mirror of
https://github.com/ggerganov/llama.cpp.git
synced 2025-01-26 03:12:23 +01:00
speculative : add grammar support (#2991)
* speculative : add grammar support * grammars : add json_arr.gbnf * grammar : add comments to new grammar file * grammar : remove one nested level * common : warm-up with 2 tokens - seems to work better * speculative : print draft token pieces * speculative : reuse grammar parser + better logs and comments * speculative : avoid grammar_mem * make : fix speculative build
This commit is contained in:
parent
2ba85c8609
commit
921772104b
2
Makefile
2
Makefile
@ -495,7 +495,7 @@ baby-llama: examples/baby-llama/baby-llama.cpp ggml.o llama.o common.o $(OBJS)
|
|||||||
beam-search: examples/beam-search/beam-search.cpp build-info.h ggml.o llama.o common.o $(OBJS)
|
beam-search: examples/beam-search/beam-search.cpp build-info.h ggml.o llama.o common.o $(OBJS)
|
||||||
$(CXX) $(CXXFLAGS) $(filter-out %.h,$^) -o $@ $(LDFLAGS)
|
$(CXX) $(CXXFLAGS) $(filter-out %.h,$^) -o $@ $(LDFLAGS)
|
||||||
|
|
||||||
speculative: examples/speculative/speculative.cpp build-info.h ggml.o llama.o common.o $(OBJS)
|
speculative: examples/speculative/speculative.cpp build-info.h ggml.o llama.o common.o grammar-parser.o $(OBJS)
|
||||||
$(CXX) $(CXXFLAGS) $(filter-out %.h,$^) -o $@ $(LDFLAGS)
|
$(CXX) $(CXXFLAGS) $(filter-out %.h,$^) -o $@ $(LDFLAGS)
|
||||||
|
|
||||||
ifdef LLAMA_METAL
|
ifdef LLAMA_METAL
|
||||||
|
@ -772,7 +772,7 @@ std::tuple<struct llama_model *, struct llama_context *> llama_init_from_gpt_par
|
|||||||
{
|
{
|
||||||
LOG("warming up the model with an empty run\n");
|
LOG("warming up the model with an empty run\n");
|
||||||
|
|
||||||
const std::vector<llama_token> tmp = { llama_token_bos(lctx), };
|
const std::vector<llama_token> tmp = { llama_token_bos(lctx), llama_token_eos(lctx), };
|
||||||
llama_eval(lctx, tmp.data(), tmp.size(), 0, params.n_threads);
|
llama_eval(lctx, tmp.data(), tmp.size(), 0, params.n_threads);
|
||||||
llama_reset_timings(lctx);
|
llama_reset_timings(lctx);
|
||||||
}
|
}
|
||||||
|
@ -6,6 +6,7 @@
|
|||||||
|
|
||||||
#include "common.h"
|
#include "common.h"
|
||||||
#include "llama.h"
|
#include "llama.h"
|
||||||
|
#include "grammar-parser.h"
|
||||||
|
|
||||||
#include <cmath>
|
#include <cmath>
|
||||||
#include <cstdio>
|
#include <cstdio>
|
||||||
@ -109,16 +110,35 @@ int main(int argc, char ** argv) {
|
|||||||
// used to determine end of generation
|
// used to determine end of generation
|
||||||
bool has_eos = false;
|
bool has_eos = false;
|
||||||
|
|
||||||
|
// grammar stuff
|
||||||
|
struct llama_grammar * grammar_dft = NULL;
|
||||||
|
struct llama_grammar * grammar_tgt = NULL;
|
||||||
|
|
||||||
|
grammar_parser::parse_state parsed_grammar;
|
||||||
|
|
||||||
|
// if requested - load the grammar, error checking is omitted for brevity
|
||||||
|
if (!params.grammar.empty()) {
|
||||||
|
parsed_grammar = grammar_parser::parse(params.grammar.c_str());
|
||||||
|
// will be empty (default) if there are parse errors
|
||||||
|
if (parsed_grammar.rules.empty()) {
|
||||||
|
return 1;
|
||||||
|
}
|
||||||
|
|
||||||
|
std::vector<const llama_grammar_element *> grammar_rules(parsed_grammar.c_rules());
|
||||||
|
grammar_tgt = llama_grammar_init(grammar_rules.data(), grammar_rules.size(), parsed_grammar.symbol_ids.at("root"));
|
||||||
|
}
|
||||||
|
|
||||||
const auto t_dec_start = ggml_time_us();
|
const auto t_dec_start = ggml_time_us();
|
||||||
|
|
||||||
while (true) {
|
while (true) {
|
||||||
LOG("drafted: %s\n", LOG_TOKENS_TOSTR_PRETTY(ctx_dft, drafted));
|
LOG("drafted: %s\n", LOG_TOKENS_TOSTR_PRETTY(ctx_dft, drafted));
|
||||||
|
|
||||||
// sample from the drafted tokens if any
|
|
||||||
int i_dft = 0;
|
int i_dft = 0;
|
||||||
while (true) {
|
while (true) {
|
||||||
const llama_token id = llama_sample_token(ctx_tgt, NULL, NULL, params, last_tokens, candidates, i_dft);
|
// sample from the target model
|
||||||
|
const llama_token id = llama_sample_token(ctx_tgt, NULL, grammar_tgt, params, last_tokens, candidates, i_dft);
|
||||||
|
|
||||||
|
// remember which tokens were sampled - used for repetition penalties during sampling
|
||||||
last_tokens.erase(last_tokens.begin());
|
last_tokens.erase(last_tokens.begin());
|
||||||
last_tokens.push_back(id);
|
last_tokens.push_back(id);
|
||||||
|
|
||||||
@ -134,8 +154,9 @@ int main(int argc, char ** argv) {
|
|||||||
|
|
||||||
++n_predict;
|
++n_predict;
|
||||||
|
|
||||||
|
// check if the draft matches the target
|
||||||
if (i_dft < (int) drafted.size() && id == drafted[i_dft]) {
|
if (i_dft < (int) drafted.size() && id == drafted[i_dft]) {
|
||||||
LOG("drafted token %d accepted\n", id);
|
LOG("the sampled target token matches the %dth drafted token (%d, '%s') - accepted\n", i_dft, id, token_str.c_str());
|
||||||
++n_accept;
|
++n_accept;
|
||||||
++n_past_tgt;
|
++n_past_tgt;
|
||||||
++n_past_dft;
|
++n_past_dft;
|
||||||
@ -145,6 +166,14 @@ int main(int argc, char ** argv) {
|
|||||||
}
|
}
|
||||||
|
|
||||||
// the drafted token was rejected or we are out of drafted tokens
|
// the drafted token was rejected or we are out of drafted tokens
|
||||||
|
|
||||||
|
if (i_dft < (int) drafted.size()) {
|
||||||
|
LOG("the %dth drafted token (%d, '%s') does not match the sampled target token (%d, '%s') - rejected\n",
|
||||||
|
i_dft, drafted[i_dft], llama_token_to_piece(ctx_dft, drafted[i_dft]).c_str(), id, token_str.c_str());
|
||||||
|
} else {
|
||||||
|
LOG("out of drafted tokens\n");
|
||||||
|
}
|
||||||
|
|
||||||
llama_eval(ctx_dft, &id, 1, n_past_dft, params.n_threads);
|
llama_eval(ctx_dft, &id, 1, n_past_dft, params.n_threads);
|
||||||
++n_past_dft;
|
++n_past_dft;
|
||||||
|
|
||||||
@ -158,7 +187,16 @@ int main(int argc, char ** argv) {
|
|||||||
break;
|
break;
|
||||||
}
|
}
|
||||||
|
|
||||||
// sample n_draft tokens from the draft model picking the best token
|
if (grammar_tgt) {
|
||||||
|
if (grammar_dft) {
|
||||||
|
llama_grammar_free(grammar_dft);
|
||||||
|
}
|
||||||
|
grammar_dft = llama_grammar_copy(grammar_tgt);
|
||||||
|
|
||||||
|
LOG("copied target grammar to draft grammar\n");
|
||||||
|
}
|
||||||
|
|
||||||
|
// sample n_draft tokens from the draft model using greedy decoding
|
||||||
int n_past_cur = n_past_dft;
|
int n_past_cur = n_past_dft;
|
||||||
for (int i = 0; i < n_draft; ++i) {
|
for (int i = 0; i < n_draft; ++i) {
|
||||||
float * logits = llama_get_logits(ctx_dft);
|
float * logits = llama_get_logits(ctx_dft);
|
||||||
@ -170,25 +208,40 @@ int main(int argc, char ** argv) {
|
|||||||
|
|
||||||
llama_token_data_array cur_p = { candidates.data(), candidates.size(), false };
|
llama_token_data_array cur_p = { candidates.data(), candidates.size(), false };
|
||||||
|
|
||||||
|
if (grammar_dft != NULL) {
|
||||||
|
llama_sample_grammar(ctx_dft, &cur_p, grammar_dft);
|
||||||
|
}
|
||||||
|
|
||||||
// computes softmax and sorts the candidates
|
// computes softmax and sorts the candidates
|
||||||
llama_sample_softmax(ctx_dft, &cur_p);
|
llama_sample_softmax(ctx_dft, &cur_p);
|
||||||
|
|
||||||
for (int i = 0; i < 3; ++i) {
|
for (int i = 0; i < 3; ++i) {
|
||||||
LOG(" - draft candidate %d: %d (%.3f)\n", i, cur_p.data[i].id, cur_p.data[i].p);
|
LOG(" - draft candidate %3d: %6d (%8.3f) '%s'\n", i, cur_p.data[i].id, cur_p.data[i].p, llama_token_to_piece(ctx_dft, cur_p.data[i].id).c_str());
|
||||||
}
|
}
|
||||||
|
|
||||||
// too low probability, stop drafting
|
// TODO: better logic?
|
||||||
if (cur_p.data[0].p < 2*cur_p.data[1].p) {
|
if (cur_p.data[0].p < 2*cur_p.data[1].p) {
|
||||||
|
LOG("stopping drafting, probability too low: %.3f < 2*%.3f\n", cur_p.data[0].p, cur_p.data[1].p);
|
||||||
break;
|
break;
|
||||||
}
|
}
|
||||||
|
|
||||||
drafted.push_back(cur_p.data[0].id);
|
// drafted token
|
||||||
|
const llama_token id = cur_p.data[0].id;
|
||||||
|
|
||||||
|
drafted.push_back(id);
|
||||||
++n_drafted;
|
++n_drafted;
|
||||||
|
|
||||||
if (i < n_draft - 1) {
|
// no need to evaluate the last drafted token, since we won't use the result
|
||||||
|
if (i == n_draft - 1) {
|
||||||
|
break;
|
||||||
|
}
|
||||||
|
|
||||||
// evaluate the drafted token on the draft model
|
// evaluate the drafted token on the draft model
|
||||||
llama_eval(ctx_dft, &drafted.back(), 1, n_past_cur, params.n_threads);
|
llama_eval(ctx_dft, &drafted.back(), 1, n_past_cur, params.n_threads);
|
||||||
++n_past_cur;
|
++n_past_cur;
|
||||||
|
|
||||||
|
if (grammar_dft != NULL) {
|
||||||
|
llama_grammar_accept_token(ctx_dft, grammar_dft, id);
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
@ -196,6 +249,7 @@ int main(int argc, char ** argv) {
|
|||||||
llama_eval(ctx_tgt, drafted.data(), drafted.size(), n_past_tgt, params.n_threads);
|
llama_eval(ctx_tgt, drafted.data(), drafted.size(), n_past_tgt, params.n_threads);
|
||||||
++n_past_tgt;
|
++n_past_tgt;
|
||||||
|
|
||||||
|
// the first token is always proposed by the traget model before the speculation loop
|
||||||
drafted.erase(drafted.begin());
|
drafted.erase(drafted.begin());
|
||||||
}
|
}
|
||||||
|
|
||||||
@ -226,6 +280,10 @@ int main(int argc, char ** argv) {
|
|||||||
llama_free(ctx_dft);
|
llama_free(ctx_dft);
|
||||||
llama_free_model(model_dft);
|
llama_free_model(model_dft);
|
||||||
|
|
||||||
|
if (grammar_dft != NULL) {
|
||||||
|
llama_grammar_free(grammar_dft);
|
||||||
|
llama_grammar_free(grammar_tgt);
|
||||||
|
}
|
||||||
llama_backend_free();
|
llama_backend_free();
|
||||||
|
|
||||||
fprintf(stderr, "\n\n");
|
fprintf(stderr, "\n\n");
|
||||||
|
34
grammars/json_arr.gbnf
Normal file
34
grammars/json_arr.gbnf
Normal file
@ -0,0 +1,34 @@
|
|||||||
|
# This is the same as json.gbnf but we restrict whitespaces at the end of the root array
|
||||||
|
# Useful for generating JSON arrays
|
||||||
|
|
||||||
|
root ::= arr
|
||||||
|
value ::= object | array | string | number | ("true" | "false" | "null") ws
|
||||||
|
|
||||||
|
arr ::=
|
||||||
|
"[\n" ws (
|
||||||
|
value
|
||||||
|
(",\n" ws value)*
|
||||||
|
)? "]"
|
||||||
|
|
||||||
|
object ::=
|
||||||
|
"{" ws (
|
||||||
|
string ":" ws value
|
||||||
|
("," ws string ":" ws value)*
|
||||||
|
)? "}" ws
|
||||||
|
|
||||||
|
array ::=
|
||||||
|
"[" ws (
|
||||||
|
value
|
||||||
|
("," ws value)*
|
||||||
|
)? "]" ws
|
||||||
|
|
||||||
|
string ::=
|
||||||
|
"\"" (
|
||||||
|
[^"\\] |
|
||||||
|
"\\" (["\\/bfnrt] | "u" [0-9a-fA-F] [0-9a-fA-F] [0-9a-fA-F] [0-9a-fA-F]) # escapes
|
||||||
|
)* "\"" ws
|
||||||
|
|
||||||
|
number ::= ("-"? ([0-9] | [1-9] [0-9]*)) ("." [0-9]+)? ([eE] [-+]? [0-9]+)? ws
|
||||||
|
|
||||||
|
# Optional space: by convention, applied in this grammar after literal chars when allowed
|
||||||
|
ws ::= ([ \t\n] ws)?
|
19
llama.cpp
19
llama.cpp
@ -3850,6 +3850,25 @@ void llama_grammar_free(struct llama_grammar * grammar) {
|
|||||||
delete grammar;
|
delete grammar;
|
||||||
}
|
}
|
||||||
|
|
||||||
|
struct llama_grammar * llama_grammar_copy(const struct llama_grammar * grammar) {
|
||||||
|
llama_grammar * result = new llama_grammar{ grammar->rules, grammar->stacks, grammar->partial_utf8 };
|
||||||
|
|
||||||
|
// redirect elements in stacks to point to new rules
|
||||||
|
for (size_t is = 0; is < result->stacks.size(); is++) {
|
||||||
|
for (size_t ie = 0; ie < result->stacks[is].size(); ie++) {
|
||||||
|
for (size_t ir0 = 0; ir0 < grammar->rules.size(); ir0++) {
|
||||||
|
for (size_t ir1 = 0; ir1 < grammar->rules[ir0].size(); ir1++) {
|
||||||
|
if (grammar->stacks[is][ie] == &grammar->rules[ir0][ir1]) {
|
||||||
|
result->stacks[is][ie] = &result->rules[ir0][ir1];
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
return result;
|
||||||
|
}
|
||||||
|
|
||||||
//
|
//
|
||||||
// sampling
|
// sampling
|
||||||
//
|
//
|
||||||
|
2
llama.h
2
llama.h
@ -410,6 +410,8 @@ extern "C" {
|
|||||||
|
|
||||||
LLAMA_API void llama_grammar_free(struct llama_grammar * grammar);
|
LLAMA_API void llama_grammar_free(struct llama_grammar * grammar);
|
||||||
|
|
||||||
|
LLAMA_API struct llama_grammar * llama_grammar_copy(const struct llama_grammar * grammar);
|
||||||
|
|
||||||
//
|
//
|
||||||
// Sampling functions
|
// Sampling functions
|
||||||
//
|
//
|
||||||
|
Loading…
Reference in New Issue
Block a user