mirror of
https://github.com/ggerganov/llama.cpp.git
synced 2025-01-23 09:59:18 +01:00
convert : write more metadata for LLaMA
This commit is contained in:
parent
9bf5a7efcb
commit
91d4bfd536
@ -17,6 +17,7 @@ from sentencepiece import SentencePieceProcessor
|
|||||||
# compatible with python < 3.9
|
# compatible with python < 3.9
|
||||||
NDArray: 'TypeAlias' = 'np.ndarray[Any, Any]'
|
NDArray: 'TypeAlias' = 'np.ndarray[Any, Any]'
|
||||||
|
|
||||||
|
|
||||||
def permute(weights: NDArray, n_head: int) -> NDArray:
|
def permute(weights: NDArray, n_head: int) -> NDArray:
|
||||||
return (weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
|
return (weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
|
||||||
.swapaxes(1, 2)
|
.swapaxes(1, 2)
|
||||||
@ -57,7 +58,7 @@ with open(dir_model + "/config.json", "r", encoding="utf-8") as f:
|
|||||||
hparams = json.load(f)
|
hparams = json.load(f)
|
||||||
|
|
||||||
if hparams["architectures"][0] != "LlamaForCausalLM":
|
if hparams["architectures"][0] != "LlamaForCausalLM":
|
||||||
print("Model architecture not supported: " + hparams["architectures"][0] )
|
print("Model architecture not supported: " + hparams["architectures"][0])
|
||||||
sys.exit()
|
sys.exit()
|
||||||
|
|
||||||
model = AutoModelForCausalLM.from_pretrained(dir_model, low_cpu_mem_usage=True, trust_remote_code=True)
|
model = AutoModelForCausalLM.from_pretrained(dir_model, low_cpu_mem_usage=True, trust_remote_code=True)
|
||||||
@ -69,17 +70,22 @@ gguf_writer = gguf.GGUFWriter.open(fname_out)
|
|||||||
print("gguf: get model metadata")
|
print("gguf: get model metadata")
|
||||||
|
|
||||||
llm_arch = "llama"
|
llm_arch = "llama"
|
||||||
|
hf_repo = hparams["_name_or_path"]
|
||||||
head_count = hparams["num_attention_heads"]
|
head_count = hparams["num_attention_heads"]
|
||||||
|
head_count_kv = hparams["num_key_value_heads"]
|
||||||
block_count = hparams["num_hidden_layers"]
|
block_count = hparams["num_hidden_layers"]
|
||||||
|
|
||||||
gguf_writer.add_name(last_dir)
|
gguf_writer.add_name(last_dir)
|
||||||
gguf_writer.add_architecture(llm_arch)
|
gguf_writer.add_architecture(llm_arch)
|
||||||
|
gguf_writer.add_quantization_version(ftype)
|
||||||
|
guff_writer.add_source_hf_repo(hf_repo)
|
||||||
gguf_writer.add_context_length(llm_arch, hparams["max_position_embeddings"])
|
gguf_writer.add_context_length(llm_arch, hparams["max_position_embeddings"])
|
||||||
gguf_writer.add_embedding_length(llm_arch, hparams["hidden_size"])
|
gguf_writer.add_embedding_length(llm_arch, hparams["hidden_size"])
|
||||||
gguf_writer.add_block_count(llm_arch, block_count)
|
gguf_writer.add_block_count(llm_arch, block_count)
|
||||||
gguf_writer.add_feed_forward_length(llm_arch, hparams["intermediate_size"])
|
gguf_writer.add_feed_forward_length(llm_arch, hparams["intermediate_size"])
|
||||||
gguf_writer.add_rope_dimension_count(llm_arch, hparams["hidden_size"] // hparams["num_attention_heads"])
|
gguf_writer.add_rope_dimension_count(llm_arch, hparams["hidden_size"] // hparams["num_attention_heads"])
|
||||||
gguf_writer.add_head_count(llm_arch, head_count)
|
gguf_writer.add_head_count(llm_arch, head_count)
|
||||||
|
gguf_writer.add_head_count_kv(llm_arch, head_count_kv)
|
||||||
gguf_writer.add_layer_norm_rms_eps(llm_arch, hparams["rms_norm_eps"])
|
gguf_writer.add_layer_norm_rms_eps(llm_arch, hparams["rms_norm_eps"])
|
||||||
|
|
||||||
|
|
||||||
@ -173,7 +179,7 @@ for name in list_vars.keys():
|
|||||||
|
|
||||||
# permute these
|
# permute these
|
||||||
if name.endswith(".q_proj.weight") or name.endswith(".k_proj.weight"):
|
if name.endswith(".q_proj.weight") or name.endswith(".k_proj.weight"):
|
||||||
data = permute(data,head_count)
|
data = permute(data, head_count)
|
||||||
|
|
||||||
# map tensor names
|
# map tensor names
|
||||||
if name.endswith(".weight") and name[:-7] in tensor_map:
|
if name.endswith(".weight") and name[:-7] in tensor_map:
|
||||||
@ -181,7 +187,7 @@ for name in list_vars.keys():
|
|||||||
elif name.endswith(".bias") and name[:-5] in tensor_map:
|
elif name.endswith(".bias") and name[:-5] in tensor_map:
|
||||||
name = tensor_map[name[:-5]] + ".bias"
|
name = tensor_map[name[:-5]] + ".bias"
|
||||||
else:
|
else:
|
||||||
print( "Can not map tensor '" + name + "'" )
|
print("Can not map tensor '" + name + "'")
|
||||||
sys.exit()
|
sys.exit()
|
||||||
|
|
||||||
n_dims = len(data.shape)
|
n_dims = len(data.shape)
|
||||||
@ -237,5 +243,5 @@ for name in list_vars.keys():
|
|||||||
gguf_writer.close()
|
gguf_writer.close()
|
||||||
|
|
||||||
|
|
||||||
print("gguf: model successfully exported to '" + fname_out + "'" )
|
print("gguf: model successfully exported to '" + fname_out + "'")
|
||||||
print("")
|
print("")
|
||||||
|
17
gguf.py
17
gguf.py
@ -12,23 +12,10 @@ from typing import Any, IO, List
|
|||||||
import numpy as np
|
import numpy as np
|
||||||
import sys
|
import sys
|
||||||
|
|
||||||
|
|
||||||
class GGMLQuantizationType(IntEnum):
|
class GGMLQuantizationType(IntEnum):
|
||||||
F32 = 0
|
F32 = 0
|
||||||
F16 = 1
|
F16 = 1
|
||||||
Q4_0 = 2
|
|
||||||
Q4_1 = 3
|
|
||||||
# Q4_2 = 4 # support has been removed
|
|
||||||
# Q4_3 = 5 # support has been removed
|
|
||||||
Q5_0 = 6
|
|
||||||
Q5_1 = 7
|
|
||||||
Q8_0 = 8
|
|
||||||
Q8_1 = 9
|
|
||||||
Q2_K = 10
|
|
||||||
Q3_K = 11
|
|
||||||
Q4_K = 12
|
|
||||||
Q5_K = 13
|
|
||||||
Q6_K = 14
|
|
||||||
Q8_K = 15
|
|
||||||
|
|
||||||
|
|
||||||
class GGUFValueType(IntEnum):
|
class GGUFValueType(IntEnum):
|
||||||
@ -143,7 +130,7 @@ class GGUFWriter:
|
|||||||
|
|
||||||
if add_vtype:
|
if add_vtype:
|
||||||
self.kv_data += struct.pack("<I", vtype)
|
self.kv_data += struct.pack("<I", vtype)
|
||||||
self.kv_data_count += 1;
|
self.kv_data_count += 1
|
||||||
|
|
||||||
if vtype == GGUFValueType.UINT8:
|
if vtype == GGUFValueType.UINT8:
|
||||||
self.kv_data += struct.pack("<B", val)
|
self.kv_data += struct.pack("<B", val)
|
||||||
|
Loading…
Reference in New Issue
Block a user