diff --git a/convert-hf-to-gguf.py b/convert-hf-to-gguf.py index d534b5163..8937a4981 100755 --- a/convert-hf-to-gguf.py +++ b/convert-hf-to-gguf.py @@ -1740,6 +1740,38 @@ class Phi3MiniModel(Model): scores[token_id] = -1000.0 toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED + tokenizer_config_file = self.dir_model / 'tokenizer_config.json' + if tokenizer_config_file.is_file(): + with open(tokenizer_config_file, "r", encoding="utf-8") as f: + tokenizer_config_json = json.load(f) + added_tokens_decoder = tokenizer_config_json.get("added_tokens_decoder", {}) + for token_id, foken_data in added_tokens_decoder.items(): + token_id = int(token_id) + token = foken_data["content"].encode("utf-8") + if toktypes[token_id] != SentencePieceTokenTypes.UNKNOWN: + assert(tokens[token_id] == token) + tokens[token_id] = token + scores[token_id] = -1000.0 + toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED + if foken_data.get("special"): + toktypes[token_id] = SentencePieceTokenTypes.CONTROL + + tokenizer_file = self.dir_model / 'tokenizer.json' + if tokenizer_file.is_file(): + with open(tokenizer_file, "r", encoding="utf-8") as f: + tokenizer_json = json.load(f) + added_tokens = tokenizer_json.get("added_tokens", []) + for foken_data in added_tokens: + token_id = int(foken_data["id"]) + token = foken_data["content"].encode("utf-8") + if toktypes[token_id] != SentencePieceTokenTypes.UNKNOWN: + assert(tokens[token_id] == token) + tokens[token_id] = token + scores[token_id] = -1000.0 + toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED + if foken_data.get("special"): + toktypes[token_id] = SentencePieceTokenTypes.CONTROL + self.gguf_writer.add_tokenizer_model("llama") self.gguf_writer.add_tokenizer_pre("default") self.gguf_writer.add_token_list(tokens) diff --git a/examples/server/tests/features/server.feature b/examples/server/tests/features/server.feature index d21c09135..048cfad06 100644 --- a/examples/server/tests/features/server.feature +++ b/examples/server/tests/features/server.feature @@ -37,8 +37,8 @@ Feature: llama.cpp server Examples: Prompts | prompt | n_predict | re_content | n_prompt | n_predicted | truncated | - | I believe the meaning of life is | 8 | (read\|going)+ | 18 | 8 | not | - | Write a joke about AI from a very long prompt which will not be truncated | 256 | (princesses\|everyone\|kids\|Anna\|forest)+ | 46 | 64 | not | + | I believe the meaning of life is | 8 | (read\|going\|pretty)+ | 18 | 8 | not | + | Write a joke about AI from a very long prompt which will not be truncated | 256 | (princesses\|everyone\|kids\|Anna\|forest)+ | 45 | 64 | not | Scenario: Completion prompt truncated Given a prompt: @@ -67,8 +67,8 @@ Feature: llama.cpp server Examples: Prompts | model | system_prompt | user_prompt | max_tokens | re_content | n_prompt | n_predicted | enable_streaming | truncated | - | llama-2 | Book | What is the best book | 8 | (Here\|what)+ | 77 | 8 | disabled | not | - | codellama70b | You are a coding assistant. | Write the fibonacci function in c++. | 128 | (thanks\|happy\|bird\|Annabyear)+ | -1 | 64 | enabled | | + | llama-2 | Book | What is the best book | 8 | (Here\|what)+ | 76 | 8 | disabled | not | + | codellama70b | You are a coding assistant. | Write the fibonacci function in c++. | 128 | (thanks\|happy\|bird\|fireplace)+ | -1 | 64 | enabled | | Scenario Outline: OAI Compatibility w/ response format @@ -84,7 +84,7 @@ Feature: llama.cpp server | response_format | n_predicted | re_content | | {"type": "json_object", "schema": {"const": "42"}} | 5 | "42" | | {"type": "json_object", "schema": {"items": [{"type": "integer"}]}} | 10 | \[ -300 \] | - | {"type": "json_object"} | 10 | \{ " Jacky. | + | {"type": "json_object"} | 10 | \{ " Saragine. | Scenario: Tokenize / Detokenize diff --git a/examples/server/tests/features/slotsave.feature b/examples/server/tests/features/slotsave.feature index 1c281c074..ba4ecb6f5 100644 --- a/examples/server/tests/features/slotsave.feature +++ b/examples/server/tests/features/slotsave.feature @@ -26,7 +26,7 @@ Feature: llama.cpp server slot management # Since we have cache, this should only process the last tokens Given a user prompt "What is the capital of Germany?" And a completion request with no api error - Then 24 tokens are predicted matching (Thank|special) + Then 24 tokens are predicted matching (Thank|special|Lily) And 7 prompt tokens are processed # Loading the original cache into slot 0, # we should only be processing 1 prompt token and get the same output @@ -41,7 +41,7 @@ Feature: llama.cpp server slot management Given a user prompt "What is the capital of Germany?" And using slot id 1 And a completion request with no api error - Then 24 tokens are predicted matching (Thank|special) + Then 24 tokens are predicted matching (Thank|special|Lily) And 1 prompt tokens are processed Scenario: Erase Slot diff --git a/llama.cpp b/llama.cpp index 863961f15..e2ebe1752 100644 --- a/llama.cpp +++ b/llama.cpp @@ -4553,7 +4553,8 @@ static void llm_load_vocab( (t.first == "<|eot_id|>" || t.first == "<|im_end|>" || t.first == "<|end|>" || - t.first == "" + t.first == "" || + t.first == "<|endoftext|>" ) ) { vocab.special_eot_id = t.second; @@ -12502,6 +12503,10 @@ static std::vector llama_tokenize_internal(const llama_vocab & output.push_back(vocab.special_bos_id); } + static const bool rtrim = true; //TODO: as param + bool is_prev_special = false; + bool special_token_rtrim = false; + for (const auto & fragment : fragment_buffer) { if (fragment.type == FRAGMENT_BUFFER_VARIANT_TYPE_RAW_TEXT) { // without adding this leading whitespace, we do not get the same results as the original tokenizer @@ -12511,9 +12516,21 @@ static std::vector llama_tokenize_internal(const llama_vocab & // and passing 'add space prefix' as bool argument // auto raw_text = fragment.raw_text.substr(fragment.offset, fragment.length); - if (&fragment == &fragment_buffer.front()) { - if (vocab.add_space_prefix) { - raw_text = " " + raw_text; // prefix with space if the first token is not special + + if (special_token_rtrim) { + size_t num_whitespaces = 0; + while (isspace(raw_text[num_whitespaces])) { + num_whitespaces++; + } + if (num_whitespaces == raw_text.size()) { + continue; // skip if all whitespaces + } + raw_text = raw_text.substr(num_whitespaces); + } + + if (vocab.add_space_prefix) { + if (!output.size() || is_prev_special) { // prefix with space if first token + raw_text = " " + raw_text; } } @@ -12525,6 +12542,12 @@ static std::vector llama_tokenize_internal(const llama_vocab & tokenizer.tokenize(raw_text, output); } else { // if (fragment.type == FRAGMENT_BUFFER_VARIANT_TYPE_TOKEN) output.push_back(fragment.token); + is_prev_special = true; + // phi-3 special tokens without rtrim, works fine for llama-spm too + special_token_rtrim = rtrim + && fragment.token != vocab.special_bos_id + && fragment.token != vocab.special_unk_id + && fragment.token != vocab.special_eos_id; } } diff --git a/tests/test-tokenizer-random.py b/tests/test-tokenizer-random.py index d5a6f185f..1166ac1e4 100644 --- a/tests/test-tokenizer-random.py +++ b/tests/test-tokenizer-random.py @@ -153,11 +153,23 @@ def generator_custom_text_edge_cases() -> Iterator[str]: 'Ⅵ-a', # unicode_ranges_digit, {0x00002150, 0x0000218F} // Number Forms '\uFEFF//', # unicode_ranges_control, 0xFEFF (BOM) 'Cửa Việt', # llama-3, ignore_merges = true - 'a', # TODO: Phi-3 fail + 'a', # Phi-3 fail + '<|endoftext|>' # Phi-3 fail 'a\na', # TODO: Bert fail ] +def generator_random_special_tokens(special_tokens:list[str], iterations=100) -> Iterator[str]: + special_tokens = set(special_tokens) + special_tokens.update([" ", "\n", "\t", "-", "!", "one", "1", "", ""]) + special_tokens = list(sorted(special_tokens)) + rand = random.Random() + for m in range(iterations): + rand.seed(m) + words = rand.choices(special_tokens, k=500) + yield "".join(words) + + def generator_vocab_words(vocab: list[str]) -> Iterator[str]: """Brute force check all vocab words""" yield from vocab @@ -289,14 +301,31 @@ def main(argv: list[str] = None): vocab = list(sorted(tokenizer.batch_decode(list(tokenizer.get_vocab().values()), skip_special_tokens=True))) test_compare_tokenizer(func_tokenize1, func_tokenize2, generator_custom_text()) test_compare_tokenizer(func_tokenize1, func_tokenize2, generator_custom_text_edge_cases()) + test_compare_tokenizer(func_tokenize1, func_tokenize2, generator_random_special_tokens(tokenizer.all_special_tokens, 10_000)) test_compare_tokenizer(func_tokenize1, func_tokenize2, generator_vocab_words(vocab)) test_compare_tokenizer(func_tokenize1, func_tokenize2, generator_random_chars(10_000)) test_compare_tokenizer(func_tokenize1, func_tokenize2, generator_random_vocab_chars(vocab, 10_000)) - test_compare_tokenizer(func_tokenize1, func_tokenize2, generator_random_vocab_words(vocab, 10_000)) + test_compare_tokenizer(func_tokenize1, func_tokenize2, generator_random_vocab_words(vocab, 5_000)) # test_compare_tokenizer(func_tokenize1, func_tokenize2, generator_random_bytes(10_000)) # FAIL model.free() if __name__ == "__main__": - main() + # main() + + path_tokenizers = "./models/tokenizers/" + path_vocab_format = "./models/ggml-vocab-%s.gguf" + + # import os + # tokenizers = os.listdir(path_tokenizers) + tokenizers = [ + "llama-spm", # SPM + "phi-3", # SPM + ] + + for tokenizer in tokenizers: + print("\n" + "=" * 50 + "\n" + tokenizer + "\n") # noqa + vocab_file = path_vocab_format % tokenizer + dir_tokenizer = path_tokenizers + "/" + tokenizer + main([vocab_file, dir_tokenizer, "--verbose"])