diff --git a/convert_hf_to_gguf.py b/convert_hf_to_gguf.py index caa41aee5..27ac34b81 100755 --- a/convert_hf_to_gguf.py +++ b/convert_hf_to_gguf.py @@ -3,6 +3,7 @@ from __future__ import annotations +import ast import logging import argparse import contextlib @@ -298,9 +299,12 @@ class Model: gguf.MODEL_TENSOR.POS_EMBD, gguf.MODEL_TENSOR.TOKEN_TYPES, gguf.MODEL_TENSOR.SSM_CONV1D, + gguf.MODEL_TENSOR.TIME_MIX_FIRST, + gguf.MODEL_TENSOR.TIME_MIX_W1, + gguf.MODEL_TENSOR.TIME_MIX_W2, ) ) - or not name.endswith(".weight") + or not new_name.endswith(".weight") ): data_qtype = gguf.GGMLQuantizationType.F32 @@ -2716,6 +2720,84 @@ class StarCoder2Model(Model): model_arch = gguf.MODEL_ARCH.STARCODER2 +@Model.register("Rwkv6ForCausalLM") +class Rwkv6Model(Model): + model_arch = gguf.MODEL_ARCH.RWKV6 + + def set_vocab(self): + assert (self.dir_model / "rwkv_vocab_v20230424.txt").is_file() + vocab_size = self.hparams.get("vocab_size", 65536) + + tokens: list[bytes] = [''.encode("utf-8")] + toktypes: list[int] = [gguf.TokenType.CONTROL] + + with open(self.dir_model / "rwkv_vocab_v20230424.txt", "r", encoding="utf-8") as f: + lines = f.readlines() + for line in lines: + parts = line.split(' ') + assert len(parts) >= 3 + token, token_len = ast.literal_eval(' '.join(parts[1:-1])), int(parts[-1]) + token = token.encode("utf-8") if isinstance(token, str) else token + assert isinstance(token, bytes) + assert len(token) == token_len + token_text: str = repr(token)[2:-1] # "b'\xff'" -> "\xff" + tokens.append(token_text.encode("utf-8")) + toktypes.append(gguf.TokenType.NORMAL) + remainder = vocab_size - len(tokens) + assert remainder >= 0 + for i in range(len(tokens), vocab_size): + tokens.append(f"[PAD{i}]".encode("utf-8")) + toktypes.append(gguf.TokenType.UNUSED) + + self.gguf_writer.add_tokenizer_model("rwkv") + self.gguf_writer.add_token_list(tokens) + self.gguf_writer.add_token_types(toktypes) + + def set_gguf_parameters(self): + block_count = self.hparams["num_hidden_layers"] + head_size = self.hparams["head_size"] + hidden_size = self.hparams["hidden_size"] + layer_norm_eps = self.hparams["layer_norm_epsilon"] + rescale_every_n_layers = self.hparams["rescale_every"] + intermediate_size = self.hparams["intermediate_size"] if self.hparams["intermediate_size"] is not None else int((hidden_size * 3.5) // 32 * 32) + time_mix_extra_dim = 64 if hidden_size == 4096 else 32 + time_decay_extra_dim = 128 if hidden_size == 4096 else 64 + + # RWKV isn't context limited + self.gguf_writer.add_context_length(1048576) + self.gguf_writer.add_embedding_length(hidden_size) + self.gguf_writer.add_block_count(block_count) + self.gguf_writer.add_layer_norm_eps(layer_norm_eps) + self.gguf_writer.add_rescale_every_n_layers(rescale_every_n_layers) + self.gguf_writer.add_wkv_head_size(head_size) + self.gguf_writer.add_time_mix_extra_dim(time_mix_extra_dim) + self.gguf_writer.add_time_decay_extra_dim(time_decay_extra_dim) + self.gguf_writer.add_feed_forward_length(intermediate_size) + self.gguf_writer.add_file_type(self.ftype) + + # required by llama.cpp, unused + self.gguf_writer.add_head_count(0) + + def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]: + new_name = self.map_tensor_name(name) + + if not (new_name.endswith(".weight") or new_name.endswith(".bias")): + new_name += ".weight" + + if new_name.endswith("time_mix_w1.weight") or new_name.endswith("time_mix_decay_w1.weight") or new_name.endswith("time_mix_decay_w2.weight"): + data_torch = data_torch.transpose(0, 1) + + if new_name.endswith("time_mix_w2.weight"): + data_torch = data_torch.permute(0, 2, 1) + + rescale_every_n_layers = self.hparams["rescale_every"] + if rescale_every_n_layers > 0: + if new_name.endswith("time_mix_output.weight") or new_name.endswith("channel_mix_value.weight"): + data_torch = data_torch.div_(2 ** int(bid // rescale_every_n_layers)) + + yield (new_name, data_torch) + + @Model.register("MambaForCausalLM", "MambaLMHeadModel", "FalconMambaForCausalLM") class MambaModel(Model): model_arch = gguf.MODEL_ARCH.MAMBA diff --git a/ggml/include/ggml.h b/ggml/include/ggml.h index 5233a9995..3fb680360 100644 --- a/ggml/include/ggml.h +++ b/ggml/include/ggml.h @@ -514,6 +514,7 @@ extern "C" { GGML_OP_WIN_UNPART, GGML_OP_GET_REL_POS, GGML_OP_ADD_REL_POS, + GGML_OP_RWKV_WKV, GGML_OP_UNARY, @@ -548,6 +549,7 @@ extern "C" { GGML_UNARY_OP_SILU, GGML_UNARY_OP_HARDSWISH, GGML_UNARY_OP_HARDSIGMOID, + GGML_UNARY_OP_EXP, GGML_UNARY_OP_COUNT, }; @@ -1165,6 +1167,14 @@ extern "C" { struct ggml_context * ctx, struct ggml_tensor * a); + GGML_API struct ggml_tensor * ggml_exp( + struct ggml_context * ctx, + struct ggml_tensor * a); + + GGML_API struct ggml_tensor * ggml_exp_inplace( + struct ggml_context * ctx, + struct ggml_tensor * a); + // normalize along rows GGML_API struct ggml_tensor * ggml_norm( struct ggml_context * ctx, @@ -1913,6 +1923,15 @@ extern "C" { struct ggml_tensor * pw, struct ggml_tensor * ph); + GGML_API struct ggml_tensor * ggml_rwkv_wkv( + struct ggml_context * ctx, + struct ggml_tensor * k, + struct ggml_tensor * v, + struct ggml_tensor * r, + struct ggml_tensor * tf, + struct ggml_tensor * td, + struct ggml_tensor * state); + // custom operators typedef void (*ggml_unary_op_f32_t) (const int, float *, const float *); diff --git a/ggml/src/ggml.c b/ggml/src/ggml.c index dc6cdca0b..83140d757 100644 --- a/ggml/src/ggml.c +++ b/ggml/src/ggml.c @@ -2422,6 +2422,7 @@ inline static void ggml_vec_sigmoid_f32 (const int n, float * y, const float * x // TODO: optimize performance inline static void ggml_vec_hardswish_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = x[i] * fminf(1.0f, fmaxf(0.0f, (x[i] + 3.0f) / 6.0f)); } inline static void ggml_vec_hardsigmoid_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = fminf(1.0f, fmaxf(0.0f, (x[i] + 3.0f) / 6.0f)); } +inline static void ggml_vec_exp_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = expf(x[i]); } static const float GELU_COEF_A = 0.044715f; static const float GELU_QUICK_COEF = -1.702f; @@ -2932,6 +2933,7 @@ static const char * GGML_OP_NAME[GGML_OP_COUNT] = { "WIN_UNPART", "GET_REL_POS", "ADD_REL_POS", + "RWKV_WKV", "UNARY", @@ -2950,7 +2952,7 @@ static const char * GGML_OP_NAME[GGML_OP_COUNT] = { "CROSS_ENTROPY_LOSS_BACK", }; -static_assert(GGML_OP_COUNT == 78, "GGML_OP_COUNT != 78"); +static_assert(GGML_OP_COUNT == 79, "GGML_OP_COUNT != 79"); static const char * GGML_OP_SYMBOL[GGML_OP_COUNT] = { "none", @@ -3024,6 +3026,7 @@ static const char * GGML_OP_SYMBOL[GGML_OP_COUNT] = { "win_unpart(x)", "get_rel_pos(x)", "add_rel_pos(x)", + "rwkv_wkv(k, v, r, tf, td, s)", "unary(x)", @@ -3042,7 +3045,7 @@ static const char * GGML_OP_SYMBOL[GGML_OP_COUNT] = { "cross_entropy_loss_back(x,y)", }; -static_assert(GGML_OP_COUNT == 78, "GGML_OP_COUNT != 78"); +static_assert(GGML_OP_COUNT == 79, "GGML_OP_COUNT != 79"); static_assert(GGML_OP_POOL_COUNT == 2, "GGML_OP_POOL_COUNT != 2"); @@ -3061,9 +3064,10 @@ static const char * GGML_UNARY_OP_NAME[GGML_UNARY_OP_COUNT] = { "SILU", "HARDSWISH", "HARDSIGMOID", + "EXP", }; -static_assert(GGML_UNARY_OP_COUNT == 13, "GGML_UNARY_OP_COUNT != 13"); +static_assert(GGML_UNARY_OP_COUNT == 14, "GGML_UNARY_OP_COUNT != 14"); static_assert(sizeof(struct ggml_object)%GGML_MEM_ALIGN == 0, "ggml_object size must be a multiple of GGML_MEM_ALIGN"); @@ -5464,6 +5468,19 @@ struct ggml_tensor * ggml_hardsigmoid( return ggml_unary(ctx, a, GGML_UNARY_OP_HARDSIGMOID); } +// ggml exp +struct ggml_tensor * ggml_exp( + struct ggml_context * ctx, + struct ggml_tensor * a) { + return ggml_unary(ctx, a, GGML_UNARY_OP_EXP); +} + +struct ggml_tensor * ggml_exp_inplace( + struct ggml_context * ctx, + struct ggml_tensor * a) { + return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_EXP); +} + // ggml_norm static struct ggml_tensor * ggml_norm_impl( @@ -7727,6 +7744,59 @@ struct ggml_tensor * ggml_add_rel_pos_inplace( return ggml_add_rel_pos_impl(ctx, a, pw, ph, true); } +// ggml_rwkv_wkv + +struct ggml_tensor * ggml_rwkv_wkv( + struct ggml_context * ctx, + struct ggml_tensor * k, + struct ggml_tensor * v, + struct ggml_tensor * r, + struct ggml_tensor * tf, + struct ggml_tensor * td, + struct ggml_tensor * state) { + GGML_ASSERT(ggml_is_contiguous(k)); + GGML_ASSERT(ggml_is_contiguous(v)); + GGML_ASSERT(ggml_is_contiguous(r)); + GGML_ASSERT(ggml_is_contiguous(tf)); + GGML_ASSERT(ggml_is_contiguous(td)); + GGML_ASSERT(ggml_is_contiguous(state)); + + const int64_t S = k->ne[0]; + const int64_t H = k->ne[2]; + const int64_t n_tokens = k->ne[3]; + const int64_t n_seqs = state->ne[1]; + { + GGML_ASSERT(k->ne[1] == 1); + GGML_ASSERT(v->ne[0] == 1 && v->ne[1] == S && v->ne[2] == H && v->ne[3] == n_tokens); + GGML_ASSERT(r->ne[0] == 1 && r->ne[1] == S && r->ne[2] == H && r->ne[3] == n_tokens); + // TODO: RWKV v4 and v5 + GGML_ASSERT(td->ne[0] == 1 && td->ne[1] == S && td->ne[2] == H && td->ne[3] == n_tokens); + GGML_ASSERT(ggml_nelements(state) == S * S * H * n_seqs); + } + + bool is_node = false; + + if (k->grad || v->grad || r->grad || tf->grad || td->grad || state->grad) { + GGML_ABORT("fatal error"); // TODO: implement backward + is_node = true; + } + + // concat output and new_state + const int64_t ne[4] = { S * H, n_tokens + S * n_seqs, 1, 1 }; + struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne); + + result->op = GGML_OP_RWKV_WKV; + result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL; + result->src[0] = k; + result->src[1] = v; + result->src[2] = r; + result->src[3] = tf; + result->src[4] = td; + result->src[5] = state; + + return result; +} + // ggml_unary static struct ggml_tensor * ggml_unary_impl( @@ -12126,6 +12196,48 @@ static void ggml_compute_forward_hardsigmoid( } } +static void ggml_compute_forward_exp_f32( + const struct ggml_compute_params * params, + struct ggml_tensor * dst) { + + const struct ggml_tensor * src0 = dst->src[0]; + + if (params->ith != 0) { + return; + } + + assert(ggml_is_contiguous_1(src0)); + assert(ggml_is_contiguous_1(dst)); + assert(ggml_are_same_shape(src0, dst)); + + const int n = ggml_nrows(src0); + const int nc = src0->ne[0]; + + for (int i = 0; i < n; i++) { + ggml_vec_exp_f32(nc, + (float *) ((char *) dst->data + i*( dst->nb[1])), + (float *) ((char *) src0->data + i*(src0->nb[1]))); + } +} + +static void ggml_compute_forward_exp( + const struct ggml_compute_params * params, + struct ggml_tensor * dst) { + + const struct ggml_tensor * src0 = dst->src[0]; + + switch (src0->type) { + case GGML_TYPE_F32: + { + ggml_compute_forward_exp_f32(params, dst); + } break; + default: + { + GGML_ABORT("fatal error"); + } + } +} + // ggml_compute_forward_norm @@ -16704,6 +16816,10 @@ static void ggml_compute_forward_unary( { ggml_compute_forward_hardsigmoid(params, dst); } break; + case GGML_UNARY_OP_EXP: + { + ggml_compute_forward_exp(params, dst); + } break; default: { GGML_ABORT("fatal error"); @@ -16839,6 +16955,96 @@ static void ggml_compute_forward_add_rel_pos( } } +// ggml_compute_forward_rwkv_wkv + +static void ggml_compute_forward_rwkv_wkv_f32( + const struct ggml_compute_params * params, + struct ggml_tensor * dst) { + const size_t T = dst->src[1]->ne[3]; + const size_t C = dst->ne[0]; + const size_t H = dst->src[1]->ne[2]; + const size_t n_seqs = dst->src[5]->ne[1]; + + float * dst_data = (float *) dst->data; + float * state = ((float *) dst->data) + C * T; + + if (params->ith != 0) { + return; + } + + memset(dst_data, 0, T * C * sizeof(float)); + + float * k = (float *) dst->src[0]->data; + float * v = (float *) dst->src[1]->data; + float * r = (float *) dst->src[2]->data; + float * time_faaaa = (float *) dst->src[3]->data; + float * time_decay = (float *) dst->src[4]->data; + + size_t t_stride = H * (C / H); + + size_t h_stride = C / H; + size_t h_stride_2d = (C / H) * (C / H); + + // basically fused operations: + // dst = r @ (time_faaaa * (k @ v) + state), + // state = time_decay * state + (k @ v), + // recursive through each token + for (size_t t = 0; t < T; t++) { + size_t t_offset = t * t_stride; + size_t state_offset = (C / H) * C * (t / (T / n_seqs)); + float * state_cur = state + state_offset; + float * state_prev = t % (T / n_seqs) ? state_cur : (float*)dst->src[5]->data + state_offset; + + for (size_t h = 0; h < H; h++) { + size_t h_offset = h * h_stride; + size_t t_h_offset = t_offset + h_offset; + size_t h_2d_offset = h * h_stride_2d; + + for (size_t i = 0; i < C / H; i++) { + size_t t_h_i_offset = t_h_offset + i; + size_t h_i_offset = h_offset + i; + size_t h_2d_i_offset = h_2d_offset + i * h_stride; + + float k_val = k[t_h_i_offset]; + float r_val = r[t_h_i_offset]; + float time_faaaa_val = time_faaaa[h_i_offset]; + // RWKV v6: different time_decay for each token. + float time_decay_val = time_decay[t_h_i_offset]; + + for (size_t j = 0; j < C / H; j ++) { + size_t t_h_j_offset = t_h_offset + j; + size_t h_2d_i_j_offset = h_2d_i_offset + j; + + float v_val = v[t_h_j_offset]; + float kv_val = v_val * k_val; + float prev_state_val = state_prev[h_2d_i_j_offset]; + float temp_val = kv_val * time_faaaa_val + prev_state_val; + dst_data[t_h_j_offset] += temp_val * r_val; + state_cur[h_2d_i_j_offset] = prev_state_val * time_decay_val + kv_val; + } + } + } + } +} + +static void ggml_compute_forward_rwkv_wkv( + const struct ggml_compute_params * params, + struct ggml_tensor * dst) { + + const struct ggml_tensor * src0 = dst->src[0]; + + switch (src0->type) { + case GGML_TYPE_F32: + { + ggml_compute_forward_rwkv_wkv_f32(params, dst); + } break; + default: + { + GGML_ABORT("fatal error"); + } + } +} + // ggml_compute_forward_map_unary static void ggml_compute_forward_map_unary_f32( @@ -17490,6 +17696,10 @@ static void ggml_compute_forward(struct ggml_compute_params * params, struct ggm { ggml_compute_forward_add_rel_pos(params, tensor); } break; + case GGML_OP_RWKV_WKV: + { + ggml_compute_forward_rwkv_wkv(params, tensor); + } break; case GGML_OP_MAP_UNARY: { ggml_unary_op_f32_t fun; @@ -18607,12 +18817,22 @@ static void ggml_compute_backward(struct ggml_context * ctx, struct ggml_tensor zero_table); } } break; + case GGML_UNARY_OP_EXP: + { + if (src0->grad) { + src0->grad = ggml_add_or_set(ctx, + src0->grad, + ggml_mul(ctx, tensor, tensor->grad), + zero_table); + } + } break; default: GGML_ABORT("fatal error"); } } break; case GGML_OP_GET_REL_POS: case GGML_OP_ADD_REL_POS: + case GGML_OP_RWKV_WKV: case GGML_OP_MAP_UNARY: case GGML_OP_MAP_BINARY: case GGML_OP_MAP_CUSTOM1_F32: @@ -19036,6 +19256,7 @@ static int ggml_get_n_tasks(struct ggml_tensor * node, int n_threads) { case GGML_UNARY_OP_SIGMOID: case GGML_UNARY_OP_HARDSWISH: case GGML_UNARY_OP_HARDSIGMOID: + case GGML_UNARY_OP_EXP: { n_tasks = 1; } break; @@ -19127,6 +19348,7 @@ static int ggml_get_n_tasks(struct ggml_tensor * node, int n_threads) { case GGML_OP_WIN_PART: case GGML_OP_WIN_UNPART: case GGML_OP_GET_REL_POS: + case GGML_OP_RWKV_WKV: case GGML_OP_MAP_UNARY: case GGML_OP_MAP_BINARY: case GGML_OP_MAP_CUSTOM1_F32: diff --git a/gguf-py/gguf/constants.py b/gguf-py/gguf/constants.py index b55effa99..a48c4fb67 100644 --- a/gguf-py/gguf/constants.py +++ b/gguf-py/gguf/constants.py @@ -94,6 +94,9 @@ class Keys: DECODER_START_TOKEN_ID = "{arch}.decoder_start_token_id" ATTN_LOGIT_SOFTCAPPING = "{arch}.attn_logit_softcapping" FINAL_LOGIT_SOFTCAPPING = "{arch}.final_logit_softcapping" + RESCALE_EVERY_N_LAYERS = "{arch}.rescale_every_n_layers" + TIME_MIX_EXTRA_DIM = "{arch}.time_mix_extra_dim" + TIME_DECAY_EXTRA_DIM = "{arch}.time_decay_extra_dim" class Attention: HEAD_COUNT = "{arch}.attention.head_count" @@ -132,6 +135,9 @@ class Keys: TIME_STEP_RANK = "{arch}.ssm.time_step_rank" DT_B_C_RMS = "{arch}.ssm.dt_b_c_rms" + class WKV: + HEAD_SIZE = "{arch}.wkv.head_size" + class Tokenizer: MODEL = "tokenizer.ggml.model" PRE = "tokenizer.ggml.pre" @@ -207,6 +213,7 @@ class MODEL_ARCH(IntEnum): GEMMA = auto() GEMMA2 = auto() STARCODER2 = auto() + RWKV6 = auto() MAMBA = auto() XVERSE = auto() COMMAND_R = auto() @@ -270,6 +277,29 @@ class MODEL_TENSOR(IntEnum): SSM_A = auto() SSM_D = auto() SSM_OUT = auto() + TIME_MIX_W1 = auto() + TIME_MIX_W2 = auto() + TIME_MIX_LERP_X = auto() + TIME_MIX_LERP_K = auto() + TIME_MIX_LERP_V = auto() + TIME_MIX_LERP_R = auto() + TIME_MIX_LERP_G = auto() + TIME_MIX_LERP_W = auto() + TIME_MIX_FIRST = auto() + TIME_MIX_DECAY = auto() + TIME_MIX_DECAY_W1 = auto() + TIME_MIX_DECAY_W2 = auto() + TIME_MIX_KEY = auto() + TIME_MIX_VALUE = auto() + TIME_MIX_RECEPTANCE = auto() + TIME_MIX_GATE = auto() + TIME_MIX_LN = auto() + TIME_MIX_OUTPUT = auto() + CHANNEL_MIX_LERP_K = auto() + CHANNEL_MIX_LERP_R = auto() + CHANNEL_MIX_KEY = auto() + CHANNEL_MIX_RECEPTANCE = auto() + CHANNEL_MIX_VALUE = auto() ATTN_Q_A = auto() ATTN_Q_B = auto() ATTN_KV_A_MQA = auto() @@ -337,6 +367,7 @@ MODEL_ARCH_NAMES: dict[MODEL_ARCH, str] = { MODEL_ARCH.GEMMA: "gemma", MODEL_ARCH.GEMMA2: "gemma2", MODEL_ARCH.STARCODER2: "starcoder2", + MODEL_ARCH.RWKV6: "rwkv6", MODEL_ARCH.MAMBA: "mamba", MODEL_ARCH.XVERSE: "xverse", MODEL_ARCH.COMMAND_R: "command-r", @@ -355,87 +386,110 @@ MODEL_ARCH_NAMES: dict[MODEL_ARCH, str] = { } TENSOR_NAMES: dict[MODEL_TENSOR, str] = { - MODEL_TENSOR.TOKEN_EMBD: "token_embd", - MODEL_TENSOR.TOKEN_EMBD_NORM: "token_embd_norm", - MODEL_TENSOR.TOKEN_TYPES: "token_types", - MODEL_TENSOR.POS_EMBD: "position_embd", - MODEL_TENSOR.OUTPUT_NORM: "output_norm", - MODEL_TENSOR.OUTPUT: "output", - MODEL_TENSOR.ROPE_FREQS: "rope_freqs", - MODEL_TENSOR.ROPE_FACTORS_LONG: "rope_factors_long", - MODEL_TENSOR.ROPE_FACTORS_SHORT: "rope_factors_short", - MODEL_TENSOR.ATTN_NORM: "blk.{bid}.attn_norm", - MODEL_TENSOR.ATTN_NORM_2: "blk.{bid}.attn_norm_2", - MODEL_TENSOR.ATTN_QKV: "blk.{bid}.attn_qkv", - MODEL_TENSOR.ATTN_Q: "blk.{bid}.attn_q", - MODEL_TENSOR.ATTN_K: "blk.{bid}.attn_k", - MODEL_TENSOR.ATTN_V: "blk.{bid}.attn_v", - MODEL_TENSOR.ATTN_OUT: "blk.{bid}.attn_output", - MODEL_TENSOR.ATTN_ROT_EMBD: "blk.{bid}.attn_rot_embd", - MODEL_TENSOR.ATTN_Q_NORM: "blk.{bid}.attn_q_norm", - MODEL_TENSOR.ATTN_K_NORM: "blk.{bid}.attn_k_norm", - MODEL_TENSOR.ATTN_OUT_NORM: "blk.{bid}.attn_output_norm", - MODEL_TENSOR.ATTN_POST_NORM: "blk.{bid}.post_attention_norm", - MODEL_TENSOR.FFN_GATE_INP: "blk.{bid}.ffn_gate_inp", - MODEL_TENSOR.FFN_GATE_INP_SHEXP: "blk.{bid}.ffn_gate_inp_shexp", - MODEL_TENSOR.FFN_NORM: "blk.{bid}.ffn_norm", - MODEL_TENSOR.FFN_PRE_NORM: "blk.{bid}.ffn_norm", - MODEL_TENSOR.FFN_POST_NORM: "blk.{bid}.post_ffw_norm", - MODEL_TENSOR.FFN_GATE: "blk.{bid}.ffn_gate", - MODEL_TENSOR.FFN_DOWN: "blk.{bid}.ffn_down", - MODEL_TENSOR.FFN_UP: "blk.{bid}.ffn_up", - MODEL_TENSOR.FFN_GATE_SHEXP: "blk.{bid}.ffn_gate_shexp", - MODEL_TENSOR.FFN_DOWN_SHEXP: "blk.{bid}.ffn_down_shexp", - MODEL_TENSOR.FFN_UP_SHEXP: "blk.{bid}.ffn_up_shexp", - MODEL_TENSOR.FFN_ACT: "blk.{bid}.ffn", - MODEL_TENSOR.FFN_NORM_EXP: "blk.{bid}.ffn_norm_exps", - MODEL_TENSOR.FFN_GATE_EXP: "blk.{bid}.ffn_gate_exps", - MODEL_TENSOR.FFN_DOWN_EXP: "blk.{bid}.ffn_down_exps", - MODEL_TENSOR.FFN_UP_EXP: "blk.{bid}.ffn_up_exps", - MODEL_TENSOR.LAYER_OUT_NORM: "blk.{bid}.layer_output_norm", - MODEL_TENSOR.SSM_IN: "blk.{bid}.ssm_in", - MODEL_TENSOR.SSM_CONV1D: "blk.{bid}.ssm_conv1d", - MODEL_TENSOR.SSM_X: "blk.{bid}.ssm_x", - MODEL_TENSOR.SSM_DT: "blk.{bid}.ssm_dt", - MODEL_TENSOR.SSM_A: "blk.{bid}.ssm_a", - MODEL_TENSOR.SSM_D: "blk.{bid}.ssm_d", - MODEL_TENSOR.SSM_OUT: "blk.{bid}.ssm_out", - MODEL_TENSOR.ATTN_Q_A: "blk.{bid}.attn_q_a", - MODEL_TENSOR.ATTN_Q_B: "blk.{bid}.attn_q_b", - MODEL_TENSOR.ATTN_KV_A_MQA: "blk.{bid}.attn_kv_a_mqa", - MODEL_TENSOR.ATTN_KV_B: "blk.{bid}.attn_kv_b", - MODEL_TENSOR.ATTN_Q_A_NORM: "blk.{bid}.attn_q_a_norm", - MODEL_TENSOR.ATTN_KV_A_NORM: "blk.{bid}.attn_kv_a_norm", - MODEL_TENSOR.ATTN_SUB_NORM: "blk.{bid}.attn_sub_norm", - MODEL_TENSOR.FFN_SUB_NORM: "blk.{bid}.ffn_sub_norm", - MODEL_TENSOR.DEC_ATTN_NORM: "dec.blk.{bid}.attn_norm", - MODEL_TENSOR.DEC_ATTN_Q: "dec.blk.{bid}.attn_q", - MODEL_TENSOR.DEC_ATTN_K: "dec.blk.{bid}.attn_k", - MODEL_TENSOR.DEC_ATTN_V: "dec.blk.{bid}.attn_v", - MODEL_TENSOR.DEC_ATTN_OUT: "dec.blk.{bid}.attn_o", - MODEL_TENSOR.DEC_ATTN_REL_B: "dec.blk.{bid}.attn_rel_b", - MODEL_TENSOR.DEC_CROSS_ATTN_NORM: "dec.blk.{bid}.cross_attn_norm", - MODEL_TENSOR.DEC_CROSS_ATTN_Q: "dec.blk.{bid}.cross_attn_q", - MODEL_TENSOR.DEC_CROSS_ATTN_K: "dec.blk.{bid}.cross_attn_k", - MODEL_TENSOR.DEC_CROSS_ATTN_V: "dec.blk.{bid}.cross_attn_v", - MODEL_TENSOR.DEC_CROSS_ATTN_OUT: "dec.blk.{bid}.cross_attn_o", - MODEL_TENSOR.DEC_CROSS_ATTN_REL_B: "dec.blk.{bid}.cross_attn_rel_b", - MODEL_TENSOR.DEC_FFN_NORM: "dec.blk.{bid}.ffn_norm", - MODEL_TENSOR.DEC_FFN_GATE: "dec.blk.{bid}.ffn_gate", - MODEL_TENSOR.DEC_FFN_DOWN: "dec.blk.{bid}.ffn_down", - MODEL_TENSOR.DEC_FFN_UP: "dec.blk.{bid}.ffn_up", - MODEL_TENSOR.DEC_OUTPUT_NORM: "dec.output_norm", - MODEL_TENSOR.ENC_ATTN_NORM: "enc.blk.{bid}.attn_norm", - MODEL_TENSOR.ENC_ATTN_Q: "enc.blk.{bid}.attn_q", - MODEL_TENSOR.ENC_ATTN_K: "enc.blk.{bid}.attn_k", - MODEL_TENSOR.ENC_ATTN_V: "enc.blk.{bid}.attn_v", - MODEL_TENSOR.ENC_ATTN_OUT: "enc.blk.{bid}.attn_o", - MODEL_TENSOR.ENC_ATTN_REL_B: "enc.blk.{bid}.attn_rel_b", - MODEL_TENSOR.ENC_FFN_NORM: "enc.blk.{bid}.ffn_norm", - MODEL_TENSOR.ENC_FFN_GATE: "enc.blk.{bid}.ffn_gate", - MODEL_TENSOR.ENC_FFN_DOWN: "enc.blk.{bid}.ffn_down", - MODEL_TENSOR.ENC_FFN_UP: "enc.blk.{bid}.ffn_up", - MODEL_TENSOR.ENC_OUTPUT_NORM: "enc.output_norm", + MODEL_TENSOR.TOKEN_EMBD: "token_embd", + MODEL_TENSOR.TOKEN_EMBD_NORM: "token_embd_norm", + MODEL_TENSOR.TOKEN_TYPES: "token_types", + MODEL_TENSOR.POS_EMBD: "position_embd", + MODEL_TENSOR.OUTPUT_NORM: "output_norm", + MODEL_TENSOR.OUTPUT: "output", + MODEL_TENSOR.ROPE_FREQS: "rope_freqs", + MODEL_TENSOR.ROPE_FACTORS_LONG: "rope_factors_long", + MODEL_TENSOR.ROPE_FACTORS_SHORT: "rope_factors_short", + MODEL_TENSOR.ATTN_NORM: "blk.{bid}.attn_norm", + MODEL_TENSOR.ATTN_NORM_2: "blk.{bid}.attn_norm_2", + MODEL_TENSOR.ATTN_QKV: "blk.{bid}.attn_qkv", + MODEL_TENSOR.ATTN_Q: "blk.{bid}.attn_q", + MODEL_TENSOR.ATTN_K: "blk.{bid}.attn_k", + MODEL_TENSOR.ATTN_V: "blk.{bid}.attn_v", + MODEL_TENSOR.ATTN_OUT: "blk.{bid}.attn_output", + MODEL_TENSOR.ATTN_ROT_EMBD: "blk.{bid}.attn_rot_embd", + MODEL_TENSOR.ATTN_Q_NORM: "blk.{bid}.attn_q_norm", + MODEL_TENSOR.ATTN_K_NORM: "blk.{bid}.attn_k_norm", + MODEL_TENSOR.ATTN_OUT_NORM: "blk.{bid}.attn_output_norm", + MODEL_TENSOR.ATTN_POST_NORM: "blk.{bid}.post_attention_norm", + MODEL_TENSOR.FFN_GATE_INP: "blk.{bid}.ffn_gate_inp", + MODEL_TENSOR.FFN_GATE_INP_SHEXP: "blk.{bid}.ffn_gate_inp_shexp", + MODEL_TENSOR.FFN_NORM: "blk.{bid}.ffn_norm", + MODEL_TENSOR.FFN_PRE_NORM: "blk.{bid}.ffn_norm", + MODEL_TENSOR.FFN_POST_NORM: "blk.{bid}.post_ffw_norm", + MODEL_TENSOR.FFN_GATE: "blk.{bid}.ffn_gate", + MODEL_TENSOR.FFN_DOWN: "blk.{bid}.ffn_down", + MODEL_TENSOR.FFN_UP: "blk.{bid}.ffn_up", + MODEL_TENSOR.FFN_GATE_SHEXP: "blk.{bid}.ffn_gate_shexp", + MODEL_TENSOR.FFN_DOWN_SHEXP: "blk.{bid}.ffn_down_shexp", + MODEL_TENSOR.FFN_UP_SHEXP: "blk.{bid}.ffn_up_shexp", + MODEL_TENSOR.FFN_ACT: "blk.{bid}.ffn", + MODEL_TENSOR.FFN_NORM_EXP: "blk.{bid}.ffn_norm_exps", + MODEL_TENSOR.FFN_GATE_EXP: "blk.{bid}.ffn_gate_exps", + MODEL_TENSOR.FFN_DOWN_EXP: "blk.{bid}.ffn_down_exps", + MODEL_TENSOR.FFN_UP_EXP: "blk.{bid}.ffn_up_exps", + MODEL_TENSOR.LAYER_OUT_NORM: "blk.{bid}.layer_output_norm", + MODEL_TENSOR.SSM_IN: "blk.{bid}.ssm_in", + MODEL_TENSOR.SSM_CONV1D: "blk.{bid}.ssm_conv1d", + MODEL_TENSOR.SSM_X: "blk.{bid}.ssm_x", + MODEL_TENSOR.SSM_DT: "blk.{bid}.ssm_dt", + MODEL_TENSOR.SSM_A: "blk.{bid}.ssm_a", + MODEL_TENSOR.SSM_D: "blk.{bid}.ssm_d", + MODEL_TENSOR.SSM_OUT: "blk.{bid}.ssm_out", + MODEL_TENSOR.TIME_MIX_W1: "blk.{bid}.time_mix_w1", + MODEL_TENSOR.TIME_MIX_W2: "blk.{bid}.time_mix_w2", + MODEL_TENSOR.TIME_MIX_LERP_X: "blk.{bid}.time_mix_lerp_x", + MODEL_TENSOR.TIME_MIX_LERP_K: "blk.{bid}.time_mix_lerp_k", + MODEL_TENSOR.TIME_MIX_LERP_V: "blk.{bid}.time_mix_lerp_v", + MODEL_TENSOR.TIME_MIX_LERP_R: "blk.{bid}.time_mix_lerp_r", + MODEL_TENSOR.TIME_MIX_LERP_G: "blk.{bid}.time_mix_lerp_g", + MODEL_TENSOR.TIME_MIX_LERP_W: "blk.{bid}.time_mix_lerp_w", + MODEL_TENSOR.TIME_MIX_FIRST: "blk.{bid}.time_mix_first", + MODEL_TENSOR.TIME_MIX_DECAY: "blk.{bid}.time_mix_decay", + MODEL_TENSOR.TIME_MIX_DECAY_W1: "blk.{bid}.time_mix_decay_w1", + MODEL_TENSOR.TIME_MIX_DECAY_W2: "blk.{bid}.time_mix_decay_w2", + MODEL_TENSOR.TIME_MIX_KEY: "blk.{bid}.time_mix_key", + MODEL_TENSOR.TIME_MIX_VALUE: "blk.{bid}.time_mix_value", + MODEL_TENSOR.TIME_MIX_RECEPTANCE: "blk.{bid}.time_mix_receptance", + MODEL_TENSOR.TIME_MIX_GATE: "blk.{bid}.time_mix_gate", + MODEL_TENSOR.TIME_MIX_LN: "blk.{bid}.time_mix_ln", + MODEL_TENSOR.TIME_MIX_OUTPUT: "blk.{bid}.time_mix_output", + MODEL_TENSOR.CHANNEL_MIX_LERP_K: "blk.{bid}.channel_mix_lerp_k", + MODEL_TENSOR.CHANNEL_MIX_LERP_R: "blk.{bid}.channel_mix_lerp_r", + MODEL_TENSOR.CHANNEL_MIX_KEY: "blk.{bid}.channel_mix_key", + MODEL_TENSOR.CHANNEL_MIX_RECEPTANCE: "blk.{bid}.channel_mix_receptance", + MODEL_TENSOR.CHANNEL_MIX_VALUE: "blk.{bid}.channel_mix_value", + MODEL_TENSOR.ATTN_Q_A: "blk.{bid}.attn_q_a", + MODEL_TENSOR.ATTN_Q_B: "blk.{bid}.attn_q_b", + MODEL_TENSOR.ATTN_KV_A_MQA: "blk.{bid}.attn_kv_a_mqa", + MODEL_TENSOR.ATTN_KV_B: "blk.{bid}.attn_kv_b", + MODEL_TENSOR.ATTN_Q_A_NORM: "blk.{bid}.attn_q_a_norm", + MODEL_TENSOR.ATTN_KV_A_NORM: "blk.{bid}.attn_kv_a_norm", + MODEL_TENSOR.ATTN_SUB_NORM: "blk.{bid}.attn_sub_norm", + MODEL_TENSOR.FFN_SUB_NORM: "blk.{bid}.ffn_sub_norm", + MODEL_TENSOR.DEC_ATTN_NORM: "dec.blk.{bid}.attn_norm", + MODEL_TENSOR.DEC_ATTN_Q: "dec.blk.{bid}.attn_q", + MODEL_TENSOR.DEC_ATTN_K: "dec.blk.{bid}.attn_k", + MODEL_TENSOR.DEC_ATTN_V: "dec.blk.{bid}.attn_v", + MODEL_TENSOR.DEC_ATTN_OUT: "dec.blk.{bid}.attn_o", + MODEL_TENSOR.DEC_ATTN_REL_B: "dec.blk.{bid}.attn_rel_b", + MODEL_TENSOR.DEC_CROSS_ATTN_NORM: "dec.blk.{bid}.cross_attn_norm", + MODEL_TENSOR.DEC_CROSS_ATTN_Q: "dec.blk.{bid}.cross_attn_q", + MODEL_TENSOR.DEC_CROSS_ATTN_K: "dec.blk.{bid}.cross_attn_k", + MODEL_TENSOR.DEC_CROSS_ATTN_V: "dec.blk.{bid}.cross_attn_v", + MODEL_TENSOR.DEC_CROSS_ATTN_OUT: "dec.blk.{bid}.cross_attn_o", + MODEL_TENSOR.DEC_CROSS_ATTN_REL_B: "dec.blk.{bid}.cross_attn_rel_b", + MODEL_TENSOR.DEC_FFN_NORM: "dec.blk.{bid}.ffn_norm", + MODEL_TENSOR.DEC_FFN_GATE: "dec.blk.{bid}.ffn_gate", + MODEL_TENSOR.DEC_FFN_DOWN: "dec.blk.{bid}.ffn_down", + MODEL_TENSOR.DEC_FFN_UP: "dec.blk.{bid}.ffn_up", + MODEL_TENSOR.DEC_OUTPUT_NORM: "dec.output_norm", + MODEL_TENSOR.ENC_ATTN_NORM: "enc.blk.{bid}.attn_norm", + MODEL_TENSOR.ENC_ATTN_Q: "enc.blk.{bid}.attn_q", + MODEL_TENSOR.ENC_ATTN_K: "enc.blk.{bid}.attn_k", + MODEL_TENSOR.ENC_ATTN_V: "enc.blk.{bid}.attn_v", + MODEL_TENSOR.ENC_ATTN_OUT: "enc.blk.{bid}.attn_o", + MODEL_TENSOR.ENC_ATTN_REL_B: "enc.blk.{bid}.attn_rel_b", + MODEL_TENSOR.ENC_FFN_NORM: "enc.blk.{bid}.ffn_norm", + MODEL_TENSOR.ENC_FFN_GATE: "enc.blk.{bid}.ffn_gate", + MODEL_TENSOR.ENC_FFN_DOWN: "enc.blk.{bid}.ffn_down", + MODEL_TENSOR.ENC_FFN_UP: "enc.blk.{bid}.ffn_up", + MODEL_TENSOR.ENC_OUTPUT_NORM: "enc.output_norm", } MODEL_TENSORS: dict[MODEL_ARCH, list[MODEL_TENSOR]] = { @@ -856,6 +910,37 @@ MODEL_TENSORS: dict[MODEL_ARCH, list[MODEL_TENSOR]] = { MODEL_TENSOR.FFN_DOWN, MODEL_TENSOR.FFN_UP, ], + MODEL_ARCH.RWKV6: [ + MODEL_TENSOR.TOKEN_EMBD, + MODEL_TENSOR.TOKEN_EMBD_NORM, + MODEL_TENSOR.OUTPUT_NORM, + MODEL_TENSOR.OUTPUT, + MODEL_TENSOR.ATTN_NORM, + MODEL_TENSOR.ATTN_NORM_2, + MODEL_TENSOR.TIME_MIX_W1, + MODEL_TENSOR.TIME_MIX_W2, + MODEL_TENSOR.TIME_MIX_LERP_X, + MODEL_TENSOR.TIME_MIX_LERP_K, + MODEL_TENSOR.TIME_MIX_LERP_V, + MODEL_TENSOR.TIME_MIX_LERP_R, + MODEL_TENSOR.TIME_MIX_LERP_G, + MODEL_TENSOR.TIME_MIX_LERP_W, + MODEL_TENSOR.TIME_MIX_FIRST, + MODEL_TENSOR.TIME_MIX_DECAY, + MODEL_TENSOR.TIME_MIX_DECAY_W1, + MODEL_TENSOR.TIME_MIX_DECAY_W2, + MODEL_TENSOR.TIME_MIX_KEY, + MODEL_TENSOR.TIME_MIX_VALUE, + MODEL_TENSOR.TIME_MIX_RECEPTANCE, + MODEL_TENSOR.TIME_MIX_GATE, + MODEL_TENSOR.TIME_MIX_LN, + MODEL_TENSOR.TIME_MIX_OUTPUT, + MODEL_TENSOR.CHANNEL_MIX_LERP_K, + MODEL_TENSOR.CHANNEL_MIX_LERP_R, + MODEL_TENSOR.CHANNEL_MIX_KEY, + MODEL_TENSOR.CHANNEL_MIX_RECEPTANCE, + MODEL_TENSOR.CHANNEL_MIX_VALUE, + ], MODEL_ARCH.MAMBA: [ MODEL_TENSOR.TOKEN_EMBD, MODEL_TENSOR.OUTPUT_NORM, diff --git a/gguf-py/gguf/gguf_writer.py b/gguf-py/gguf/gguf_writer.py index af3b98c67..3c95c2673 100644 --- a/gguf-py/gguf/gguf_writer.py +++ b/gguf-py/gguf/gguf_writer.py @@ -670,6 +670,18 @@ class GGUFWriter: def add_expert_weights_scale(self, value: float) -> None: self.add_float32(Keys.LLM.EXPERT_WEIGHTS_SCALE.format(arch=self.arch), value) + def add_rescale_every_n_layers(self, count: int) -> None: + self.add_uint32(Keys.LLM.RESCALE_EVERY_N_LAYERS.format(arch=self.arch), count) + + def add_time_mix_extra_dim(self, dim: int) -> None: + self.add_uint32(Keys.LLM.TIME_MIX_EXTRA_DIM.format(arch=self.arch), dim) + + def add_time_decay_extra_dim(self, dim: int) -> None: + self.add_uint32(Keys.LLM.TIME_DECAY_EXTRA_DIM.format(arch=self.arch), dim) + + def add_wkv_head_size(self, size: int) -> None: + self.add_uint32(Keys.WKV.HEAD_SIZE.format(arch=self.arch), size) + def add_layer_norm_eps(self, value: float) -> None: self.add_float32(Keys.Attention.LAYERNORM_EPS.format(arch=self.arch), value) diff --git a/gguf-py/gguf/tensor_mapping.py b/gguf-py/gguf/tensor_mapping.py index a4f185c06..bc9a13ee5 100644 --- a/gguf-py/gguf/tensor_mapping.py +++ b/gguf-py/gguf/tensor_mapping.py @@ -27,6 +27,7 @@ class TensorNameMap: "embedding.word_embeddings", # chatglm "transformer.token_embeddings", # openelm "shared", # t5 + "rwkv.embeddings", # rwkv ), # Token type embeddings @@ -40,6 +41,7 @@ class TensorNameMap: "embeddings.LayerNorm", # bert "emb_ln", # nomic-bert "transformer.norm", # openelm + "rwkv.blocks.0.pre_ln", # rwkv ), # Position embeddings @@ -57,6 +59,7 @@ class TensorNameMap: "word_embeddings_for_head", # persimmon "lm_head.linear", # phi2 "output_layer", # chatglm + "head", # rwkv ), # Output norm @@ -76,6 +79,7 @@ class TensorNameMap: "encoder.final_layernorm", # chatglm "transformer.norm", # openelm "model.norm", # nemotron + "rwkv.ln_out", # rwkv ), # Rope frequencies @@ -108,12 +112,14 @@ class TensorNameMap: "transformer.blocks.{bid}.norm_attn_norm.norm_1", # dbrx "encoder.layers.{bid}.input_layernorm", # chatglm "transformer.layers.{bid}.attn_norm", # openelm + "rwkv.blocks.{bid}.ln1", # rwkv ), # Attention norm 2 MODEL_TENSOR.ATTN_NORM_2: ( - "transformer.h.{bid}.ln_attn", # falcon40b + "transformer.h.{bid}.ln_attn", # falcon40b "encoder.layer.{bid}.layer_norm_1", # jina-v2-code + "rwkv.blocks.{bid}.ln2", # rwkv ), # Attention query-key-value @@ -434,6 +440,98 @@ class TensorNameMap: "backbone.layers.{bid}.mixer.out_proj", ), + MODEL_TENSOR.TIME_MIX_W1: ( + "rwkv.blocks.{bid}.attention.time_maa_w1", # rwkv v6 + ), + + MODEL_TENSOR.TIME_MIX_W2: ( + "rwkv.blocks.{bid}.attention.time_maa_w2", # rwkv v6 + ), + + MODEL_TENSOR.TIME_MIX_LERP_X: ( + "rwkv.blocks.{bid}.attention.time_maa_x", # rwkv v6 + ), + + MODEL_TENSOR.TIME_MIX_LERP_K: ( + "rwkv.blocks.{bid}.attention.time_maa_k", # rwkv v6 + ), + + MODEL_TENSOR.TIME_MIX_LERP_V: ( + "rwkv.blocks.{bid}.attention.time_maa_v", # rwkv v6 + ), + + MODEL_TENSOR.TIME_MIX_LERP_R: ( + "rwkv.blocks.{bid}.attention.time_maa_r", # rwkv v6 + ), + + MODEL_TENSOR.TIME_MIX_LERP_G: ( + "rwkv.blocks.{bid}.attention.time_maa_g", # rwkv v6 + ), + + MODEL_TENSOR.TIME_MIX_LERP_W: ( + "rwkv.blocks.{bid}.attention.time_maa_w", # rwkv v6 + ), + + MODEL_TENSOR.TIME_MIX_FIRST: ( + "rwkv.blocks.{bid}.attention.time_faaaa", # rwkv v6 + ), + + MODEL_TENSOR.TIME_MIX_DECAY: ( + "rwkv.blocks.{bid}.attention.time_decay", # rwkv v6 + ), + + MODEL_TENSOR.TIME_MIX_DECAY_W1: ( + "rwkv.blocks.{bid}.attention.time_decay_w1", # rwkv v6 + ), + + MODEL_TENSOR.TIME_MIX_DECAY_W2: ( + "rwkv.blocks.{bid}.attention.time_decay_w2", # rwkv v6 + ), + + MODEL_TENSOR.TIME_MIX_KEY: ( + "rwkv.blocks.{bid}.attention.key", # rwkv + ), + + MODEL_TENSOR.TIME_MIX_VALUE: ( + "rwkv.blocks.{bid}.attention.value", # rwkv + ), + + MODEL_TENSOR.TIME_MIX_RECEPTANCE: ( + "rwkv.blocks.{bid}.attention.receptance", # rwkv + ), + + MODEL_TENSOR.TIME_MIX_GATE: ( + "rwkv.blocks.{bid}.attention.gate", # rwkv + ), + + MODEL_TENSOR.TIME_MIX_LN: ( + "rwkv.blocks.{bid}.attention.ln_x", # rwkv + ), + + MODEL_TENSOR.TIME_MIX_OUTPUT: ( + "rwkv.blocks.{bid}.attention.output", # rwkv + ), + + MODEL_TENSOR.CHANNEL_MIX_LERP_K: ( + "rwkv.blocks.{bid}.feed_forward.time_maa_k", # rwkv v6 + ), + + MODEL_TENSOR.CHANNEL_MIX_LERP_R: ( + "rwkv.blocks.{bid}.feed_forward.time_maa_r", # rwkv v6 + ), + + MODEL_TENSOR.CHANNEL_MIX_KEY: ( + "rwkv.blocks.{bid}.feed_forward.key", # rwkv + ), + + MODEL_TENSOR.CHANNEL_MIX_RECEPTANCE: ( + "rwkv.blocks.{bid}.feed_forward.receptance", # rwkv + ), + + MODEL_TENSOR.CHANNEL_MIX_VALUE: ( + "rwkv.blocks.{bid}.feed_forward.value", # rwkv + ), + MODEL_TENSOR.ATTN_Q_A: ( "model.layers.{bid}.self_attn.q_a_proj", # deepseek2 ), diff --git a/include/llama.h b/include/llama.h index f2e701602..bfc37e88b 100644 --- a/include/llama.h +++ b/include/llama.h @@ -66,6 +66,7 @@ extern "C" { LLAMA_VOCAB_TYPE_BPE = 2, // GPT-2 tokenizer based on byte-level BPE LLAMA_VOCAB_TYPE_WPM = 3, // BERT tokenizer based on WordPiece LLAMA_VOCAB_TYPE_UGM = 4, // T5 tokenizer based on Unigram + LLAMA_VOCAB_TYPE_RWKV = 5, // RWKV tokenizer based on greedy tokenization }; // pre-tokenization types diff --git a/src/llama-vocab.cpp b/src/llama-vocab.cpp index dc4138cbc..2c007477e 100644 --- a/src/llama-vocab.cpp +++ b/src/llama-vocab.cpp @@ -58,17 +58,17 @@ struct naive_trie { auto res = children.find(c); if (res != children.end()) { return res->second.get_longest_prefix(key, len, offset + 1); - } else { - return std::make_pair(key, offset); } + + return std::make_pair(key, offset); } - struct naive_trie * traverse(const char c) { + const struct naive_trie * traverse(const char c) const { auto res = children.find(c); if (res != children.end()) { return &res->second; - } else { - return NULL; } + + return NULL; } std::map children; bool has_value; @@ -843,7 +843,7 @@ struct llm_tokenizer_ugm { // traverse the token matcher trie to find a matching token bool single_codepoint_token_found = false; const struct best_tokenization & current_best = tokenization_results[input_offset]; - struct naive_trie * node = token_matcher.traverse(normalized[prefix_offset++]); + const struct naive_trie * node = token_matcher.traverse(normalized[prefix_offset++]); while (prefix_offset <= input_len && node != NULL) { // check if we found valid token in prefix @@ -1097,6 +1097,111 @@ private: struct naive_trie token_matcher; }; +// +// RWKV tokenizer +// + +static std::vector llama_unescape_rwkv_token(const std::string & escaped) { + std::vector output; + output.reserve(escaped.size()); + + // Parser state + bool escaping = false; + uint8_t hex_remaining = 0; + uint8_t hex_acc = 0; + + // Step through characters, performing parsing + for (const char & c : escaped) { + // If we're parsing a hex code, interpret the next character + if (hex_remaining != 0) { + uint8_t value = (c >= 'a') ? (c - 'a' + 10) : (c - '0'); + hex_acc = (hex_acc << 4) + value; + + hex_remaining -= 1; + if (hex_remaining == 0) { + output.push_back(hex_acc); + hex_acc = 0; + } + + continue; + } + + // If we got an escape character, interpret it + if (escaping) { + if (c == 't') { + output.push_back('\t'); + } else if (c == 'n') { + output.push_back('\n'); + } else if (c == 'r') { + output.push_back('\r'); + } else if (c == 'x') { + hex_remaining = 2; + } else { + output.push_back(c); + } + + escaping = false; + continue; + } + + if (c == '\\') { + escaping = true; + continue; + } + + output.push_back(c); + } + + return output; +} + +struct llm_tokenizer_rwkv { + llm_tokenizer_rwkv(const llama_vocab & vocab): vocab(vocab) { + // RWKV supports arbitrary byte tokens, but the vocab struct only supports string tokens. + // For now, we decode the vocab here into the lookup we'll use for tokenization. + + // build trie + for (unsigned int id = 0; id < vocab.id_to_token.size(); ++id) { + const auto & token = vocab.id_to_token[id]; + const auto data = llama_unescape_rwkv_token(token.text); + token_matcher.insert((const char *) data.data(), data.size(), id); + } + } + + void tokenize(const std::string & text, std::vector & output) { + uint32_t position = 0; + + while (position < text.size()) { + const struct naive_trie * node = token_matcher.traverse(text[position]); + if (node == NULL) { + // no matching token found, add unknown token + output.push_back(vocab.special_unk_id); + position += 1; + continue; + } + + // traverse the trie to find the longest matching token + uint32_t token_id = 0; + uint32_t token_length = 0; + while (node != NULL) { + if (node->has_value) { + token_id = node->value; + token_length = position + 1; + } + node = node->traverse(text[++position]); + } + + // add the longest matching token + output.push_back(token_id); + position = token_length; + } + } + + const llama_vocab & vocab; + + struct naive_trie token_matcher; +}; + // // (de-) tokenize // @@ -1401,6 +1506,23 @@ std::vector llama_tokenize_internal(const llama_vocab & vocab, output.push_back(vocab.special_eos_id); } } break; + case LLAMA_VOCAB_TYPE_RWKV: + { + for (const auto & fragment : fragment_buffer) { + if (fragment.type == FRAGMENT_BUFFER_VARIANT_TYPE_RAW_TEXT) { + auto raw_text = fragment.raw_text.substr(fragment.offset, fragment.length); + +#ifdef PRETOKENIZERDEBUG + LLAMA_LOG_WARN("TT: (%ld %ld %ld) '%s'\n", raw_text.length(), fragment.offset, fragment.length, raw_text.c_str()); +#endif + + llm_tokenizer_rwkv tokenizer(vocab); + tokenizer.tokenize(raw_text, output); + } else { // if (fragment.type == FRAGMENT_BUFFER_VARIANT_TYPE_TOKEN) + output.push_back(fragment.token); + } + } + } break; case LLAMA_VOCAB_TYPE_NONE: GGML_ABORT("fatal error"); } @@ -1616,6 +1738,17 @@ int32_t llama_token_to_piece_impl(const struct llama_vocab & vocab, llama_token } break; } + case LLAMA_VOCAB_TYPE_RWKV: { + std::vector result = llama_unescape_rwkv_token(token_text); + + // If we don't have enough space, return an error + if (result.size() > (size_t)length) { + return -(int)result.size(); + } + + memcpy(buf, result.data(), result.size()); + return (int)result.size(); + } default: GGML_ABORT("fatal error"); } diff --git a/src/llama.cpp b/src/llama.cpp index 2274296b4..2113c72f3 100644 --- a/src/llama.cpp +++ b/src/llama.cpp @@ -212,6 +212,7 @@ enum llm_arch { LLM_ARCH_JAIS, LLM_ARCH_NEMOTRON, LLM_ARCH_EXAONE, + LLM_ARCH_RWKV6, LLM_ARCH_UNKNOWN, }; @@ -259,6 +260,7 @@ static const std::map LLM_ARCH_NAMES = { { LLM_ARCH_JAIS, "jais" }, { LLM_ARCH_NEMOTRON, "nemotron" }, { LLM_ARCH_EXAONE, "exaone" }, + { LLM_ARCH_RWKV6, "rwkv6" }, { LLM_ARCH_UNKNOWN, "(unknown)" }, }; @@ -295,6 +297,9 @@ enum llm_kv { LLM_KV_DECODER_START_TOKEN_ID, LLM_KV_ATTN_LOGIT_SOFTCAPPING, LLM_KV_FINAL_LOGIT_SOFTCAPPING, + LLM_KV_RESCALE_EVERY_N_LAYERS, + LLM_KV_TIME_MIX_EXTRA_DIM, + LLM_KV_TIME_DECAY_EXTRA_DIM, LLM_KV_ATTENTION_HEAD_COUNT, LLM_KV_ATTENTION_HEAD_COUNT_KV, @@ -330,6 +335,8 @@ enum llm_kv { LLM_KV_SSM_TIME_STEP_RANK, LLM_KV_SSM_DT_B_C_RMS, + LLM_KV_WKV_HEAD_SIZE, + LLM_KV_TOKENIZER_MODEL, LLM_KV_TOKENIZER_PRE, LLM_KV_TOKENIZER_LIST, @@ -389,11 +396,14 @@ static const std::map LLM_KV_NAMES = { { LLM_KV_EXPERT_USED_COUNT, "%s.expert_used_count" }, { LLM_KV_EXPERT_SHARED_COUNT, "%s.expert_shared_count" }, { LLM_KV_EXPERT_WEIGHTS_SCALE, "%s.expert_weights_scale" }, - { LLM_KV_POOLING_TYPE , "%s.pooling_type" }, + { LLM_KV_POOLING_TYPE, "%s.pooling_type" }, { LLM_KV_LOGIT_SCALE, "%s.logit_scale" }, { LLM_KV_DECODER_START_TOKEN_ID, "%s.decoder_start_token_id" }, { LLM_KV_ATTN_LOGIT_SOFTCAPPING, "%s.attn_logit_softcapping" }, { LLM_KV_FINAL_LOGIT_SOFTCAPPING, "%s.final_logit_softcapping" }, + { LLM_KV_RESCALE_EVERY_N_LAYERS, "%s.rescale_every_n_layers" }, + { LLM_KV_TIME_MIX_EXTRA_DIM, "%s.time_mix_extra_dim" }, + { LLM_KV_TIME_DECAY_EXTRA_DIM, "%s.time_decay_extra_dim" }, { LLM_KV_ATTENTION_HEAD_COUNT, "%s.attention.head_count" }, { LLM_KV_ATTENTION_HEAD_COUNT_KV, "%s.attention.head_count_kv" }, @@ -429,6 +439,8 @@ static const std::map LLM_KV_NAMES = { { LLM_KV_SSM_TIME_STEP_RANK, "%s.ssm.time_step_rank" }, { LLM_KV_SSM_DT_B_C_RMS, "%s.ssm.dt_b_c_rms" }, + { LLM_KV_WKV_HEAD_SIZE, "%s.wkv.head_size" }, + { LLM_KV_TOKENIZER_MODEL, "tokenizer.ggml.model" }, { LLM_KV_TOKENIZER_PRE, "tokenizer.ggml.pre" }, { LLM_KV_TOKENIZER_LIST, "tokenizer.ggml.tokens" }, @@ -518,6 +530,29 @@ enum llm_tensor { LLM_TENSOR_SSM_A, LLM_TENSOR_SSM_D, LLM_TENSOR_SSM_OUT, + LLM_TENSOR_TIME_MIX_W1, + LLM_TENSOR_TIME_MIX_W2, + LLM_TENSOR_TIME_MIX_LERP_X, + LLM_TENSOR_TIME_MIX_LERP_W, + LLM_TENSOR_TIME_MIX_LERP_K, + LLM_TENSOR_TIME_MIX_LERP_V, + LLM_TENSOR_TIME_MIX_LERP_R, + LLM_TENSOR_TIME_MIX_LERP_G, + LLM_TENSOR_TIME_MIX_FIRST, + LLM_TENSOR_TIME_MIX_DECAY, + LLM_TENSOR_TIME_MIX_DECAY_W1, + LLM_TENSOR_TIME_MIX_DECAY_W2, + LLM_TENSOR_TIME_MIX_KEY, + LLM_TENSOR_TIME_MIX_VALUE, + LLM_TENSOR_TIME_MIX_RECEPTANCE, + LLM_TENSOR_TIME_MIX_GATE, + LLM_TENSOR_TIME_MIX_LN, + LLM_TENSOR_TIME_MIX_OUTPUT, + LLM_TENSOR_CHANNEL_MIX_LERP_K, + LLM_TENSOR_CHANNEL_MIX_LERP_R, + LLM_TENSOR_CHANNEL_MIX_KEY, + LLM_TENSOR_CHANNEL_MIX_RECEPTANCE, + LLM_TENSOR_CHANNEL_MIX_VALUE, LLM_TENSOR_ATTN_Q_A, LLM_TENSOR_ATTN_Q_B, LLM_TENSOR_ATTN_KV_A_MQA, @@ -1339,6 +1374,40 @@ static const std::map> LLM_TENSOR_NA { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" }, }, }, + { + LLM_ARCH_RWKV6, + { + { LLM_TENSOR_TOKEN_EMBD, "token_embd" }, + { LLM_TENSOR_TOKEN_EMBD_NORM, "token_embd_norm" }, + { LLM_TENSOR_OUTPUT_NORM, "output_norm" }, + { LLM_TENSOR_OUTPUT, "output" }, + { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" }, + { LLM_TENSOR_ATTN_NORM_2, "blk.%d.attn_norm_2" }, + { LLM_TENSOR_TIME_MIX_W1, "blk.%d.time_mix_w1" }, + { LLM_TENSOR_TIME_MIX_W2, "blk.%d.time_mix_w2" }, + { LLM_TENSOR_TIME_MIX_LERP_X, "blk.%d.time_mix_lerp_x" }, + { LLM_TENSOR_TIME_MIX_LERP_W, "blk.%d.time_mix_lerp_w" }, + { LLM_TENSOR_TIME_MIX_LERP_K, "blk.%d.time_mix_lerp_k" }, + { LLM_TENSOR_TIME_MIX_LERP_V, "blk.%d.time_mix_lerp_v" }, + { LLM_TENSOR_TIME_MIX_LERP_R, "blk.%d.time_mix_lerp_r" }, + { LLM_TENSOR_TIME_MIX_LERP_G, "blk.%d.time_mix_lerp_g" }, + { LLM_TENSOR_TIME_MIX_FIRST, "blk.%d.time_mix_first" }, + { LLM_TENSOR_TIME_MIX_DECAY, "blk.%d.time_mix_decay" }, + { LLM_TENSOR_TIME_MIX_DECAY_W1, "blk.%d.time_mix_decay_w1" }, + { LLM_TENSOR_TIME_MIX_DECAY_W2, "blk.%d.time_mix_decay_w2" }, + { LLM_TENSOR_TIME_MIX_KEY, "blk.%d.time_mix_key" }, + { LLM_TENSOR_TIME_MIX_VALUE, "blk.%d.time_mix_value" }, + { LLM_TENSOR_TIME_MIX_RECEPTANCE, "blk.%d.time_mix_receptance" }, + { LLM_TENSOR_TIME_MIX_GATE, "blk.%d.time_mix_gate" }, + { LLM_TENSOR_TIME_MIX_LN, "blk.%d.time_mix_ln" }, + { LLM_TENSOR_TIME_MIX_OUTPUT, "blk.%d.time_mix_output" }, + { LLM_TENSOR_CHANNEL_MIX_LERP_K, "blk.%d.channel_mix_lerp_k" }, + { LLM_TENSOR_CHANNEL_MIX_LERP_R, "blk.%d.channel_mix_lerp_r" }, + { LLM_TENSOR_CHANNEL_MIX_KEY, "blk.%d.channel_mix_key" }, + { LLM_TENSOR_CHANNEL_MIX_VALUE, "blk.%d.channel_mix_value" }, + { LLM_TENSOR_CHANNEL_MIX_RECEPTANCE, "blk.%d.channel_mix_receptance" }, + }, + }, { LLM_ARCH_UNKNOWN, { @@ -2151,6 +2220,7 @@ enum e_model { MODEL_1B, MODEL_1_3B, MODEL_1_4B, + MODEL_1_6B, MODEL_2B, MODEL_2_8B, MODEL_3B, @@ -2228,6 +2298,12 @@ struct llama_hparams { float f_attn_logit_softcapping = 50.0f; float f_final_logit_softcapping = 30.0f; + // for RWKV + uint32_t rescale_every_n_layers = 0; + uint32_t time_mix_extra_dim = 0; + uint32_t time_decay_extra_dim = 0; + uint32_t wkv_head_size = 0; + float rope_attn_factor = 1.0f; float rope_freq_base_train; float rope_freq_scale_train; @@ -2291,6 +2367,11 @@ struct llama_hparams { if (this->ssm_dt_rank != other.ssm_dt_rank) return true; if (this->ssm_dt_b_c_rms != other.ssm_dt_b_c_rms) return true; + if (this->rescale_every_n_layers != other.rescale_every_n_layers) return true; + if (this->time_mix_extra_dim != other.time_mix_extra_dim) return true; + if (this->time_decay_extra_dim != other.time_decay_extra_dim) return true; + if (this->wkv_head_size != other.wkv_head_size) return true; + if (this->dec_start_token_id != other.dec_start_token_id) return true; const float EPSILON = 1e-9f; @@ -2354,15 +2435,25 @@ struct llama_hparams { } uint32_t n_embd_k_s() const { // dimension of the rolling state embeddings - // corresponds to Mamba's conv_states size - // TODO: maybe support other convolution strides than 1 - // NOTE: since the first column of the conv_state is shifted out each time, it's not actually needed - return (ssm_d_conv > 0 ? ssm_d_conv - 1 : 0) * ssm_d_inner; + // corresponds to Mamba's conv_states size or RWKV's token_shift states size + if (wkv_head_size != 0) { + // for RWKV models + return 2 * n_embd; + } else { + // TODO: maybe support other convolution strides than 1 + // NOTE: since the first column of the conv_state is shifted out each time, it's not actually needed + return (ssm_d_conv > 0 ? ssm_d_conv - 1 : 0) * ssm_d_inner; + } } uint32_t n_embd_v_s() const { // dimension of the recurrent state embeddings - // corresponds to Mamba's ssm_states size - return ssm_d_state * ssm_d_inner; + if (wkv_head_size != 0) { + // corresponds to RWKV's wkv_states size + return n_embd * wkv_head_size; + } else { + // corresponds to Mamba's ssm_states size + return ssm_d_state * ssm_d_inner; + } } }; @@ -2501,6 +2592,36 @@ struct llama_layer { struct ggml_tensor * ssm_conv1d_b; struct ggml_tensor * ssm_dt_b; + // rwkv + struct ggml_tensor * time_mix_w1; + struct ggml_tensor * time_mix_w2; + struct ggml_tensor * time_mix_lerp_x; + struct ggml_tensor * time_mix_lerp_w; + struct ggml_tensor * time_mix_lerp_k; + struct ggml_tensor * time_mix_lerp_v; + struct ggml_tensor * time_mix_lerp_r; + struct ggml_tensor * time_mix_lerp_g; + + struct ggml_tensor * time_mix_first; + struct ggml_tensor * time_mix_decay; + struct ggml_tensor * time_mix_decay_w1; + struct ggml_tensor * time_mix_decay_w2; + struct ggml_tensor * time_mix_key; + struct ggml_tensor * time_mix_value; + struct ggml_tensor * time_mix_receptance; + struct ggml_tensor * time_mix_gate; + + struct ggml_tensor * time_mix_ln; + struct ggml_tensor * time_mix_ln_b; + struct ggml_tensor * time_mix_output; + + struct ggml_tensor * channel_mix_lerp_k; + struct ggml_tensor * channel_mix_lerp_r; + + struct ggml_tensor * channel_mix_key; + struct ggml_tensor * channel_mix_receptance; + struct ggml_tensor * channel_mix_value; + // long rope factors struct ggml_tensor * rope_long = nullptr; struct ggml_tensor * rope_short = nullptr; @@ -3426,7 +3547,7 @@ static bool llama_kv_cache_find_slot( const uint32_t n_seq_tokens = batch.n_seq_tokens; if (cache.recurrent) { - // For recurrent state architectures (like Mamba), + // For recurrent state architectures (like Mamba or RWKV), // each cache cell can store the state for a whole sequence. // A slot should be always be contiguous. @@ -3675,7 +3796,7 @@ static bool llama_kv_cache_seq_rm( if (p0 < 0) p0 = 0; if (p1 < 0) p1 = std::numeric_limits::max(); - // models like Mamba can't have a state partially erased + // models like Mamba or RWKV can't have a state partially erased if (cache.recurrent) { if (seq_id >= (int64_t) cache.size) { // could be fatal @@ -3811,7 +3932,7 @@ static void llama_kv_cache_seq_add( if (p0 == p1) return; if (cache.recurrent) { - // for Mamba-like models, only the pos needs to be shifted + // for Mamba-like or RWKV models, only the pos needs to be shifted if (0 <= seq_id && seq_id < (int64_t) cache.size) { const int32_t tail_id = cache.cells[seq_id].tail; if (tail_id >= 0) { @@ -3860,7 +3981,7 @@ static void llama_kv_cache_seq_div( if (p0 == p1) return; if (cache.recurrent) { - // for Mamba-like models, only the pos needs to be changed + // for Mamba-like or RWKV models, only the pos needs to be changed if (0 <= seq_id && seq_id < (int64_t) cache.size) { const int32_t tail_id = cache.cells[seq_id].tail; if (tail_id >= 0) { @@ -5051,6 +5172,7 @@ static const char * llama_model_type_name(e_model type) { case MODEL_1B: return "1B"; case MODEL_1_3B: return "1.3B"; case MODEL_1_4B: return "1.4B"; + case MODEL_1_6B: return "1.6B"; case MODEL_2B: return "2B"; case MODEL_2_8B: return "2.8B"; case MODEL_3B: return "3B"; @@ -5097,6 +5219,7 @@ static const char * llama_model_vocab_type_name(enum llama_vocab_type type){ case LLAMA_VOCAB_TYPE_BPE: return "BPE"; case LLAMA_VOCAB_TYPE_WPM: return "WPM"; case LLAMA_VOCAB_TYPE_UGM: return "UGM"; + case LLAMA_VOCAB_TYPE_RWKV: return "RWKV"; default: return "unknown"; } } @@ -5793,6 +5916,26 @@ static void llm_load_hparams( default: model.type = e_model::MODEL_UNKNOWN; } } break; + case LLM_ARCH_RWKV6: + { + ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps); + ml.get_key(LLM_KV_WKV_HEAD_SIZE, hparams.wkv_head_size); + ml.get_key(LLM_KV_TIME_MIX_EXTRA_DIM, hparams.time_mix_extra_dim); + ml.get_key(LLM_KV_TIME_DECAY_EXTRA_DIM, hparams.time_decay_extra_dim); + ml.get_key(LLM_KV_RESCALE_EVERY_N_LAYERS, hparams.rescale_every_n_layers, false); + + switch (hparams.n_layer) { + case 24: model.type = e_model::MODEL_1_6B; break; + case 32: + switch (hparams.n_embd) { + case 2560: model.type = e_model::MODEL_3B; break; + case 4096: model.type = e_model::MODEL_7B; break; + default: model.type = e_model::MODEL_UNKNOWN; + } break; + case 61: model.type = e_model::MODEL_14B; break; + default: model.type = e_model::MODEL_UNKNOWN; + } + } break; default: (void)0; } @@ -5922,6 +6065,15 @@ static void llm_load_vocab( } #endif } + } else if (tokenizer_model == "rwkv") { + vocab.type = LLAMA_VOCAB_TYPE_RWKV; + + // default special tokens + vocab.special_bos_id = -1; + vocab.special_eos_id = -1; + vocab.special_unk_id = -1; + vocab.special_sep_id = -1; + vocab.special_pad_id = -1; } else { throw std::runtime_error(format("unknown tokenizer: '%s'", tokenizer_model.c_str())); } @@ -6053,6 +6205,12 @@ static void llm_load_vocab( vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_DEFAULT; vocab.tokenizer_add_bos = false; vocab.tokenizer_add_eos = true; + } else if (vocab.type == LLAMA_VOCAB_TYPE_RWKV) { + vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_DEFAULT; + vocab.tokenizer_add_space_prefix = false; + vocab.tokenizer_clean_spaces = false; + vocab.tokenizer_add_bos = false; + vocab.tokenizer_add_eos = false; } else { vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_DEFAULT; } @@ -6157,6 +6315,10 @@ static void llm_load_vocab( } } else if (vocab.type == LLAMA_VOCAB_TYPE_WPM) { vocab.linefeed_id = vocab.special_pad_id; + } else if (vocab.type == LLAMA_VOCAB_TYPE_RWKV) { + const std::vector ids = llama_tokenize_internal(vocab, "\n", false); + GGML_ASSERT(!ids.empty() && "model vocab missing newline token"); + vocab.linefeed_id = ids[0]; } else { const std::vector ids = llama_tokenize_internal(vocab, "\xC4\x8A", false); // U+010A GGML_ASSERT(!ids.empty() && "model vocab missing newline token"); @@ -8203,6 +8365,68 @@ static bool llm_load_tensors( layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}); } } break; + case LLM_ARCH_RWKV6: + { + model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}); + + // Block 0, LN0 + model.tok_norm = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD_NORM, "weight"), {n_embd}); + model.tok_norm_b = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD_NORM, "bias"), {n_embd}); + + // output + model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}); + model.output_norm_b = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd}); + model.output = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}); + + const int time_mix_extra_dim = hparams.time_mix_extra_dim; + const int time_decay_extra_dim = hparams.time_decay_extra_dim; + const int head_size = hparams.wkv_head_size; + const int attn_hidden_size = n_embd; + const int ffn_size = hparams.n_ff_arr[0]; + + for (int i = 0; i < n_layer; ++i) { + ggml_context * ctx_layer = ctx_for_layer(i); + + auto & layer = model.layers[i]; + + layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}); + layer.attn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd}); + + layer.attn_norm_2 = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM_2, "weight", i), {n_embd}); + layer.attn_norm_2_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM_2, "bias", i), {n_embd}); + + layer.time_mix_w1 = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_TIME_MIX_W1, "weight", i), {n_embd, time_mix_extra_dim * 5}); + layer.time_mix_w2 = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_TIME_MIX_W2, "weight", i), {time_mix_extra_dim, n_embd, 5}); + + layer.time_mix_lerp_x = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_TIME_MIX_LERP_X, "weight", i), {n_embd, 1, 1}); + layer.time_mix_lerp_w = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_TIME_MIX_LERP_W, "weight", i), {n_embd, 1, 1}); + layer.time_mix_lerp_k = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_TIME_MIX_LERP_K, "weight", i), {n_embd, 1, 1}); + layer.time_mix_lerp_v = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_TIME_MIX_LERP_V, "weight", i), {n_embd, 1, 1}); + layer.time_mix_lerp_r = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_TIME_MIX_LERP_R, "weight", i), {n_embd, 1, 1}); + layer.time_mix_lerp_g = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_TIME_MIX_LERP_G, "weight", i), {n_embd, 1, 1}); + + layer.time_mix_first = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_TIME_MIX_FIRST, "weight", i), {head_size, n_embd / head_size}); + layer.time_mix_decay = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_TIME_MIX_DECAY, "weight", i), {n_embd}); + layer.time_mix_decay_w1 = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_TIME_MIX_DECAY_W1, "weight", i), {n_embd, time_decay_extra_dim}); + layer.time_mix_decay_w2 = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_TIME_MIX_DECAY_W2, "weight", i), {time_decay_extra_dim, attn_hidden_size}); + layer.time_mix_key = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_TIME_MIX_KEY, "weight", i), {attn_hidden_size, n_embd}); + layer.time_mix_value = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_TIME_MIX_VALUE, "weight", i), {attn_hidden_size, n_embd}); + layer.time_mix_receptance = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_TIME_MIX_RECEPTANCE, "weight", i), {attn_hidden_size, n_embd}); + layer.time_mix_gate = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_TIME_MIX_GATE, "weight", i), {attn_hidden_size, n_embd}); + + layer.time_mix_ln = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_TIME_MIX_LN, "weight", i), {n_embd}); + layer.time_mix_ln_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_TIME_MIX_LN, "bias", i), {n_embd}); + layer.time_mix_output = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_TIME_MIX_OUTPUT, "weight", i), {n_embd, attn_hidden_size}); + + layer.channel_mix_lerp_k = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_CHANNEL_MIX_LERP_K, "weight", i), {n_embd, 1, 1}); + layer.channel_mix_lerp_r = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_CHANNEL_MIX_LERP_R, "weight", i), {n_embd, 1, 1}); + + layer.channel_mix_key = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_CHANNEL_MIX_KEY, "weight", i), {n_embd, ffn_size}); + layer.channel_mix_value = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_CHANNEL_MIX_VALUE, "weight", i), {ffn_size, n_embd}); + layer.channel_mix_receptance = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_CHANNEL_MIX_RECEPTANCE, "weight", i), {n_embd, n_embd}); + } + + } break; default: throw std::runtime_error("unknown architecture"); } @@ -9162,6 +9386,171 @@ static struct ggml_tensor * llm_build_mamba( return cur; } +static struct ggml_tensor * llm_build_rwkv6_time_mix( + struct llama_context & lctx, + struct ggml_context * ctx, + const struct llama_layer * layer, + struct ggml_tensor * cur, + struct ggml_tensor * x_prev, + struct ggml_tensor ** wkv_state) { + size_t n_embed = cur->ne[0]; + size_t n_seq_tokens = cur->ne[1]; + size_t n_seqs = cur->ne[2]; + + size_t head_size = layer->time_mix_first->ne[0]; + size_t head_count = layer->time_mix_first->ne[1]; + + size_t n_tokens = n_seqs * n_seq_tokens; + + struct ggml_tensor * sx = ggml_sub(ctx, x_prev, cur); + + sx = ggml_reshape_2d(ctx, sx, n_embed, n_tokens); + cur = ggml_reshape_2d(ctx, cur, n_embed, n_tokens); + + struct ggml_tensor * xxx = ggml_add(ctx, ggml_mul(ctx, sx, layer->time_mix_lerp_x), cur); + + xxx = ggml_reshape_4d( + ctx, + ggml_tanh( + ctx, + ggml_mul_mat(ctx, layer->time_mix_w1, xxx) + ), + layer->time_mix_w1->ne[1] / 5, 1, 5, n_tokens + ); + + xxx = ggml_cont(ctx, ggml_permute(ctx, xxx, 0, 1, 3, 2)); + + xxx = ggml_mul_mat( + ctx, + ggml_reshape_4d( + ctx, + layer->time_mix_w2, + layer->time_mix_w2->ne[0], layer->time_mix_w2->ne[1], 1, 5 + ), + xxx + ); + + struct ggml_tensor *mw = ggml_view_2d(ctx, xxx, n_embed, n_tokens, xxx->nb[1], 0); + struct ggml_tensor *mk = ggml_view_2d(ctx, xxx, n_embed, n_tokens, xxx->nb[1], n_embed * n_tokens * sizeof(float)); + struct ggml_tensor *mv = ggml_view_2d(ctx, xxx, n_embed, n_tokens, xxx->nb[1], n_embed * n_tokens * 2 * sizeof(float)); + struct ggml_tensor *mr = ggml_view_2d(ctx, xxx, n_embed, n_tokens, xxx->nb[1], n_embed * n_tokens * 3 * sizeof(float)); + struct ggml_tensor *mg = ggml_view_2d(ctx, xxx, n_embed, n_tokens, xxx->nb[1], n_embed * n_tokens * 4 * sizeof(float)); + + struct ggml_tensor * xw = ggml_add( + ctx, + ggml_mul( + ctx, + ggml_add(ctx, mw, layer->time_mix_lerp_w), + sx + ), + cur + ); + + struct ggml_tensor * xk = ggml_add( + ctx, + ggml_mul( + ctx, + ggml_add(ctx, mk, layer->time_mix_lerp_k), + sx + ), + cur + ); + + struct ggml_tensor * xv = ggml_add( + ctx, + ggml_mul( + ctx, + ggml_add(ctx, mv, layer->time_mix_lerp_v), + sx + ), + cur + ); + + struct ggml_tensor * xr = ggml_add( + ctx, + ggml_mul( + ctx, + ggml_add(ctx, mr, layer->time_mix_lerp_r), + sx + ), + cur + ); + + struct ggml_tensor * xg = ggml_add( + ctx, + ggml_mul( + ctx, + ggml_add(ctx, mg, layer->time_mix_lerp_g), + sx + ), + cur + ); + + struct ggml_tensor * r = ggml_reshape_4d(ctx, llm_build_lora_mm(lctx, ctx, layer->time_mix_receptance, xr), head_size, 1, head_count, n_tokens); + struct ggml_tensor * k = ggml_reshape_4d(ctx, llm_build_lora_mm(lctx, ctx, layer->time_mix_key, xk), 1, head_size, head_count, n_tokens); + struct ggml_tensor * v = ggml_reshape_4d(ctx, llm_build_lora_mm(lctx, ctx, layer->time_mix_value, xv), head_size, 1, head_count, n_tokens); + struct ggml_tensor * g = ggml_silu( + ctx, + llm_build_lora_mm(lctx, ctx, layer->time_mix_gate, xg) + ); + + struct ggml_tensor * w = ggml_mul_mat( + ctx, + layer->time_mix_decay_w2, + ggml_tanh( + ctx, + ggml_mul_mat(ctx, layer->time_mix_decay_w1, xw) + ) + ); + + w = ggml_add(ctx, w, ggml_reshape_1d(ctx, layer->time_mix_decay, n_embed)); + w = ggml_exp(ctx, ggml_neg(ctx, ggml_exp(ctx, w))); + w = ggml_reshape_4d(ctx, w, 1, head_size, head_count, n_tokens); + + k = ggml_transpose(ctx, k); + v = ggml_transpose(ctx, v); + r = ggml_transpose(ctx, r); + + struct ggml_tensor * wkv_output = ggml_rwkv_wkv(ctx, k, v, r, layer->time_mix_first, w, *wkv_state); + cur = ggml_view_1d(ctx, wkv_output, n_embed * n_tokens, 0); + *wkv_state = ggml_view_1d(ctx, wkv_output, n_embed * head_size * n_seqs, n_embed * n_tokens * sizeof(float)); + + // group norm with head_count groups + cur = ggml_reshape_3d(ctx, cur, n_embed / head_count, head_count, n_tokens); + cur = ggml_norm(ctx, cur, 64e-5f); + + // Convert back to regular vectors. + cur = ggml_reshape_2d(ctx, cur, n_embed, n_tokens); + cur = ggml_add(ctx, ggml_mul(ctx, cur, layer->time_mix_ln), layer->time_mix_ln_b); + + cur = ggml_mul(ctx, cur, g); + cur = llm_build_lora_mm(lctx, ctx, layer->time_mix_output, cur); + + return ggml_reshape_3d(ctx, cur, n_embed, n_seq_tokens, n_seqs); +} + +static struct ggml_tensor * llm_build_rwkv6_channel_mix( + struct llama_context & lctx, + struct ggml_context * ctx, + const struct llama_layer * layer, + struct ggml_tensor * cur, + struct ggml_tensor * x_prev) { + struct ggml_tensor * sx = ggml_sub(ctx, x_prev, cur); + struct ggml_tensor * xk = ggml_add(ctx, ggml_mul(ctx, sx, layer->channel_mix_lerp_k), cur); + struct ggml_tensor * xr = ggml_add(ctx, ggml_mul(ctx, sx, layer->channel_mix_lerp_r), cur); + + struct ggml_tensor * r = ggml_sigmoid(ctx, llm_build_lora_mm(lctx, ctx, layer->channel_mix_receptance, xr)); + struct ggml_tensor * k = ggml_sqr( + ctx, + ggml_relu( + ctx, + llm_build_lora_mm(lctx, ctx, layer->channel_mix_key, xk) + ) + ); + + return ggml_mul(ctx, r, llm_build_lora_mm(lctx, ctx, layer->channel_mix_value, k)); +} + struct llm_build_context { const llama_model & model; llama_context & lctx; @@ -14683,6 +15072,117 @@ struct llm_build_context { return gf; } + + ggml_cgraph * build_rwkv6() { + ggml_cgraph *gf = ggml_new_graph_custom(ctx0, llama_model_max_nodes(model), false); + + // Token shift state dimensions should be 2 * n_emb + GGML_ASSERT(n_embd == hparams.n_embd_k_s() / 2); + + const int64_t n_seqs = batch.n_seqs; + const int64_t n_seq_tokens = batch.n_seq_tokens; + const int64_t n_tokens = batch.n_tokens; + GGML_ASSERT(n_seqs != 0); + GGML_ASSERT(batch.equal_seqs); + GGML_ASSERT(n_tokens == n_seq_tokens * n_seqs); + + struct ggml_tensor * cur; + struct ggml_tensor * inpL; + struct ggml_tensor * state_copy = build_inp_s_copy(); + struct ggml_tensor * state_mask = build_inp_s_mask(); + + inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb); + inpL = llm_build_norm(ctx0, inpL, hparams, model.tok_norm, model.tok_norm_b, LLM_NORM, cb, -1); + + for (int il = 0; il < n_layer; ++il) { + const llama_layer * layer = &model.layers[il]; + + // (ab)using the KV cache to store the states + struct ggml_tensor * token_shift = llm_build_copy_mask_state(ctx0, + gf, kv_self.k_l[il], state_copy, state_mask, + hparams.n_embd_k_s(), kv_self.size, kv_head, n_kv, n_seqs); + struct ggml_tensor * wkv_states = llm_build_copy_mask_state(ctx0, + gf, kv_self.v_l[il], state_copy, state_mask, + hparams.n_embd_v_s(), kv_self.size, kv_head, n_kv, n_seqs); + + cur = ggml_reshape_3d(ctx0, inpL, n_embd, n_seq_tokens, n_seqs); + token_shift = ggml_reshape_3d(ctx0, token_shift, n_embd, 2, n_seqs); + + struct ggml_tensor * att_shift = ggml_view_3d(ctx0, token_shift, n_embd, 1, n_seqs, token_shift->nb[1], token_shift->nb[2], 0); + struct ggml_tensor * ffn_shift = ggml_view_3d(ctx0, token_shift, n_embd, 1, n_seqs, token_shift->nb[1], token_shift->nb[2], n_embd * ggml_element_size(token_shift)); + + struct ggml_tensor * x_norm_att = llm_build_norm(ctx0, cur, hparams, layer->attn_norm, layer->attn_norm_b, LLM_NORM, cb, il); + struct ggml_tensor * x_prev = ggml_concat( + ctx0, + att_shift, + ggml_view_3d(ctx0, x_norm_att, n_embd, n_seq_tokens - 1, n_seqs, x_norm_att->nb[1], x_norm_att->nb[2], 0), + 1 + ); + + cur = ggml_add(ctx0, cur, llm_build_rwkv6_time_mix(lctx, ctx0, layer, x_norm_att, x_prev, &wkv_states)); + ggml_build_forward_expand(gf, cur); + ggml_build_forward_expand( + gf, + ggml_cpy( + ctx0, + wkv_states, + ggml_view_1d( + ctx0, + kv_self.v_l[il], + hparams.n_embd_v_s() * n_seqs, + hparams.n_embd_v_s() * kv_head * ggml_element_size(kv_self.v_l[il]) + ) + ) + ); + + struct ggml_tensor * x_norm_ffn = llm_build_norm(ctx0, cur, hparams, layer->attn_norm_2, layer->attn_norm_2_b, LLM_NORM, cb, il); + x_prev = ggml_concat( + ctx0, + ffn_shift, + ggml_view_3d(ctx0, x_norm_ffn, n_embd, n_seq_tokens - 1, n_seqs, x_norm_ffn->nb[1], x_norm_ffn->nb[2], 0), + 1 + ); + cur = ggml_add(ctx0, cur, llm_build_rwkv6_channel_mix(lctx, ctx0, layer, x_norm_ffn, x_prev)); + ggml_build_forward_expand(gf, cur); + + struct ggml_tensor * last_norm_att = ggml_view_3d(ctx0, x_norm_att, n_embd, 1, n_seqs, x_norm_att->nb[1], x_norm_att->nb[2], (n_seq_tokens-1)*n_embd*ggml_element_size(x_norm_att)); + struct ggml_tensor * last_norm_ffn = ggml_view_3d(ctx0, x_norm_ffn, n_embd, 1, n_seqs, x_norm_ffn->nb[1], x_norm_ffn->nb[2], (n_seq_tokens-1)*n_embd*ggml_element_size(x_norm_ffn)); + + token_shift = ggml_concat(ctx0, last_norm_att, last_norm_ffn, 1); + + ggml_build_forward_expand( + gf, + ggml_cpy( + ctx0, + ggml_view_1d(ctx0, token_shift, n_embd * n_seqs * 2, 0), + ggml_view_1d(ctx0, kv_self.k_l[il], hparams.n_embd_k_s() * n_seqs, hparams.n_embd_k_s() * kv_head * ggml_element_size(kv_self.k_l[il])) + ) + ); + + if (hparams.rescale_every_n_layers != 0 && (il + 1) % hparams.rescale_every_n_layers == 0) { + cur = ggml_scale(ctx0, cur, 0.5F); + } + + cur = lctx.cvec.apply_to(ctx0, cur, il); + cb(cur, "l_out", il); + + // input for next layer + inpL = cur; + } + + cur = inpL; + struct ggml_tensor * inp_out_ids = build_inp_out_ids(); + cur = ggml_reshape_2d(ctx0, cur, n_embd, n_tokens); + cur = ggml_get_rows(ctx0, cur, inp_out_ids); + + cur = llm_build_norm(ctx0, cur, hparams, model.output_norm, model.output_norm_b, LLM_NORM, cb, -1); + cur = llm_build_lora_mm(lctx, ctx0, model.output, cur); + + cb(cur, "result_output", -1); + ggml_build_forward_expand(gf, cur); + + return gf; + } }; static struct ggml_cgraph * llama_build_graph_defrag(llama_context & lctx, const std::vector & ids) { @@ -14929,6 +15429,10 @@ static struct ggml_cgraph * llama_build_graph( { result = llm.build_exaone(); } break; + case LLM_ARCH_RWKV6: + { + result = llm.build_rwkv6(); + } break; default: GGML_ABORT("fatal error"); } @@ -16973,6 +17477,11 @@ static void llama_model_quantize_internal(const std::string & fname_inp, const s // NOTE: can't use LLM_TN here because the layer number is not known quantize &= name.find("ssm_conv1d.weight") == std::string::npos; + // do not quantize RWKV's time_mix_first tensors + quantize &= name.find("time_mix_first.weight") == std::string::npos; + quantize &= name.find("time_mix_w1.weight") == std::string::npos; + quantize &= name.find("time_mix_w2.weight") == std::string::npos; + // do not quantize relative position bias (T5) quantize &= name.find("attn_rel_b.weight") == std::string::npos; @@ -17977,6 +18486,7 @@ enum llama_rope_type llama_rope_type(const struct llama_model * model) { case LLM_ARCH_T5: case LLM_ARCH_T5ENCODER: case LLM_ARCH_JAIS: + case LLM_ARCH_RWKV6: return LLAMA_ROPE_TYPE_NONE; // use what we call a normal RoPE, operating on pairs of consecutive head values @@ -18145,6 +18655,7 @@ llama_token llama_model_decoder_start_token(const struct llama_model * model) { bool llama_model_is_recurrent(const struct llama_model * model) { switch (model->arch) { case LLM_ARCH_MAMBA: return true; + case LLM_ARCH_RWKV6: return true; default: return false; } }