From 9127800d83ce88f966918655e93f8f4c5ab82ef1 Mon Sep 17 00:00:00 2001 From: slaren Date: Sat, 17 Aug 2024 01:51:06 +0200 Subject: [PATCH] wip --- examples/llama-bench/llama-bench.cpp | 8 ++ ggml/src/ggml-cuda.cu | 16 +-- src/llama.cpp | 204 ++++++++++++++------------- 3 files changed, 116 insertions(+), 112 deletions(-) diff --git a/examples/llama-bench/llama-bench.cpp b/examples/llama-bench/llama-bench.cpp index 42918bfc7..cdf5f9ddc 100644 --- a/examples/llama-bench/llama-bench.cpp +++ b/examples/llama-bench/llama-bench.cpp @@ -1329,11 +1329,19 @@ static void test_gen(llama_context * ctx, int n_gen, int n_past, int n_threads) llama_token token = llama_add_bos_token(model) ? llama_token_bos(model) : std::rand() % n_vocab; + uint64_t t_decode_total = 0; + uint64_t t_sync_total = 0; for (int i = 0; i < n_gen; i++) { + uint64_t t_start = get_time_ns(); llama_decode(ctx, llama_batch_get_one(&token, 1, n_past + i, 0)); + uint64_t t_decode = get_time_ns(); llama_synchronize(ctx); + uint64_t t_sync = get_time_ns(); + t_decode_total += t_decode - t_start; + t_sync_total += t_sync - t_decode; token = std::rand() % n_vocab; } + //printf("decode: %lu us, sync: %lu us\n", t_decode_total / 1000 / n_gen, t_sync_total / 1000 / n_gen); } static void llama_null_log_callback(enum ggml_log_level level, const char * text, void * user_data) { diff --git a/ggml/src/ggml-cuda.cu b/ggml/src/ggml-cuda.cu index 682c30d45..46f493170 100644 --- a/ggml/src/ggml-cuda.cu +++ b/ggml/src/ggml-cuda.cu @@ -130,22 +130,10 @@ static cudaError_t ggml_cuda_device_malloc(void ** ptr, size_t size, int device) } return res; #else - -#if !defined(GGML_USE_HIPBLAS) && !defined(GGML_USE_MUSA) - cudaError_t err; - if (getenv("GGML_CUDA_ENABLE_UNIFIED_MEMORY") != nullptr) - { - err = cudaMallocManaged(ptr, size); + if (getenv("GGML_CUDA_ENABLE_UNIFIED_MEMORY") != nullptr) { + return cudaMallocManaged(ptr, size); } - else - { - err = cudaMalloc(ptr, size); - } - return err; -#else return cudaMalloc(ptr, size); -#endif // !defined(GGML_USE_HIPBLAS) && !defined(GGML_USE_MUSA) - #endif } diff --git a/src/llama.cpp b/src/llama.cpp index b0ee74bc4..c8241c93d 100644 --- a/src/llama.cpp +++ b/src/llama.cpp @@ -2739,8 +2739,10 @@ struct llama_context { std::vector buf_compute_meta; ggml_backend_sched_t sched = nullptr; - std::vector buf_compute_meta_next; + //std::vector buf_compute_meta_next; struct ggml_cgraph * gf_next = nullptr; + int pos_next = -1; + std::future fut_next; ggml_abort_callback abort_callback = nullptr; void * abort_callback_data = nullptr; @@ -8446,15 +8448,14 @@ struct llm_build_context { pooling_type (cparams.pooling_type), rope_type (hparams.rope_type), cb (cb), - buf_compute_meta (prepare_only ? lctx.buf_compute_meta_next : lctx.buf_compute_meta) { - // all initializations should be done in init() - if (prepare_only) { - const uint32_t pad = llama_kv_cache_get_padding(cparams); - n_kv = std::min(kv_self.size, std::max(pad, GGML_PAD(llama_kv_cache_cell_max(kv_self) + 1, pad))); - } + buf_compute_meta (lctx.buf_compute_meta) { + //buf_compute_meta (prepare_only ? lctx.buf_compute_meta_next : lctx.buf_compute_meta) { + // all initializations should be done in init() + if (prepare_only) { + const uint32_t pad = llama_kv_cache_get_padding(cparams); + n_kv = std::min(kv_self.size, std::max(pad, GGML_PAD(llama_kv_cache_cell_max(kv_self) + 1, pad))); } - - void init() { + //printf("n_kv: %d, kv_head: %d [%d]\n", n_kv, kv_head, prepare_only); struct ggml_init_params params = { /*.mem_size =*/ buf_compute_meta.size(), /*.mem_buffer =*/ buf_compute_meta.data(), @@ -8480,11 +8481,8 @@ struct llm_build_context { lctx.inp_KQ_mask_cross = nullptr; } - void free() { - if (ctx0) { - ggml_free(ctx0); - ctx0 = nullptr; - } + ~llm_build_context() { + ggml_free(ctx0); } struct ggml_cgraph * build_k_shift() { @@ -13767,12 +13765,8 @@ static struct ggml_cgraph * llama_build_graph_defrag(llama_context & lctx, const struct llm_build_context llm(lctx, dummy, cb, false); - llm.init(); - struct ggml_cgraph * result = llm.build_defrag(ids); - llm.free(); - return result; } @@ -13784,12 +13778,8 @@ static struct ggml_cgraph * llama_build_graph_k_shift(llama_context & lctx) { struct llm_build_context llm(lctx, dummy, cb, false); - llm.init(); - struct ggml_cgraph * result = llm.build_k_shift(); - llm.free(); - return result; } @@ -13801,12 +13791,8 @@ static struct ggml_cgraph * llama_build_graph_s_copy(llama_context & lctx) { struct llm_build_context llm(lctx, dummy, cb, false); - llm.init(); - struct ggml_cgraph * result = llm.build_s_copy(); - llm.free(); - return result; } @@ -13817,6 +13803,8 @@ static struct ggml_cgraph * llama_build_graph( bool prepare_only = false) { const auto & model = lctx.model; + //printf("llama_build_graph [%d]\n", prepare_only); + // this callback allows us to apply custom logic to each tensor (e.g. ggml-alloc, offloading, etc.) llm_build_cb cb = [&](struct ggml_tensor * cur, const char * name, int il) { if (il >= 0) { @@ -13852,8 +13840,6 @@ static struct ggml_cgraph * llama_build_graph( struct llm_build_context llm(lctx, batch, cb, worst_case, prepare_only); - llm.init(); - switch (model.arch) { case LLM_ARCH_LLAMA: { @@ -14022,8 +14008,6 @@ static struct ggml_cgraph * llama_build_graph( result = llm.append_pooling(result); } - llm.free(); - return result; } @@ -14548,6 +14532,13 @@ static int llama_decode_internal( llama_batch batch_all, // TODO: rename back to batch bool prepare_only = false) { + if (!prepare_only && lctx.fut_next.valid()) { + //int64_t t_start = ggml_time_us(); + lctx.fut_next.wait(); + //int64_t t_end = ggml_time_us(); + //printf("waited %ld us\n", t_end - t_start); + } + lctx.is_encoding = false; const uint32_t n_tokens_all = batch_all.n_tokens; @@ -14584,10 +14575,14 @@ static int llama_decode_internal( const auto n_ubatch = cparams.n_ubatch; // TODO: simplify or deprecate - std::vector pos; - std::vector n_seq_id; - std::vector seq_id_arr; - std::vector> seq_id; + static std::vector pos; + static std::vector n_seq_id; + static std::vector seq_id_arr; + static std::vector> seq_id; + //pos.clear(); + //n_seq_id.clear(); + //seq_id_arr.clear(); + //seq_id.clear(); // this indicates we are doing pooled embedding, so we ignore batch.logits and output all tokens const bool embd_pooled = cparams.embeddings && cparams.pooling_type != LLAMA_POOLING_TYPE_NONE; @@ -14605,7 +14600,7 @@ static int llama_decode_internal( } // reserve output buffer - if (llama_output_reserve(lctx, n_outputs) < n_outputs) { + if (!prepare_only && llama_output_reserve(lctx, n_outputs) < n_outputs) { LLAMA_LOG_ERROR("%s: could not reserve space for batch with %u outputs\n", __func__, n_outputs); return -2; }; @@ -14624,7 +14619,8 @@ static int llama_decode_internal( } } - if (n_tokens_all != 1) { + if (lctx.gf_next && (n_tokens_all != 1 || batch_all.all_pos_0 != lctx.pos_next)) { + //printf("wasted graph %d (need %d)\n", lctx.pos_next, batch_all.all_pos_0); lctx.gf_next = nullptr; } @@ -14644,7 +14640,7 @@ static int llama_decode_internal( }; // count the outputs in this u_batch - { + if (!prepare_only) { int32_t n_outputs_new = 0; if (u_batch.logits && !embd_pooled) { @@ -14664,78 +14660,78 @@ static int llama_decode_internal( lctx.n_outputs = n_outputs_new; } - int n_threads = n_tokens == 1 ? cparams.n_threads : cparams.n_threads_batch; - GGML_ASSERT(n_threads > 0); + if (!prepare_only) { + // helpers for smoother batch API transition + // after deprecating the llama_eval calls, these will be removed + if (u_batch.pos == nullptr) { + pos.resize(n_tokens); + for (uint32_t i = 0; i < n_tokens; i++) { + pos[i] = u_batch.all_pos_0 + i*u_batch.all_pos_1; + } - // helpers for smoother batch API transition - // after deprecating the llama_eval calls, these will be removed - if (u_batch.pos == nullptr) { - pos.resize(n_tokens); - for (uint32_t i = 0; i < n_tokens; i++) { - pos[i] = u_batch.all_pos_0 + i*u_batch.all_pos_1; + u_batch.pos = pos.data(); } - u_batch.pos = pos.data(); - } + if (u_batch.seq_id == nullptr) { + n_seq_id.resize(n_tokens); + seq_id.resize(n_tokens); + seq_id_arr.resize(n_tokens); + for (uint32_t i = 0; i < n_tokens; i++) { + n_seq_id[i] = 1; + seq_id[i].resize(1); + seq_id[i][0] = u_batch.all_seq_id; + seq_id_arr[i] = seq_id[i].data(); + } - if (u_batch.seq_id == nullptr) { - n_seq_id.resize(n_tokens); - seq_id.resize(n_tokens); - seq_id_arr.resize(n_tokens); - for (uint32_t i = 0; i < n_tokens; i++) { - n_seq_id[i] = 1; - seq_id[i].resize(1); - seq_id[i][0] = u_batch.all_seq_id; - seq_id_arr[i] = seq_id[i].data(); + u_batch.n_seq_id = n_seq_id.data(); + u_batch.seq_id = seq_id_arr.data(); } - u_batch.n_seq_id = n_seq_id.data(); - u_batch.seq_id = seq_id_arr.data(); - } + // non-causal masks do not use the KV cache + if (hparams.causal_attn) { + //llama_kv_cache_update(&lctx); - // non-causal masks do not use the KV cache - if (hparams.causal_attn && !prepare_only) { - llama_kv_cache_update(&lctx); + // if we have enough unused cells before the current head -> + // better to start searching from the beginning of the cache, hoping to fill it + if (kv_self.head > kv_self.used + 2*n_tokens) { + kv_self.head = 0; + } - // if we have enough unused cells before the current head -> - // better to start searching from the beginning of the cache, hoping to fill it - if (kv_self.head > kv_self.used + 2*n_tokens) { - kv_self.head = 0; - } + if (!llama_kv_cache_find_slot(kv_self, u_batch)) { + return 1; + } - if (!llama_kv_cache_find_slot(kv_self, u_batch)) { - return 1; - } - - if (!kv_self.recurrent) { - // a heuristic, to avoid attending the full cache if it is not yet utilized - // after enough generations, the benefit from this heuristic disappears - // if we start defragmenting the cache, the benefit from this will be more important - const uint32_t pad = llama_kv_cache_get_padding(cparams); - kv_self.n = std::min(kv_self.size, std::max(pad, GGML_PAD(llama_kv_cache_cell_max(kv_self), pad))); - //kv_self.n = llama_kv_cache_cell_max(kv_self); + if (!kv_self.recurrent) { + // a heuristic, to avoid attending the full cache if it is not yet utilized + // after enough generations, the benefit from this heuristic disappears + // if we start defragmenting the cache, the benefit from this will be more important + const uint32_t pad = llama_kv_cache_get_padding(cparams); + kv_self.n = std::min(kv_self.size, std::max(pad, GGML_PAD(llama_kv_cache_cell_max(kv_self), pad))); + //kv_self.n = llama_kv_cache_cell_max(kv_self); + } } } //printf("kv_self.n = %5d, kv_self.used = %5d, kv_self.head = %5d\n", kv_self.n, kv_self.used, kv_self.head); - ggml_cgraph * gf = lctx.gf_next; if (!gf) { + //printf("building %d\n", u_batch.all_pos_0); ggml_backend_sched_reset(lctx.sched); - ggml_backend_sched_set_eval_callback(lctx.sched, lctx.cparams.cb_eval, lctx.cparams.cb_eval_user_data); gf = llama_build_graph(lctx, u_batch, false, prepare_only); ggml_backend_sched_alloc_graph(lctx.sched, gf); + if (prepare_only) { + //printf("prepared %d\n", u_batch.all_pos_0); + lctx.gf_next = gf; + lctx.pos_next = u_batch.all_pos_0; + return 0; + } + } else { + lctx.gf_next = nullptr; + //printf("using cached graph %d\n", u_batch.all_pos_0); } - if (prepare_only) { - lctx.gf_next = gf; - return 0; - } - - lctx.gf_next = nullptr; - // the output is always the last tensor in the graph struct ggml_tensor * res = gf->nodes[gf->n_nodes - 1]; @@ -14761,9 +14757,13 @@ static int llama_decode_internal( } // LLAMA_LOG_INFO("graph build time: %.3f ms (%d nodes, %d leafs)\n", (ggml_time_us() - t_start_us)/1000.0, gf->n_nodes, gf->n_leafs); - llama_set_inputs(lctx, u_batch); + int n_threads = n_tokens == 1 ? cparams.n_threads : cparams.n_threads_batch; + GGML_ASSERT(n_threads > 0); + + ggml_backend_sched_set_eval_callback(lctx.sched, lctx.cparams.cb_eval, lctx.cparams.cb_eval_user_data); + llama_graph_compute(lctx, gf, n_threads); // update the kv ring buffer @@ -14856,21 +14856,28 @@ static int llama_decode_internal( if (fragmentation > cparams.defrag_thold) { //LLAMA_LOG_INFO("fragmentation: %.2f\n", fragmentation); - llama_kv_cache_defrag(kv_self); + //llama_kv_cache_defrag(kv_self); } } - // Reset state for the next token before backend sync, to allow the CPU activities in the reset to - // overlap with device computation. - ggml_backend_sched_reset(lctx.sched); + if (true && n_tokens_all == 1 && !prepare_only) { + //int64_t t_prepare_start_us = ggml_time_us(); - if (n_tokens_all == 1 && !prepare_only) { // prepare graph for the next token - llama_token next_token_dummy = 0; + llama_token * next_token_dummy = (llama_token *) 0x1; llama_pos n_past = batch_all.all_pos_0 + 1; - llama_seq_id seq_id = 0; - llama_batch batch_next = llama_batch_get_one(&next_token_dummy, 1, n_past, seq_id); - llama_decode_internal(lctx, batch_next, true); + llama_seq_id seq_id = batch_all.all_seq_id; + llama_batch batch_next = llama_batch_get_one(next_token_dummy, 1, n_past, seq_id); + + //llama_decode_internal(lctx, batch_next, true); + lctx.fut_next = std::async(std::launch::async, llama_decode_internal, std::ref(lctx), batch_next, true); + + //int64_t t_prepare_us = ggml_time_us() - t_prepare_start_us; + //printf("prepare time: %ld us\n", t_prepare_us); + } else { + // Reset state for the next token before backend sync, to allow the CPU activities in the reset to + // overlap with device computation. + ggml_backend_sched_reset(lctx.sched); } return 0; @@ -16977,7 +16984,7 @@ struct llama_context * llama_new_context_with_model( // buffer used to store the computation graph and the tensor meta data ctx->buf_compute_meta.resize(ggml_tensor_overhead()*max_nodes + ggml_graph_overhead_custom(max_nodes, false)); - ctx->buf_compute_meta_next.resize(ggml_tensor_overhead()*max_nodes + ggml_graph_overhead_custom(max_nodes, false)); + //ctx->buf_compute_meta_next.resize(ggml_tensor_overhead()*max_nodes + ggml_graph_overhead_custom(max_nodes, false)); // enabling pipeline parallelism in the scheduler increases memory usage, so it is only done when necessary bool pipeline_parallel = @@ -18564,6 +18571,7 @@ int32_t llama_decode( } void llama_synchronize(struct llama_context * ctx) { + //printf("llama_synchronize\n"); ggml_backend_sched_synchronize(ctx->sched); // FIXME: if multiple single tokens are evaluated without a synchronization,