mirror of
https://github.com/ggerganov/llama.cpp.git
synced 2025-01-28 04:47:04 +01:00
Hack test-bench
This commit is contained in:
parent
5c4d767ac0
commit
907df4459c
@ -13,6 +13,7 @@ include_directories(${CMAKE_CURRENT_SOURCE_DIR})
|
||||
if (EMSCRIPTEN)
|
||||
else()
|
||||
add_subdirectory(baby-llama)
|
||||
add_subdirectory(test-bench)
|
||||
add_subdirectory(batched)
|
||||
add_subdirectory(batched-bench)
|
||||
add_subdirectory(beam-search)
|
||||
|
@ -146,7 +146,8 @@ int main(int argc, char ** argv) {
|
||||
/* no_alloc =*/ 0
|
||||
};
|
||||
|
||||
ctx = ggml_init(params);
|
||||
int main_gpu = 0;
|
||||
ggml_backend_t backend = ggml_backend_sycl_init(main_gpu);
|
||||
if (!ctx) {
|
||||
fprintf(stderr, "%s: ggml_init() failed\n", __func__);
|
||||
return 1;
|
||||
|
5
examples/test-bench/CMakeLists.txt
Normal file
5
examples/test-bench/CMakeLists.txt
Normal file
@ -0,0 +1,5 @@
|
||||
set(TARGET test-bench)
|
||||
add_executable(${TARGET} test-bench.cpp)
|
||||
install(TARGETS ${TARGET} RUNTIME)
|
||||
target_link_libraries(${TARGET} PRIVATE common)
|
||||
#target_compile_features(${TARGET} PRIVATE cxx_std_11)
|
278
examples/test-bench/README.md
Normal file
278
examples/test-bench/README.md
Normal file
@ -0,0 +1,278 @@
|
||||
# llama.cpp/example/llama-bench
|
||||
|
||||
Performance testing tool for llama.cpp.
|
||||
|
||||
## Table of contents
|
||||
|
||||
1. [Syntax](#syntax)
|
||||
2. [Examples](#examples)
|
||||
1. [Text generation with different models](#text-generation-with-different-models)
|
||||
2. [Prompt processing with different batch sizes](#prompt-processing-with-different-batch-sizes)
|
||||
3. [Different numbers of threads](#different-numbers-of-threads)
|
||||
4. [Different numbers of layers offloaded to the GPU](#different-numbers-of-layers-offloaded-to-the-gpu)
|
||||
3. [Output formats](#output-formats)
|
||||
1. [Markdown](#markdown)
|
||||
2. [CSV](#csv)
|
||||
3. [JSON](#json)
|
||||
4. [SQL](#sql)
|
||||
|
||||
## Syntax
|
||||
|
||||
```
|
||||
usage: ./llama-bench [options]
|
||||
|
||||
options:
|
||||
-h, --help
|
||||
-m, --model <filename> (default: models/7B/ggml-model-q4_0.gguf)
|
||||
-p, --n-prompt <n> (default: 512)
|
||||
-n, --n-gen <n> (default: 128)
|
||||
-b, --batch-size <n> (default: 512)
|
||||
-ctk <t>, --cache-type-k <t> (default: f16)
|
||||
-ctv <t>, --cache-type-v <t> (default: f16)
|
||||
-t, --threads <n> (default: 112)
|
||||
-ngl, --n-gpu-layers <n> (default: 99)
|
||||
-sm, --split-mode <none|layer|row> (default: layer)
|
||||
-mg, --main-gpu <i> (default: 0)
|
||||
-nkvo, --no-kv-offload <0|1> (default: 0)
|
||||
-mmp, --mmap <0|1> (default: 1)
|
||||
-ts, --tensor_split <ts0/ts1/..> (default: 0)
|
||||
-r, --repetitions <n> (default: 5)
|
||||
-o, --output <csv|json|md|sql> (default: md)
|
||||
-v, --verbose (default: 0)
|
||||
|
||||
Multiple values can be given for each parameter by separating them with ',' or by specifying the parameter multiple times.
|
||||
```
|
||||
|
||||
llama-bench can perform two types of tests:
|
||||
|
||||
- Prompt processing (pp): processing a prompt in batches (`-p`)
|
||||
- Text generation (tg): generating a sequence of tokens (`-n`)
|
||||
|
||||
With the exception of `-r`, `-o` and `-v`, all options can be specified multiple times to run multiple tests. Each pp and tg test is run with all combinations of the specified options. To specify multiple values for an option, the values can be separated by commas (e.g. `-n 16,32`), or the option can be specified multiple times (e.g. `-n 16 -n 32`).
|
||||
|
||||
Each test is repeated the number of times given by `-r`, and the results are averaged. The results are given in average tokens per second (t/s) and standard deviation. Some output formats (e.g. json) also include the individual results of each repetition.
|
||||
|
||||
For a description of the other options, see the [main example](../main/README.md).
|
||||
|
||||
Note:
|
||||
|
||||
- When using SYCL backend, there would be hang issue in some cases. Please set `--mmp 0`.
|
||||
|
||||
## Examples
|
||||
|
||||
### Text generation with different models
|
||||
|
||||
```sh
|
||||
$ ./llama-bench -m models/7B/ggml-model-q4_0.gguf -m models/13B/ggml-model-q4_0.gguf -p 0 -n 128,256,512
|
||||
```
|
||||
|
||||
| model | size | params | backend | ngl | test | t/s |
|
||||
| ------------------------------ | ---------: | ---------: | ---------- | --: | ---------- | ---------------: |
|
||||
| llama 7B mostly Q4_0 | 3.56 GiB | 6.74 B | CUDA | 99 | tg 128 | 132.19 ± 0.55 |
|
||||
| llama 7B mostly Q4_0 | 3.56 GiB | 6.74 B | CUDA | 99 | tg 256 | 129.37 ± 0.54 |
|
||||
| llama 7B mostly Q4_0 | 3.56 GiB | 6.74 B | CUDA | 99 | tg 512 | 123.83 ± 0.25 |
|
||||
| llama 13B mostly Q4_0 | 6.86 GiB | 13.02 B | CUDA | 99 | tg 128 | 82.17 ± 0.31 |
|
||||
| llama 13B mostly Q4_0 | 6.86 GiB | 13.02 B | CUDA | 99 | tg 256 | 80.74 ± 0.23 |
|
||||
| llama 13B mostly Q4_0 | 6.86 GiB | 13.02 B | CUDA | 99 | tg 512 | 78.08 ± 0.07 |
|
||||
|
||||
### Prompt processing with different batch sizes
|
||||
|
||||
```sh
|
||||
$ ./llama-bench -n 0 -p 1024 -b 128,256,512,1024
|
||||
```
|
||||
|
||||
| model | size | params | backend | ngl | n_batch | test | t/s |
|
||||
| ------------------------------ | ---------: | ---------: | ---------- | --: | ---------: | ---------- | ---------------: |
|
||||
| llama 7B mostly Q4_0 | 3.56 GiB | 6.74 B | CUDA | 99 | 128 | pp 1024 | 1436.51 ± 3.66 |
|
||||
| llama 7B mostly Q4_0 | 3.56 GiB | 6.74 B | CUDA | 99 | 256 | pp 1024 | 1932.43 ± 23.48 |
|
||||
| llama 7B mostly Q4_0 | 3.56 GiB | 6.74 B | CUDA | 99 | 512 | pp 1024 | 2254.45 ± 15.59 |
|
||||
| llama 7B mostly Q4_0 | 3.56 GiB | 6.74 B | CUDA | 99 | 1024 | pp 1024 | 2498.61 ± 13.58 |
|
||||
|
||||
### Different numbers of threads
|
||||
|
||||
```sh
|
||||
$ ./llama-bench -n 0 -n 16 -p 64 -t 1,2,4,8,16,32
|
||||
```
|
||||
|
||||
| model | size | params | backend | threads | test | t/s |
|
||||
| ------------------------------ | ---------: | ---------: | ---------- | ---------: | ---------- | ---------------: |
|
||||
| llama 7B mostly Q4_0 | 3.56 GiB | 6.74 B | CPU | 1 | pp 64 | 6.17 ± 0.07 |
|
||||
| llama 7B mostly Q4_0 | 3.56 GiB | 6.74 B | CPU | 1 | tg 16 | 4.05 ± 0.02 |
|
||||
| llama 7B mostly Q4_0 | 3.56 GiB | 6.74 B | CPU | 2 | pp 64 | 12.31 ± 0.13 |
|
||||
| llama 7B mostly Q4_0 | 3.56 GiB | 6.74 B | CPU | 2 | tg 16 | 7.80 ± 0.07 |
|
||||
| llama 7B mostly Q4_0 | 3.56 GiB | 6.74 B | CPU | 4 | pp 64 | 23.18 ± 0.06 |
|
||||
| llama 7B mostly Q4_0 | 3.56 GiB | 6.74 B | CPU | 4 | tg 16 | 12.22 ± 0.07 |
|
||||
| llama 7B mostly Q4_0 | 3.56 GiB | 6.74 B | CPU | 8 | pp 64 | 32.29 ± 1.21 |
|
||||
| llama 7B mostly Q4_0 | 3.56 GiB | 6.74 B | CPU | 8 | tg 16 | 16.71 ± 0.66 |
|
||||
| llama 7B mostly Q4_0 | 3.56 GiB | 6.74 B | CPU | 16 | pp 64 | 33.52 ± 0.03 |
|
||||
| llama 7B mostly Q4_0 | 3.56 GiB | 6.74 B | CPU | 16 | tg 16 | 15.32 ± 0.05 |
|
||||
| llama 7B mostly Q4_0 | 3.56 GiB | 6.74 B | CPU | 32 | pp 64 | 59.00 ± 1.11 |
|
||||
| llama 7B mostly Q4_0 | 3.56 GiB | 6.74 B | CPU | 32 | tg 16 | 16.41 ± 0.79 ||
|
||||
|
||||
### Different numbers of layers offloaded to the GPU
|
||||
|
||||
```sh
|
||||
$ ./llama-bench -ngl 10,20,30,31,32,33,34,35
|
||||
```
|
||||
|
||||
| model | size | params | backend | ngl | test | t/s |
|
||||
| ------------------------------ | ---------: | ---------: | ---------- | --: | ---------- | ---------------: |
|
||||
| llama 7B mostly Q4_0 | 3.56 GiB | 6.74 B | CUDA | 10 | pp 512 | 373.36 ± 2.25 |
|
||||
| llama 7B mostly Q4_0 | 3.56 GiB | 6.74 B | CUDA | 10 | tg 128 | 13.45 ± 0.93 |
|
||||
| llama 7B mostly Q4_0 | 3.56 GiB | 6.74 B | CUDA | 20 | pp 512 | 472.65 ± 1.25 |
|
||||
| llama 7B mostly Q4_0 | 3.56 GiB | 6.74 B | CUDA | 20 | tg 128 | 21.36 ± 1.94 |
|
||||
| llama 7B mostly Q4_0 | 3.56 GiB | 6.74 B | CUDA | 30 | pp 512 | 631.87 ± 11.25 |
|
||||
| llama 7B mostly Q4_0 | 3.56 GiB | 6.74 B | CUDA | 30 | tg 128 | 40.04 ± 1.82 |
|
||||
| llama 7B mostly Q4_0 | 3.56 GiB | 6.74 B | CUDA | 31 | pp 512 | 657.89 ± 5.08 |
|
||||
| llama 7B mostly Q4_0 | 3.56 GiB | 6.74 B | CUDA | 31 | tg 128 | 48.19 ± 0.81 |
|
||||
| llama 7B mostly Q4_0 | 3.56 GiB | 6.74 B | CUDA | 32 | pp 512 | 688.26 ± 3.29 |
|
||||
| llama 7B mostly Q4_0 | 3.56 GiB | 6.74 B | CUDA | 32 | tg 128 | 54.78 ± 0.65 |
|
||||
| llama 7B mostly Q4_0 | 3.56 GiB | 6.74 B | CUDA | 33 | pp 512 | 704.27 ± 2.24 |
|
||||
| llama 7B mostly Q4_0 | 3.56 GiB | 6.74 B | CUDA | 33 | tg 128 | 60.62 ± 1.76 |
|
||||
| llama 7B mostly Q4_0 | 3.56 GiB | 6.74 B | CUDA | 34 | pp 512 | 881.34 ± 5.40 |
|
||||
| llama 7B mostly Q4_0 | 3.56 GiB | 6.74 B | CUDA | 34 | tg 128 | 71.76 ± 0.23 |
|
||||
| llama 7B mostly Q4_0 | 3.56 GiB | 6.74 B | CUDA | 35 | pp 512 | 2400.01 ± 7.72 |
|
||||
| llama 7B mostly Q4_0 | 3.56 GiB | 6.74 B | CUDA | 35 | tg 128 | 131.66 ± 0.49 |
|
||||
|
||||
## Output formats
|
||||
|
||||
By default, llama-bench outputs the results in markdown format. The results can be output in other formats by using the `-o` option.
|
||||
|
||||
### Markdown
|
||||
|
||||
```sh
|
||||
$ ./llama-bench -o md
|
||||
```
|
||||
|
||||
| model | size | params | backend | ngl | test | t/s |
|
||||
| ------------------------------ | ---------: | ---------: | ---------- | --: | ---------- | ---------------: |
|
||||
| llama 7B mostly Q4_0 | 3.56 GiB | 6.74 B | CUDA | 99 | pp 512 | 2368.80 ± 93.24 |
|
||||
| llama 7B mostly Q4_0 | 3.56 GiB | 6.74 B | CUDA | 99 | tg 128 | 131.42 ± 0.59 |
|
||||
|
||||
### CSV
|
||||
|
||||
```sh
|
||||
$ ./llama-bench -o csv
|
||||
```
|
||||
|
||||
```csv
|
||||
build_commit,build_number,cuda,opencl,metal,gpu_blas,blas,cpu_info,gpu_info,model_filename,model_type,model_size,model_n_params,n_batch,n_threads,f16_kv,n_gpu_layers,main_gpu,mul_mat_q,tensor_split,n_prompt,n_gen,test_time,avg_ns,stddev_ns,avg_ts,stddev_ts
|
||||
"3469684","1275","1","0","0","1","1","13th Gen Intel(R) Core(TM) i9-13900K","NVIDIA GeForce RTX 3090 Ti","models/7B/ggml-model-q4_0.gguf","llama 7B mostly Q4_0","3825065984","6738415616","512","16","1","99","0","1","0.00","512","0","2023-09-23T12:09:01Z","212155977","732372","2413.341687","8.305961"
|
||||
"3469684","1275","1","0","0","1","1","13th Gen Intel(R) Core(TM) i9-13900K","NVIDIA GeForce RTX 3090 Ti","models/7B/ggml-model-q4_0.gguf","llama 7B mostly Q4_0","3825065984","6738415616","512","16","1","99","0","1","0.00","0","128","2023-09-23T12:09:02Z","969320879","2728399","132.052051","0.371342"
|
||||
```
|
||||
|
||||
### JSON
|
||||
|
||||
```sh
|
||||
$ ./llama-bench -o json
|
||||
```
|
||||
|
||||
```json
|
||||
[
|
||||
{
|
||||
"build_commit": "3469684",
|
||||
"build_number": 1275,
|
||||
"cuda": true,
|
||||
"opencl": false,
|
||||
"metal": false,
|
||||
"gpu_blas": true,
|
||||
"blas": true,
|
||||
"cpu_info": "13th Gen Intel(R) Core(TM) i9-13900K",
|
||||
"gpu_info": "NVIDIA GeForce RTX 3090 Ti",
|
||||
"model_filename": "models/7B/ggml-model-q4_0.gguf",
|
||||
"model_type": "llama 7B mostly Q4_0",
|
||||
"model_size": 3825065984,
|
||||
"model_n_params": 6738415616,
|
||||
"n_batch": 512,
|
||||
"n_threads": 16,
|
||||
"f16_kv": true,
|
||||
"n_gpu_layers": 99,
|
||||
"main_gpu": 0,
|
||||
"mul_mat_q": true,
|
||||
"tensor_split": "0.00",
|
||||
"n_prompt": 512,
|
||||
"n_gen": 0,
|
||||
"test_time": "2023-09-23T12:09:57Z",
|
||||
"avg_ns": 212365953,
|
||||
"stddev_ns": 985423,
|
||||
"avg_ts": 2410.974041,
|
||||
"stddev_ts": 11.163766,
|
||||
"samples_ns": [ 213837238, 211635853, 212328053, 211329715, 212698907 ],
|
||||
"samples_ts": [ 2394.34, 2419.25, 2411.36, 2422.75, 2407.16 ]
|
||||
},
|
||||
{
|
||||
"build_commit": "3469684",
|
||||
"build_number": 1275,
|
||||
"cuda": true,
|
||||
"opencl": false,
|
||||
"metal": false,
|
||||
"gpu_blas": true,
|
||||
"blas": true,
|
||||
"cpu_info": "13th Gen Intel(R) Core(TM) i9-13900K",
|
||||
"gpu_info": "NVIDIA GeForce RTX 3090 Ti",
|
||||
"model_filename": "models/7B/ggml-model-q4_0.gguf",
|
||||
"model_type": "llama 7B mostly Q4_0",
|
||||
"model_size": 3825065984,
|
||||
"model_n_params": 6738415616,
|
||||
"n_batch": 512,
|
||||
"n_threads": 16,
|
||||
"f16_kv": true,
|
||||
"n_gpu_layers": 99,
|
||||
"main_gpu": 0,
|
||||
"mul_mat_q": true,
|
||||
"tensor_split": "0.00",
|
||||
"n_prompt": 0,
|
||||
"n_gen": 128,
|
||||
"test_time": "2023-09-23T12:09:59Z",
|
||||
"avg_ns": 977425219,
|
||||
"stddev_ns": 9268593,
|
||||
"avg_ts": 130.965708,
|
||||
"stddev_ts": 1.238924,
|
||||
"samples_ns": [ 984472709, 974901233, 989474741, 970729355, 967548060 ],
|
||||
"samples_ts": [ 130.019, 131.295, 129.362, 131.86, 132.293 ]
|
||||
}
|
||||
]
|
||||
```
|
||||
|
||||
### SQL
|
||||
|
||||
SQL output is suitable for importing into a SQLite database. The output can be piped into the `sqlite3` command line tool to add the results to a database.
|
||||
|
||||
```sh
|
||||
$ ./llama-bench -o sql
|
||||
```
|
||||
|
||||
```sql
|
||||
CREATE TABLE IF NOT EXISTS test (
|
||||
build_commit TEXT,
|
||||
build_number INTEGER,
|
||||
cuda INTEGER,
|
||||
opencl INTEGER,
|
||||
metal INTEGER,
|
||||
gpu_blas INTEGER,
|
||||
blas INTEGER,
|
||||
cpu_info TEXT,
|
||||
gpu_info TEXT,
|
||||
model_filename TEXT,
|
||||
model_type TEXT,
|
||||
model_size INTEGER,
|
||||
model_n_params INTEGER,
|
||||
n_batch INTEGER,
|
||||
n_threads INTEGER,
|
||||
f16_kv INTEGER,
|
||||
n_gpu_layers INTEGER,
|
||||
main_gpu INTEGER,
|
||||
mul_mat_q INTEGER,
|
||||
tensor_split TEXT,
|
||||
n_prompt INTEGER,
|
||||
n_gen INTEGER,
|
||||
test_time TEXT,
|
||||
avg_ns INTEGER,
|
||||
stddev_ns INTEGER,
|
||||
avg_ts REAL,
|
||||
stddev_ts REAL
|
||||
);
|
||||
|
||||
INSERT INTO test (build_commit, build_number, cuda, opencl, metal, gpu_blas, blas, cpu_info, gpu_info, model_filename, model_type, model_size, model_n_params, n_batch, n_threads, f16_kv, n_gpu_layers, main_gpu, mul_mat_q, tensor_split, n_prompt, n_gen, test_time, avg_ns, stddev_ns, avg_ts, stddev_ts) VALUES ('3469684', '1275', '1', '0', '0', '1', '1', '13th Gen Intel(R) Core(TM) i9-13900K', 'NVIDIA GeForce RTX 3090 Ti', 'models/7B/ggml-model-q4_0.gguf', 'llama 7B mostly Q4_0', '3825065984', '6738415616', '512', '16', '1', '99', '0', '1', '0.00', '512', '0', '2023-09-23T12:10:30Z', '212693772', '743623', '2407.240204', '8.409634');
|
||||
INSERT INTO test (build_commit, build_number, cuda, opencl, metal, gpu_blas, blas, cpu_info, gpu_info, model_filename, model_type, model_size, model_n_params, n_batch, n_threads, f16_kv, n_gpu_layers, main_gpu, mul_mat_q, tensor_split, n_prompt, n_gen, test_time, avg_ns, stddev_ns, avg_ts, stddev_ts) VALUES ('3469684', '1275', '1', '0', '0', '1', '1', '13th Gen Intel(R) Core(TM) i9-13900K', 'NVIDIA GeForce RTX 3090 Ti', 'models/7B/ggml-model-q4_0.gguf', 'llama 7B mostly Q4_0', '3825065984', '6738415616', '512', '16', '1', '99', '0', '1', '0.00', '0', '128', '2023-09-23T12:10:31Z', '977925003', '4037361', '130.891159', '0.537692');
|
||||
```
|
196
examples/test-bench/helpers.hpp
Normal file
196
examples/test-bench/helpers.hpp
Normal file
@ -0,0 +1,196 @@
|
||||
|
||||
static void init_tensor_uniform(ggml_tensor * tensor, float min = -1.0f, float max = 1.0f) {
|
||||
// static RNG initialization (revisit if n_threads stops being constant)
|
||||
static const size_t n_threads = std::thread::hardware_concurrency();
|
||||
static std::vector<std::default_random_engine> generators = []() {
|
||||
std::random_device rd;
|
||||
std::vector<std::default_random_engine> vec;
|
||||
vec.reserve(n_threads);
|
||||
//for (size_t i = 0; i < n_threads; i++) { vec.emplace_back(1234 + i); } // fixed seed
|
||||
for (size_t i = 0; i < n_threads; i++) { vec.emplace_back(rd()); }
|
||||
return vec;
|
||||
}();
|
||||
|
||||
size_t size = ggml_nelements(tensor);
|
||||
std::vector<float> data(size);
|
||||
|
||||
auto init_thread = [&](size_t ith, size_t start, size_t end) {
|
||||
std::uniform_real_distribution<float> distribution(min, max);
|
||||
for (size_t i = start; i < end; i++) {
|
||||
data[i] = distribution(generators[ith]);
|
||||
}
|
||||
};
|
||||
|
||||
std::vector<std::thread> threads;
|
||||
threads.reserve(n_threads);
|
||||
for (size_t i = 0; i < n_threads; i++) {
|
||||
size_t start = i*size/n_threads;
|
||||
size_t end = (i+1)*size/n_threads;
|
||||
threads.emplace_back(init_thread, i, start, end);
|
||||
}
|
||||
for (auto & t : threads) {
|
||||
t.join();
|
||||
}
|
||||
|
||||
if (tensor->type == GGML_TYPE_F32 || tensor->type == GGML_TYPE_I32) {
|
||||
ggml_backend_tensor_set(tensor, data.data(), 0, size * sizeof(float));
|
||||
} else if (ggml_is_quantized(tensor->type) || tensor->type == GGML_TYPE_F16) {
|
||||
GGML_ASSERT(size % ggml_blck_size(tensor->type) == 0);
|
||||
std::vector<uint8_t> dataq(ggml_row_size(tensor->type, size));
|
||||
std::vector<float> imatrix(tensor->ne[0], 1.0f); // dummy importance matrix
|
||||
const float * im = imatrix.data();
|
||||
if (!ggml_quantize_requires_imatrix(tensor->type)) {
|
||||
// when the imatrix is optional, we want to test both quantization with and without imatrix
|
||||
// use one of the random numbers to decide
|
||||
if (data[0] > 0.5f*(min + max)) {
|
||||
im = nullptr;
|
||||
}
|
||||
}
|
||||
ggml_quantize_chunk(tensor->type, data.data(), dataq.data(), 0, size/tensor->ne[0], tensor->ne[0], im);
|
||||
ggml_backend_tensor_set(tensor, dataq.data(), 0, dataq.size());
|
||||
} else if (tensor->type == GGML_TYPE_I8 || tensor->type == GGML_TYPE_I16 || tensor->type == GGML_TYPE_I32) {
|
||||
// This is going to create some weird integers though.
|
||||
ggml_backend_tensor_set(tensor, data.data(), 0, ggml_nbytes(tensor));
|
||||
} else {
|
||||
GGML_ASSERT(false);
|
||||
}
|
||||
}
|
||||
|
||||
static std::vector<float> tensor_to_float(const ggml_tensor * t) {
|
||||
std::vector<float> tv;
|
||||
tv.reserve(ggml_nelements(t));
|
||||
|
||||
std::vector<uint8_t> buf(ggml_nbytes(t));
|
||||
ggml_backend_tensor_get(t, buf.data(), 0, ggml_nbytes(t));
|
||||
|
||||
ggml_type_traits_t tt = ggml_internal_get_type_traits(t->type);
|
||||
size_t bs = ggml_blck_size(t->type);
|
||||
std::vector<float> vq(ggml_blck_size(t->type));
|
||||
bool quantized = ggml_is_quantized(t->type);
|
||||
|
||||
// access elements by index to avoid gaps in views
|
||||
for (int64_t i3 = 0; i3 < t->ne[3]; i3++) {
|
||||
for (int64_t i2 = 0; i2 < t->ne[2]; i2++) {
|
||||
for (int64_t i1 = 0; i1 < t->ne[1]; i1++) {
|
||||
for (int64_t i0 = 0; i0 < t->ne[0]; i0 += bs) {
|
||||
size_t i = i3*t->nb[3] + i2*t->nb[2] + i1*t->nb[1] + i0/bs*t->nb[0];
|
||||
if (t->type == GGML_TYPE_F16) {
|
||||
tv.push_back(ggml_fp16_to_fp32(*(ggml_fp16_t*)&buf[i]));
|
||||
} else if (t->type == GGML_TYPE_F32) {
|
||||
tv.push_back(*(float *) &buf[i]);
|
||||
} else if (t->type == GGML_TYPE_I32) {
|
||||
tv.push_back((float)*(int32_t *) &buf[i]);
|
||||
} else if (t->type == GGML_TYPE_I16) {
|
||||
tv.push_back((float)*(int16_t *) &buf[i]);
|
||||
} else if (t->type == GGML_TYPE_I8) {
|
||||
tv.push_back((float)*(int8_t *) &buf[i]);
|
||||
} else if (quantized) {
|
||||
tt.to_float(&buf[i], vq.data(), ggml_blck_size(t->type));
|
||||
tv.insert(tv.end(), vq.begin(), vq.end());
|
||||
} else {
|
||||
GGML_ASSERT(false);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
return tv;
|
||||
}
|
||||
|
||||
// normalized mean squared error = mse(a, b) / mse(a, 0)
|
||||
static double nmse(const float * a, const float * b, size_t n) {
|
||||
double mse_a_b = 0.0;
|
||||
double mse_a_0 = 0.0;
|
||||
|
||||
for (size_t i = 0; i < n; i++) {
|
||||
float a_i = a[i];
|
||||
float b_i = b[i];
|
||||
|
||||
mse_a_b += (a_i - b_i) * (a_i - b_i);
|
||||
mse_a_0 += a_i * a_i;
|
||||
}
|
||||
|
||||
return mse_a_b / mse_a_0;
|
||||
}
|
||||
|
||||
static bool ggml_is_view_op(enum ggml_op op) {
|
||||
return op == GGML_OP_VIEW || op == GGML_OP_RESHAPE || op == GGML_OP_PERMUTE || op == GGML_OP_TRANSPOSE;
|
||||
}
|
||||
|
||||
// utils for printing the variables of the test cases
|
||||
#define VAR_TO_STR(x) (#x "=" + var_to_str(x))
|
||||
|
||||
template<typename T>
|
||||
static std::string var_to_str(const T & x) {
|
||||
return std::to_string(x);
|
||||
}
|
||||
|
||||
template<typename T, size_t N>
|
||||
static std::string var_to_str(const T (&x)[N]) {
|
||||
std::string s = "[";
|
||||
for (size_t i = 0; i < N; i++) {
|
||||
if (i > 0) {
|
||||
s += ",";
|
||||
}
|
||||
s += var_to_str(x[i]);
|
||||
}
|
||||
s += "]";
|
||||
return s;
|
||||
}
|
||||
|
||||
template<typename T, size_t N>
|
||||
static std::string var_to_str(const std::array<T, N> & x) {
|
||||
std::string s = "[";
|
||||
for (size_t i = 0; i < N; i++) {
|
||||
if (i > 0) {
|
||||
s += ",";
|
||||
}
|
||||
s += var_to_str(x[i]);
|
||||
}
|
||||
s += "]";
|
||||
return s;
|
||||
}
|
||||
|
||||
//static std::string var_to_str(ggml_unary_op unary_op) {
|
||||
// return ggml_unary_op_name(unary_op);
|
||||
//}
|
||||
|
||||
static std::string var_to_str(ggml_type type) {
|
||||
return ggml_type_name(type);
|
||||
}
|
||||
|
||||
static std::string var_to_str(ggml_op_pool pool) {
|
||||
switch (pool) {
|
||||
case GGML_OP_POOL_AVG: return "avg";
|
||||
case GGML_OP_POOL_MAX: return "max";
|
||||
default: return std::to_string(pool);
|
||||
}
|
||||
}
|
||||
|
||||
#define VARS_TO_STR1(a) VAR_TO_STR(a)
|
||||
#define VARS_TO_STR2(a, b) VAR_TO_STR(a) + "," + VAR_TO_STR(b)
|
||||
#define VARS_TO_STR3(a, b, c) VAR_TO_STR(a) + "," + VARS_TO_STR2(b, c)
|
||||
#define VARS_TO_STR4(a, b, c, d) VAR_TO_STR(a) + "," + VARS_TO_STR3(b, c, d)
|
||||
#define VARS_TO_STR5(a, b, c, d, e) VAR_TO_STR(a) + "," + VARS_TO_STR4(b, c, d, e)
|
||||
#define VARS_TO_STR6(a, b, c, d, e, f) VAR_TO_STR(a) + "," + VARS_TO_STR5(b, c, d, e, f)
|
||||
#define VARS_TO_STR7(a, b, c, d, e, f, g) VAR_TO_STR(a) + "," + VARS_TO_STR6(b, c, d, e, f, g)
|
||||
#define VARS_TO_STR8(a, b, c, d, e, f, g, h) VAR_TO_STR(a) + "," + VARS_TO_STR7(b, c, d, e, f, g, h)
|
||||
#define VARS_TO_STR9(a, b, c, d, e, f, g, h, i) VAR_TO_STR(a) + "," + VARS_TO_STR8(b, c, d, e, f, g, h, i)
|
||||
#define VARS_TO_STR10(a, b, c, d, e, f, g, h, i, j) VAR_TO_STR(a) + "," + VARS_TO_STR9(b, c, d, e, f, g, h, i, j)
|
||||
#define VARS_TO_STR11(a, b, c, d, e, f, g, h, i, j, k) VAR_TO_STR(a) + "," + VARS_TO_STR10(b, c, d, e, f, g, h, i, j, k)
|
||||
#define VARS_TO_STR12(a, b, c, d, e, f, g, h, i, j, k, l) VAR_TO_STR(a) + "," + VARS_TO_STR11(b, c, d, e, f, g, h, i, j, k, l)
|
||||
|
||||
#ifdef GGML_USE_SYCL
|
||||
static bool inline _isinf(float f) {
|
||||
return (*(uint32_t *)&f & 0x7fffffff) == 0x7f800000;
|
||||
}
|
||||
#else
|
||||
static bool inline _isinf(float f) { return std::isinf(f); }
|
||||
#endif
|
||||
|
||||
// accept FLT_MAX as infinity
|
||||
static bool isinf_or_max(float f) {
|
||||
return _isinf(f) || f == FLT_MAX || f == -FLT_MAX;
|
||||
}
|
||||
|
436
examples/test-bench/test-bench.cpp
Normal file
436
examples/test-bench/test-bench.cpp
Normal file
@ -0,0 +1,436 @@
|
||||
#include <ggml.h>
|
||||
#include <ggml-alloc.h>
|
||||
#include <ggml-backend.h>
|
||||
#include <ggml-backend-impl.h>
|
||||
|
||||
#include <iostream>
|
||||
#include <algorithm>
|
||||
#include <array>
|
||||
#include <cfloat>
|
||||
#include <cstring>
|
||||
#include <functional>
|
||||
#include <memory>
|
||||
#include <random>
|
||||
#include <stdio.h>
|
||||
#include <stdlib.h>
|
||||
#include <string>
|
||||
#include <thread>
|
||||
#include <vector>
|
||||
|
||||
#include "helpers.hpp"
|
||||
|
||||
enum test_mode {
|
||||
MODE_TEST,
|
||||
MODE_PERF,
|
||||
};
|
||||
|
||||
struct test_case {
|
||||
virtual ~test_case() {}
|
||||
|
||||
virtual std::string op_desc(ggml_tensor * t) {
|
||||
return ggml_op_desc(t);
|
||||
}
|
||||
|
||||
virtual std::string vars() {
|
||||
return "";
|
||||
}
|
||||
|
||||
virtual ggml_tensor * build_graph(ggml_context * ctx) = 0;
|
||||
|
||||
virtual double max_nmse_err() {
|
||||
return 1e-7;
|
||||
}
|
||||
|
||||
virtual void initialize_tensors(ggml_context * ctx) {
|
||||
for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != nullptr; t = ggml_get_next_tensor(ctx, t)) {
|
||||
init_tensor_uniform(t);
|
||||
}
|
||||
}
|
||||
|
||||
virtual size_t op_size(ggml_tensor * t) {
|
||||
size_t size = ggml_nbytes(t);
|
||||
// add source tensors
|
||||
for (int i = 0; i < GGML_MAX_SRC; i++) {
|
||||
if (t->src[i] != NULL) {
|
||||
size += ggml_nbytes(t->src[i]);
|
||||
}
|
||||
}
|
||||
return size;
|
||||
}
|
||||
|
||||
ggml_cgraph * gf = nullptr;
|
||||
|
||||
static const int sentinel_size = 1024;
|
||||
|
||||
test_mode mode;
|
||||
|
||||
std::vector<ggml_tensor *> sentinels;
|
||||
|
||||
void add_sentinel(ggml_context * ctx) {
|
||||
if (mode == MODE_PERF) {
|
||||
return;
|
||||
}
|
||||
ggml_tensor * sentinel = ::ggml_new_tensor_1d(ctx, GGML_TYPE_F32, sentinel_size);
|
||||
ggml_format_name(sentinel, "sent_%zu", sentinels.size());
|
||||
sentinels.push_back(sentinel);
|
||||
}
|
||||
|
||||
// hijack ggml_new_tensor to add sentinels after each tensor to check for overflows in the backend
|
||||
|
||||
ggml_tensor * ggml_new_tensor(ggml_context * ctx, ggml_type type, int n_dims, const int64_t * ne) {
|
||||
ggml_tensor * t = ::ggml_new_tensor(ctx, type, n_dims, ne);
|
||||
add_sentinel(ctx);
|
||||
return t;
|
||||
}
|
||||
|
||||
ggml_tensor * ggml_new_tensor_1d(ggml_context * ctx, ggml_type type, int64_t ne0) {
|
||||
ggml_tensor * t = ::ggml_new_tensor_1d(ctx, type, ne0);
|
||||
add_sentinel(ctx);
|
||||
return t;
|
||||
}
|
||||
|
||||
ggml_tensor * ggml_new_tensor_2d(ggml_context * ctx, ggml_type type, int64_t ne0, int64_t ne1) {
|
||||
ggml_tensor * t = ::ggml_new_tensor_2d(ctx, type, ne0, ne1);
|
||||
add_sentinel(ctx);
|
||||
return t;
|
||||
}
|
||||
|
||||
ggml_tensor * ggml_new_tensor_3d(ggml_context * ctx, ggml_type type, int64_t ne0, int64_t ne1, int64_t ne2) {
|
||||
ggml_tensor * t = ::ggml_new_tensor_3d(ctx, type, ne0, ne1, ne2);
|
||||
add_sentinel(ctx);
|
||||
return t;
|
||||
}
|
||||
|
||||
ggml_tensor * ggml_new_tensor_4d(ggml_context * ctx, ggml_type type, int64_t ne0, int64_t ne1, int64_t ne2, int64_t ne3) {
|
||||
ggml_tensor * t = ::ggml_new_tensor_4d(ctx, type, ne0, ne1, ne2, ne3);
|
||||
add_sentinel(ctx);
|
||||
return t;
|
||||
}
|
||||
|
||||
bool eval(ggml_backend_t backend1, ggml_backend_t backend2, const char * op_name) {
|
||||
mode = MODE_TEST;
|
||||
|
||||
ggml_init_params params = {
|
||||
/* .mem_size = */ ggml_tensor_overhead()*128 + ggml_graph_overhead(),
|
||||
/* .mem_base = */ NULL,
|
||||
/* .no_alloc = */ true,
|
||||
};
|
||||
ggml_context * ctx = ggml_init(params);
|
||||
|
||||
gf = ggml_new_graph(ctx);
|
||||
|
||||
// pre-graph sentinel
|
||||
add_sentinel(ctx);
|
||||
|
||||
ggml_tensor * out = build_graph(ctx);
|
||||
|
||||
if (op_name != nullptr && op_desc(out) != op_name) {
|
||||
//printf(" %s: skipping\n", op_desc(out).c_str());
|
||||
ggml_free(ctx);
|
||||
return true;
|
||||
}
|
||||
|
||||
printf(" %s(%s): ", op_desc(out).c_str(), vars().c_str());
|
||||
fflush(stdout);
|
||||
|
||||
// check if the backends support the ops
|
||||
bool supported = true;
|
||||
for (ggml_backend_t backend : {backend1, backend2}) {
|
||||
for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
|
||||
if (!ggml_backend_supports_op(backend, t)) {
|
||||
printf("not supported [%s] ", ggml_backend_name(backend));
|
||||
supported = false;
|
||||
break;
|
||||
}
|
||||
}
|
||||
}
|
||||
if (!supported) {
|
||||
printf("\n");
|
||||
ggml_free(ctx);
|
||||
return true;
|
||||
}
|
||||
|
||||
// post-graph sentinel
|
||||
add_sentinel(ctx);
|
||||
|
||||
// allocate
|
||||
ggml_backend_buffer_t buf = ggml_backend_alloc_ctx_tensors(ctx, backend1);
|
||||
if (buf == NULL) {
|
||||
printf("failed to allocate tensors [%s] ", ggml_backend_name(backend1));
|
||||
ggml_free(ctx);
|
||||
return false;
|
||||
}
|
||||
|
||||
// build graph
|
||||
ggml_build_forward_expand(gf, out);
|
||||
|
||||
// add sentinels as graph nodes so that they are checked in the callback
|
||||
for (ggml_tensor * sentinel : sentinels) {
|
||||
gf->nodes[gf->n_nodes++] = sentinel;
|
||||
}
|
||||
|
||||
// randomize tensors
|
||||
initialize_tensors(ctx);
|
||||
|
||||
// compare
|
||||
struct callback_userdata {
|
||||
bool ok;
|
||||
double max_err;
|
||||
ggml_backend_t backend1;
|
||||
ggml_backend_t backend2;
|
||||
};
|
||||
|
||||
callback_userdata ud {
|
||||
true,
|
||||
max_nmse_err(),
|
||||
backend1,
|
||||
backend2
|
||||
};
|
||||
|
||||
auto callback = [](int index, ggml_tensor * t1, ggml_tensor * t2, void * user_data) -> bool {
|
||||
callback_userdata * ud = (callback_userdata *) user_data;
|
||||
const char * bn1 = ggml_backend_name(ud->backend1);
|
||||
const char * bn2 = ggml_backend_name(ud->backend2);
|
||||
|
||||
if (t1->op == GGML_OP_NONE) {
|
||||
// sentinels must be unchanged
|
||||
std::vector<uint8_t> t1_data(ggml_nbytes(t1));
|
||||
std::vector<uint8_t> t2_data(ggml_nbytes(t2));
|
||||
ggml_backend_tensor_get(t1, t1_data.data(), 0, ggml_nbytes(t1));
|
||||
ggml_backend_tensor_get(t2, t2_data.data(), 0, ggml_nbytes(t2));
|
||||
|
||||
if (memcmp(t1_data.data(), t2_data.data(), ggml_nbytes(t1)) != 0) {
|
||||
printf("sentinel mismatch: %s ", t1->name);
|
||||
ud->ok = false;
|
||||
return true;
|
||||
}
|
||||
}
|
||||
|
||||
std::vector<float> f1 = tensor_to_float(t1);
|
||||
std::vector<float> f2 = tensor_to_float(t2);
|
||||
|
||||
for (size_t i = 0; i < f1.size(); i++) {
|
||||
// check for nans
|
||||
if (std::isnan(f1[i]) || std::isnan(f2[i])) {
|
||||
printf("[%s] NaN at index %zu (%s=%f %s=%f) ", ggml_op_desc(t1), i, bn1, f1[i], bn2, f2[i]);
|
||||
ud->ok = false;
|
||||
return true;
|
||||
}
|
||||
// check for infs: both must be inf of the same sign, or both must be finite
|
||||
if (isinf_or_max(f1[i]) || isinf_or_max(f2[i])) {
|
||||
if (isinf_or_max(f1[i]) && isinf_or_max(f2[i])) {
|
||||
if (std::signbit(f1[i]) != std::signbit(f2[i])) {
|
||||
printf("[%s] inf sign mismatch: %s=%f %s=%f ", ggml_op_desc(t1), bn1, f1[i], bn2, f2[i]);
|
||||
ud->ok = false;
|
||||
return true;
|
||||
}
|
||||
} else {
|
||||
printf("[%s] inf mismatch: %s=%f %s=%f ", ggml_op_desc(t1), bn1, f1[i], bn2, f2[i]);
|
||||
ud->ok = false;
|
||||
return true;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
double err = nmse(f1.data(), f2.data(), f1.size());
|
||||
if (err > ud->max_err) {
|
||||
printf("[%s] NMSE = %.9f > %.9f ", ggml_op_desc(t1), err, ud->max_err);
|
||||
//for (int i = 0; i < (int) f1.size(); i++) {
|
||||
// printf("%5d %9.6f %9.6f, diff = %9.6f\n", i, f1[i], f2[i], f1[i] - f2[i]);
|
||||
//}
|
||||
//printf("\n");
|
||||
//exit(1);
|
||||
ud->ok = false;
|
||||
}
|
||||
return true;
|
||||
|
||||
GGML_UNUSED(index);
|
||||
};
|
||||
|
||||
const bool cmp_ok = ggml_backend_compare_graph_backend(backend1, backend2, gf, callback, &ud);
|
||||
|
||||
if (!cmp_ok) {
|
||||
printf("compare failed ");
|
||||
}
|
||||
|
||||
ggml_backend_buffer_free(buf);
|
||||
|
||||
ggml_free(ctx);
|
||||
|
||||
if (ud.ok && cmp_ok) {
|
||||
printf("\033[1;32mOK\033[0m\n");
|
||||
return true;
|
||||
}
|
||||
|
||||
printf("\033[1;31mFAIL\033[0m\n");
|
||||
return false;
|
||||
}
|
||||
|
||||
bool eval_perf(ggml_backend_t backend, const char * op_name, int n_runs) {
|
||||
mode = MODE_PERF;
|
||||
|
||||
static const size_t graph_nodes = 8192;
|
||||
|
||||
ggml_init_params params = {
|
||||
/* .mem_size = */ ggml_tensor_overhead()*128 + ggml_graph_overhead_custom(graph_nodes, false),
|
||||
/* .mem_base = */ NULL,
|
||||
/* .no_alloc = */ true,
|
||||
};
|
||||
ggml_context * ctx = ggml_init(params);
|
||||
|
||||
ggml_tensor * out = build_graph(ctx);
|
||||
|
||||
if (op_name != nullptr && op_desc(out) != op_name) {
|
||||
//printf(" %s: skipping\n", op_desc(out).c_str());
|
||||
ggml_free(ctx);
|
||||
return true;
|
||||
}
|
||||
|
||||
int len = printf(" %s(%s): ", op_desc(out).c_str(), vars().c_str());
|
||||
fflush(stdout);
|
||||
|
||||
// check if backends support op
|
||||
if (!ggml_backend_supports_op(backend, out)) {
|
||||
printf("not supported\n");
|
||||
ggml_free(ctx);
|
||||
return true;
|
||||
}
|
||||
|
||||
// align while also leaving some margin for variations in parameters
|
||||
int align = 20;
|
||||
int last = (len + align - 1) / align * align;
|
||||
if (last - len < 5) {
|
||||
last += align;
|
||||
}
|
||||
last = std::max(last, 60);
|
||||
printf("%*s", last - len, "");
|
||||
|
||||
// allocate
|
||||
ggml_backend_buffer_t buf = ggml_backend_alloc_ctx_tensors(ctx, backend);
|
||||
if (buf == NULL) {
|
||||
printf("failed to allocate tensors\n");
|
||||
ggml_free(ctx);
|
||||
return false;
|
||||
}
|
||||
|
||||
// randomize tensors
|
||||
initialize_tensors(ctx);
|
||||
|
||||
// build graph
|
||||
ggml_cgraph * gf = ggml_new_graph_custom(ctx, graph_nodes, false);
|
||||
ggml_build_forward_expand(gf, out);
|
||||
|
||||
// warmup run
|
||||
ggml_backend_graph_compute(backend, gf);
|
||||
|
||||
// duplicate the op
|
||||
size_t target_size = ggml_backend_is_cpu(backend) ? 1ULL << 33 : 1ULL << 35; // 8 GB CPU, 32 GB GPU
|
||||
//int n_runs = std::min((size_t)gf->size - gf->n_nodes, target_size / op_size(out)) + 1;
|
||||
for (int i = 1; i < n_runs; i++) {
|
||||
gf->nodes[gf->n_nodes++] = out;
|
||||
}
|
||||
|
||||
// calculate memory
|
||||
size_t mem = n_runs * op_size(out);
|
||||
auto tensor_op_size = [](ggml_tensor * t) {
|
||||
size_t size = ggml_nbytes(t);
|
||||
// add source tensors
|
||||
for (int i = 0; i < GGML_MAX_SRC; i++) {
|
||||
if (t->src[i] != NULL) {
|
||||
size += ggml_nbytes(t->src[i]);
|
||||
}
|
||||
}
|
||||
return size;
|
||||
};
|
||||
for (int i = 0; i < gf->n_nodes; i++) {
|
||||
if (ggml_is_view_op(gf->nodes[i]->op) || gf->nodes[i] == out) {
|
||||
continue;
|
||||
}
|
||||
mem += tensor_op_size(gf->nodes[i]);
|
||||
}
|
||||
|
||||
// run
|
||||
ggml_backend_synchronize(backend);
|
||||
|
||||
int64_t start_time = ggml_time_us();
|
||||
ggml_backend_graph_compute(backend, gf);
|
||||
ggml_backend_synchronize(backend);
|
||||
int64_t end_time = ggml_time_us();
|
||||
double time_us = end_time - start_time;
|
||||
|
||||
printf(" %5d runs - %8.2f us/run - %8zu kB/run - \033[1;34m%7.2f GB/s\033[0m\n",
|
||||
n_runs,
|
||||
time_us / n_runs,
|
||||
op_size(out) / 1024,
|
||||
mem / (time_us/1e6) / 1024.0 / 1024.0 / 1024.0);
|
||||
|
||||
ggml_backend_buffer_free(buf);
|
||||
|
||||
ggml_free(ctx);
|
||||
|
||||
return true;
|
||||
}
|
||||
};
|
||||
|
||||
// GGML_OP_MUL_MAT
|
||||
struct test_mul_mat : public test_case {
|
||||
const ggml_type type_a;
|
||||
const ggml_type type_b;
|
||||
const int64_t m;
|
||||
const int64_t n;
|
||||
const int64_t k;
|
||||
const std::array<int64_t, 2> bs; // dims 3 and 4
|
||||
const std::array<int64_t, 2> nr; // repeat in dims 3 and 4
|
||||
|
||||
std::string vars() override {
|
||||
return VARS_TO_STR7(type_a, type_b, m, n, k, bs, nr);
|
||||
}
|
||||
|
||||
double max_nmse_err() override {
|
||||
return 5e-4;
|
||||
}
|
||||
|
||||
size_t op_size(ggml_tensor * t) override {
|
||||
size_t a = ggml_nbytes(t->src[0]) * n * nr[0] * nr[1];
|
||||
size_t b = ggml_nbytes(t->src[1]) * m;
|
||||
size_t c = ggml_nbytes(t);
|
||||
return a + b + c;
|
||||
|
||||
GGML_UNUSED(t);
|
||||
}
|
||||
|
||||
test_mul_mat(ggml_type type_a = GGML_TYPE_F32, ggml_type type_b = GGML_TYPE_F32,
|
||||
int64_t m = 32, int64_t n = 32, int64_t k = 32,
|
||||
std::array<int64_t, 2> bs = {10, 10},
|
||||
std::array<int64_t, 2> nr = {2, 2})
|
||||
: type_a(type_a), type_b(type_b), m(m), n(n), k(k), bs(bs), nr(nr) {}
|
||||
|
||||
ggml_tensor * build_graph(ggml_context * ctx) override {
|
||||
// C^T = A * B^T: (k, m) * (k, n) => (m, n)
|
||||
ggml_tensor * a = ggml_new_tensor_4d(ctx, type_a, k, m, bs[0] , bs[1]);
|
||||
ggml_tensor * b = ggml_new_tensor_4d(ctx, type_b, k, n, bs[0]*nr[0], bs[1]*nr[1]);
|
||||
ggml_tensor * out = ggml_mul_mat(ctx, a, b);
|
||||
return out;
|
||||
}
|
||||
};
|
||||
|
||||
void bench_mul_mat(ggml_backend_t backend) {
|
||||
auto test = test_mul_mat(GGML_TYPE_Q4_0, GGML_TYPE_F16, 512, 256, 1024, { 1, 1}, {1, 1});
|
||||
|
||||
test.eval_perf(backend, "MUL_MAT", 8000 /*n_runs*/);
|
||||
}
|
||||
|
||||
int main() {
|
||||
// enumerate backends
|
||||
std::cout << "num_backends:" << ggml_backend_reg_get_count() << std::endl;
|
||||
int backend_id = 1;
|
||||
|
||||
{
|
||||
ggml_backend_t backend = ggml_backend_reg_init_backend(backend_id, NULL);
|
||||
std::cout << "Using backend:" << ggml_backend_name(backend) << std::endl;
|
||||
|
||||
bench_mul_mat(backend);
|
||||
|
||||
ggml_backend_free(backend);
|
||||
}
|
||||
}
|
Loading…
Reference in New Issue
Block a user