convert : write more metadata for LLaMA

This commit is contained in:
M. Yusuf Sarıgöz 2023-08-13 13:29:46 +03:00
parent 9bf5a7efcb
commit 91d4bfd536
2 changed files with 20 additions and 27 deletions

View File

@ -17,6 +17,7 @@ from sentencepiece import SentencePieceProcessor
# compatible with python < 3.9 # compatible with python < 3.9
NDArray: 'TypeAlias' = 'np.ndarray[Any, Any]' NDArray: 'TypeAlias' = 'np.ndarray[Any, Any]'
def permute(weights: NDArray, n_head: int) -> NDArray: def permute(weights: NDArray, n_head: int) -> NDArray:
return (weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:]) return (weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
.swapaxes(1, 2) .swapaxes(1, 2)
@ -52,12 +53,12 @@ if len(sys.argv) > 2:
fname_out = sys.argv[1] + "/ggml-model-" + ftype_str[ftype] + ".gguf" fname_out = sys.argv[1] + "/ggml-model-" + ftype_str[ftype] + ".gguf"
print("gguf: loading model "+last_dir) print("gguf: loading model "+last_dir)
with open(dir_model + "/config.json", "r", encoding="utf-8") as f: with open(dir_model + "/config.json", "r", encoding="utf-8") as f:
hparams = json.load(f) hparams = json.load(f)
if hparams["architectures"][0] != "LlamaForCausalLM": if hparams["architectures"][0] != "LlamaForCausalLM":
print("Model architecture not supported: " + hparams["architectures"][0] ) print("Model architecture not supported: " + hparams["architectures"][0])
sys.exit() sys.exit()
model = AutoModelForCausalLM.from_pretrained(dir_model, low_cpu_mem_usage=True, trust_remote_code=True) model = AutoModelForCausalLM.from_pretrained(dir_model, low_cpu_mem_usage=True, trust_remote_code=True)
@ -68,18 +69,23 @@ gguf_writer = gguf.GGUFWriter.open(fname_out)
print("gguf: get model metadata") print("gguf: get model metadata")
llm_arch = "llama" llm_arch = "llama"
head_count = hparams["num_attention_heads"] hf_repo = hparams["_name_or_path"]
head_count = hparams["num_attention_heads"]
head_count_kv = hparams["num_key_value_heads"]
block_count = hparams["num_hidden_layers"] block_count = hparams["num_hidden_layers"]
gguf_writer.add_name(last_dir) gguf_writer.add_name(last_dir)
gguf_writer.add_architecture(llm_arch) gguf_writer.add_architecture(llm_arch)
gguf_writer.add_quantization_version(ftype)
guff_writer.add_source_hf_repo(hf_repo)
gguf_writer.add_context_length(llm_arch, hparams["max_position_embeddings"]) gguf_writer.add_context_length(llm_arch, hparams["max_position_embeddings"])
gguf_writer.add_embedding_length(llm_arch, hparams["hidden_size"]) gguf_writer.add_embedding_length(llm_arch, hparams["hidden_size"])
gguf_writer.add_block_count(llm_arch, block_count) gguf_writer.add_block_count(llm_arch, block_count)
gguf_writer.add_feed_forward_length(llm_arch, hparams["intermediate_size"]) gguf_writer.add_feed_forward_length(llm_arch, hparams["intermediate_size"])
gguf_writer.add_rope_dimension_count(llm_arch, hparams["hidden_size"] // hparams["num_attention_heads"]) gguf_writer.add_rope_dimension_count(llm_arch, hparams["hidden_size"] // hparams["num_attention_heads"])
gguf_writer.add_head_count(llm_arch, head_count) gguf_writer.add_head_count(llm_arch, head_count)
gguf_writer.add_head_count_kv(llm_arch, head_count_kv)
gguf_writer.add_layer_norm_rms_eps(llm_arch, hparams["rms_norm_eps"]) gguf_writer.add_layer_norm_rms_eps(llm_arch, hparams["rms_norm_eps"])
@ -173,7 +179,7 @@ for name in list_vars.keys():
# permute these # permute these
if name.endswith(".q_proj.weight") or name.endswith(".k_proj.weight"): if name.endswith(".q_proj.weight") or name.endswith(".k_proj.weight"):
data = permute(data,head_count) data = permute(data, head_count)
# map tensor names # map tensor names
if name.endswith(".weight") and name[:-7] in tensor_map: if name.endswith(".weight") and name[:-7] in tensor_map:
@ -181,11 +187,11 @@ for name in list_vars.keys():
elif name.endswith(".bias") and name[:-5] in tensor_map: elif name.endswith(".bias") and name[:-5] in tensor_map:
name = tensor_map[name[:-5]] + ".bias" name = tensor_map[name[:-5]] + ".bias"
else: else:
print( "Can not map tensor '" + name + "'" ) print("Can not map tensor '" + name + "'")
sys.exit() sys.exit()
n_dims = len(data.shape) n_dims = len(data.shape)
data_dtype = data.dtype data_dtype = data.dtype
# print( name + " dims " + str(n_dims) + " dtype " + str(data.dtype) ) # print( name + " dims " + str(n_dims) + " dtype " + str(data.dtype) )
@ -223,7 +229,7 @@ for name in list_vars.keys():
data = permute(data, head_count) data = permute(data, head_count)
n_dims = len(data.shape) n_dims = len(data.shape)
data_dtype = data.dtype data_dtype = data.dtype
if data_dtype != np.float16 and data_dtype != np.float32: if data_dtype != np.float16 and data_dtype != np.float32:
# convert any unsupported data types to float32 # convert any unsupported data types to float32
@ -237,5 +243,5 @@ for name in list_vars.keys():
gguf_writer.close() gguf_writer.close()
print("gguf: model successfully exported to '" + fname_out + "'" ) print("gguf: model successfully exported to '" + fname_out + "'")
print("") print("")

23
gguf.py
View File

@ -12,23 +12,10 @@ from typing import Any, IO, List
import numpy as np import numpy as np
import sys import sys
class GGMLQuantizationType(IntEnum): class GGMLQuantizationType(IntEnum):
F32 = 0 F32 = 0
F16 = 1 F16 = 1
Q4_0 = 2
Q4_1 = 3
# Q4_2 = 4 # support has been removed
# Q4_3 = 5 # support has been removed
Q5_0 = 6
Q5_1 = 7
Q8_0 = 8
Q8_1 = 9
Q2_K = 10
Q3_K = 11
Q4_K = 12
Q5_K = 13
Q6_K = 14
Q8_K = 15
class GGUFValueType(IntEnum): class GGUFValueType(IntEnum):
@ -143,7 +130,7 @@ class GGUFWriter:
if add_vtype: if add_vtype:
self.kv_data += struct.pack("<I", vtype) self.kv_data += struct.pack("<I", vtype)
self.kv_data_count += 1; self.kv_data_count += 1
if vtype == GGUFValueType.UINT8: if vtype == GGUFValueType.UINT8:
self.kv_data += struct.pack("<B", val) self.kv_data += struct.pack("<B", val)
@ -201,7 +188,7 @@ class GGUFWriter:
self.fout.write(bytes([0] * pad)) self.fout.write(bytes([0] * pad))
tensor.tofile(self.fout) tensor.tofile(self.fout)
pad = GGUFWriter.ggml_pad(tensor.nbytes, self.data_alignment) - tensor.nbytes pad = GGUFWriter.ggml_pad(tensor.nbytes, self.data_alignment) - tensor.nbytes
if pad != 0: if pad != 0:
self.fout.write(bytes([0] * pad)) self.fout.write(bytes([0] * pad))
@ -214,7 +201,7 @@ class GGUFWriter:
def add_architecture(self, architecture: str): def add_architecture(self, architecture: str):
self.add_string(constants.KEY_GENERAL_ARCHITECTURE, self.add_string(constants.KEY_GENERAL_ARCHITECTURE,
architecture) architecture)
def add_author(self, author: str): def add_author(self, author: str):
self.add_string(constants.KEY_GENERAL_AUTHOR, author) self.add_string(constants.KEY_GENERAL_AUTHOR, author)
@ -311,7 +298,7 @@ class GGUFWriter:
def add_token_scores(self, scores: List[float]): def add_token_scores(self, scores: List[float]):
self.add_array(constants.KEY_TOKENIZER_SCORES, scores) self.add_array(constants.KEY_TOKENIZER_SCORES, scores)
def add_bos_token_id(self, id: int): def add_bos_token_id(self, id: int):
self.add_uint32(constants.KEY_TOKENIZER_BOS_ID, id) self.add_uint32(constants.KEY_TOKENIZER_BOS_ID, id)