_data (struct gguf_context * ctx);
|
||||
GGML_API int gguf_get_version (const struct gguf_context * ctx);
|
||||
GGML_API size_t gguf_get_alignment (const struct gguf_context * ctx);
|
||||
GGML_API size_t gguf_get_data_offset(const struct gguf_context * ctx);
|
||||
GGML_API void * gguf_get_data (const struct gguf_context * ctx);
|
||||
|
||||
GGML_API int gguf_get_n_kv(struct gguf_context * ctx);
|
||||
GGML_API int gguf_find_key(struct gguf_context * ctx, const char * key);
|
||||
GGML_API const char * gguf_get_key (struct gguf_context * ctx, int i);
|
||||
GGML_API int gguf_get_n_kv(const struct gguf_context * ctx);
|
||||
GGML_API int gguf_find_key(const struct gguf_context * ctx, const char * key);
|
||||
GGML_API const char * gguf_get_key (const struct gguf_context * ctx, int i);
|
||||
|
||||
GGML_API enum gguf_type gguf_get_kv_type (struct gguf_context * ctx, int i);
|
||||
GGML_API enum gguf_type gguf_get_arr_type(struct gguf_context * ctx, int i);
|
||||
GGML_API enum gguf_type gguf_get_kv_type (const struct gguf_context * ctx, int i);
|
||||
GGML_API enum gguf_type gguf_get_arr_type(const struct gguf_context * ctx, int i);
|
||||
|
||||
// results are undefined if the wrong type is used for the key
|
||||
GGML_API uint8_t gguf_get_val_u8 (struct gguf_context * ctx, int i);
|
||||
GGML_API int8_t gguf_get_val_i8 (struct gguf_context * ctx, int i);
|
||||
GGML_API uint16_t gguf_get_val_u16 (struct gguf_context * ctx, int i);
|
||||
GGML_API int16_t gguf_get_val_i16 (struct gguf_context * ctx, int i);
|
||||
GGML_API uint32_t gguf_get_val_u32 (struct gguf_context * ctx, int i);
|
||||
GGML_API int32_t gguf_get_val_i32 (struct gguf_context * ctx, int i);
|
||||
GGML_API float gguf_get_val_f32 (struct gguf_context * ctx, int i);
|
||||
GGML_API uint64_t gguf_get_val_u64 (struct gguf_context * ctx, int i);
|
||||
GGML_API int64_t gguf_get_val_i64 (struct gguf_context * ctx, int i);
|
||||
GGML_API double gguf_get_val_f64 (struct gguf_context * ctx, int i);
|
||||
GGML_API bool gguf_get_val_bool(struct gguf_context * ctx, int i);
|
||||
GGML_API const char * gguf_get_val_str (struct gguf_context * ctx, int i);
|
||||
GGML_API int gguf_get_arr_n (struct gguf_context * ctx, int i);
|
||||
GGML_API const void * gguf_get_arr_data(struct gguf_context * ctx, int i);
|
||||
GGML_API const char * gguf_get_arr_str (struct gguf_context * ctx, int key_id, int i);
|
||||
GGML_API uint8_t gguf_get_val_u8 (const struct gguf_context * ctx, int i);
|
||||
GGML_API int8_t gguf_get_val_i8 (const struct gguf_context * ctx, int i);
|
||||
GGML_API uint16_t gguf_get_val_u16 (const struct gguf_context * ctx, int i);
|
||||
GGML_API int16_t gguf_get_val_i16 (const struct gguf_context * ctx, int i);
|
||||
GGML_API uint32_t gguf_get_val_u32 (const struct gguf_context * ctx, int i);
|
||||
GGML_API int32_t gguf_get_val_i32 (const struct gguf_context * ctx, int i);
|
||||
GGML_API float gguf_get_val_f32 (const struct gguf_context * ctx, int i);
|
||||
GGML_API uint64_t gguf_get_val_u64 (const struct gguf_context * ctx, int i);
|
||||
GGML_API int64_t gguf_get_val_i64 (const struct gguf_context * ctx, int i);
|
||||
GGML_API double gguf_get_val_f64 (const struct gguf_context * ctx, int i);
|
||||
GGML_API bool gguf_get_val_bool(const struct gguf_context * ctx, int i);
|
||||
GGML_API const char * gguf_get_val_str (const struct gguf_context * ctx, int i);
|
||||
GGML_API int gguf_get_arr_n (const struct gguf_context * ctx, int i);
|
||||
GGML_API const void * gguf_get_arr_data(const struct gguf_context * ctx, int i);
|
||||
GGML_API const char * gguf_get_arr_str (const struct gguf_context * ctx, int key_id, int i);
|
||||
|
||||
GGML_API int gguf_get_n_tensors (struct gguf_context * ctx);
|
||||
GGML_API int gguf_find_tensor (struct gguf_context * ctx, const char * name);
|
||||
GGML_API size_t gguf_get_tensor_offset(struct gguf_context * ctx, int i);
|
||||
GGML_API char * gguf_get_tensor_name (struct gguf_context * ctx, int i);
|
||||
GGML_API int gguf_get_n_tensors (const struct gguf_context * ctx);
|
||||
GGML_API int gguf_find_tensor (const struct gguf_context * ctx, const char * name);
|
||||
GGML_API size_t gguf_get_tensor_offset(const struct gguf_context * ctx, int i);
|
||||
GGML_API char * gguf_get_tensor_name (const struct gguf_context * ctx, int i);
|
||||
|
||||
// overrides existing values or adds a new one
|
||||
GGML_API void gguf_set_val_u8 (struct gguf_context * ctx, const char * key, uint8_t val);
|
||||
@ -1943,11 +1952,11 @@ extern "C" {
|
||||
//
|
||||
|
||||
// write the entire context to a binary file
|
||||
GGML_API void gguf_write_to_file(struct gguf_context * ctx, const char * fname, bool only_meta);
|
||||
GGML_API void gguf_write_to_file(const struct gguf_context * ctx, const char * fname, bool only_meta);
|
||||
|
||||
// get the size in bytes of the meta data (header, kv pairs, tensor info) including padding
|
||||
GGML_API size_t gguf_get_meta_size(struct gguf_context * ctx);
|
||||
GGML_API void gguf_get_meta_data(struct gguf_context * ctx, void * data);
|
||||
GGML_API size_t gguf_get_meta_size(const struct gguf_context * ctx);
|
||||
GGML_API void gguf_get_meta_data(const struct gguf_context * ctx, void * data);
|
||||
|
||||
//
|
||||
// system info
|
||||
@ -1961,6 +1970,7 @@ extern "C" {
|
||||
GGML_API int ggml_cpu_has_fma (void);
|
||||
GGML_API int ggml_cpu_has_neon (void);
|
||||
GGML_API int ggml_cpu_has_arm_fma (void);
|
||||
GGML_API int ggml_cpu_has_metal (void);
|
||||
GGML_API int ggml_cpu_has_f16c (void);
|
||||
GGML_API int ggml_cpu_has_fp16_va (void);
|
||||
GGML_API int ggml_cpu_has_wasm_simd (void);
|
||||
|
Loading…
Reference in New Issue
Block a user