mirror of
https://github.com/ggerganov/llama.cpp.git
synced 2025-01-26 20:22:25 +01:00
server: logs - unified format and --log-format option (#5700)
* server: logs - always use JSON logger, add add thread_id in message, log task_id and slot_id * server : skip GH copilot requests from logging * server : change message format of server_log() * server : no need to repeat log in comment * server : log style consistency * server : fix compile warning * server : fix tests regex patterns on M2 Ultra * server: logs: PR feedback on log level * server: logs: allow to choose log format in json or plain text * server: tests: output server logs in text * server: logs switch init logs to server logs macro * server: logs ensure value json value does not raised error * server: logs reduce level VERBOSE to VERB to max 4 chars * server: logs lower case as other log messages * server: logs avoid static in general Co-authored-by: Georgi Gerganov <ggerganov@gmail.com> * server: logs PR feedback: change text log format to: LEVEL [function_name] message | additional=data --------- Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
This commit is contained in:
parent
d52d7819b8
commit
930b178026
@ -39,10 +39,12 @@ see https://github.com/ggerganov/llama.cpp/issues/1437
|
||||
- `--mmproj MMPROJ_FILE`: Path to a multimodal projector file for LLaVA.
|
||||
- `--grp-attn-n`: Set the group attention factor to extend context size through self-extend(default: 1=disabled), used together with group attention width `--grp-attn-w`
|
||||
- `--grp-attn-w`: Set the group attention width to extend context size through self-extend(default: 512), used together with group attention factor `--grp-attn-n`
|
||||
- `-n, --n-predict`: Set the maximum tokens to predict (default: -1)
|
||||
- `-n N, --n-predict N`: Set the maximum tokens to predict (default: -1)
|
||||
- `--slots-endpoint-disable`: To disable slots state monitoring endpoint. Slots state may contain user data, prompts included.
|
||||
- `--metrics`: enable prometheus `/metrics` compatible endpoint (default: disabled)
|
||||
- `--chat-template JINJA_TEMPLATE`: Set custom jinja chat template. This parameter accepts a string, not a file name (default: template taken from model's metadata). We only support [some pre-defined templates](https://github.com/ggerganov/llama.cpp/wiki/Templates-supported-by-llama_chat_apply_template)
|
||||
- `--log-disable`: Output logs to stdout only, default: enabled.
|
||||
- `--log-format FORMAT`: Define the log output to FORMAT: json or text (default: json)
|
||||
|
||||
## Build
|
||||
|
||||
|
@ -47,6 +47,7 @@ struct server_params
|
||||
};
|
||||
|
||||
bool server_verbose = false;
|
||||
bool server_log_json = true;
|
||||
|
||||
static size_t common_part(const std::vector<llama_token> &a, const std::vector<llama_token> &b)
|
||||
{
|
||||
@ -302,12 +303,43 @@ struct llama_client_slot
|
||||
}
|
||||
|
||||
void print_timings() const {
|
||||
LOG_TEE("\n");
|
||||
LOG_TEE("%s: prompt eval time = %10.2f ms / %5d tokens (%8.2f ms per token, %8.2f tokens per second)\n",
|
||||
__func__, t_prompt_processing, num_prompt_tokens_processed, t_prompt_processing / num_prompt_tokens_processed, 1e3 / t_prompt_processing * num_prompt_tokens_processed);
|
||||
LOG_TEE("%s: eval time = %10.2f ms / %5d runs (%8.2f ms per token, %8.2f tokens per second)\n",
|
||||
__func__, t_token_generation, n_decoded,t_token_generation / n_decoded, 1e3 / t_token_generation * n_decoded);
|
||||
LOG_TEE("%s: total time = %10.2f ms\n", __func__, t_prompt_processing + t_token_generation);
|
||||
char buffer[512];
|
||||
double t_token = t_prompt_processing / num_prompt_tokens_processed;
|
||||
double n_tokens_second = 1e3 / t_prompt_processing * num_prompt_tokens_processed;
|
||||
sprintf(buffer, "prompt eval time = %10.2f ms / %5d tokens (%8.2f ms per token, %8.2f tokens per second)",
|
||||
t_prompt_processing, num_prompt_tokens_processed,
|
||||
t_token, n_tokens_second);
|
||||
LOG_INFO(buffer, {
|
||||
{"slot_id", id},
|
||||
{"task_id", task_id},
|
||||
{"t_prompt_processing", t_prompt_processing},
|
||||
{"num_prompt_tokens_processed", num_prompt_tokens_processed},
|
||||
{"t_token", t_token},
|
||||
{"n_tokens_second", n_tokens_second},
|
||||
});
|
||||
|
||||
t_token = t_token_generation / n_decoded;
|
||||
n_tokens_second = 1e3 / t_token_generation * n_decoded;
|
||||
sprintf(buffer, "generation eval time = %10.2f ms / %5d runs (%8.2f ms per token, %8.2f tokens per second)",
|
||||
t_token_generation, n_decoded,
|
||||
t_token, n_tokens_second);
|
||||
LOG_INFO(buffer, {
|
||||
{"slot_id", id},
|
||||
{"task_id", task_id},
|
||||
{"t_token_generation", t_token_generation},
|
||||
{"n_decoded", n_decoded},
|
||||
{"t_token", t_token},
|
||||
{"n_tokens_second", n_tokens_second},
|
||||
});
|
||||
|
||||
sprintf(buffer, " total time = %10.2f ms", t_prompt_processing + t_token_generation);
|
||||
LOG_INFO(buffer, {
|
||||
{"slot_id", id},
|
||||
{"task_id", task_id},
|
||||
{"t_prompt_processing", t_prompt_processing},
|
||||
{"t_token_generation", t_token_generation},
|
||||
{"t_total", t_prompt_processing + t_token_generation},
|
||||
});
|
||||
}
|
||||
};
|
||||
|
||||
@ -399,7 +431,7 @@ struct llama_server_context
|
||||
params = params_;
|
||||
if (!params.mmproj.empty()) {
|
||||
multimodal = true;
|
||||
LOG_TEE("Multi Modal Mode Enabled");
|
||||
LOG_INFO("Multi Modal Mode Enabled", {});
|
||||
clp_ctx = clip_model_load(params.mmproj.c_str(), /*verbosity=*/ 1);
|
||||
if(clp_ctx == nullptr) {
|
||||
LOG_ERROR("unable to load clip model", {{"model", params.mmproj}});
|
||||
@ -452,7 +484,7 @@ struct llama_server_context
|
||||
|
||||
const int32_t n_ctx_slot = n_ctx / params.n_parallel;
|
||||
|
||||
LOG_TEE("Available slots:\n");
|
||||
LOG_INFO("initializing slots", {{"n_slots", params.n_parallel}});
|
||||
for (int i = 0; i < params.n_parallel; i++)
|
||||
{
|
||||
llama_client_slot slot;
|
||||
@ -461,7 +493,10 @@ struct llama_server_context
|
||||
slot.n_ctx = n_ctx_slot;
|
||||
slot.n_predict = params.n_predict;
|
||||
|
||||
LOG_TEE(" -> Slot %i - max context: %i\n", slot.id, n_ctx_slot);
|
||||
LOG_INFO("new slot", {
|
||||
{"slot_id", slot.id},
|
||||
{"n_ctx_slot", slot.n_ctx}
|
||||
});
|
||||
|
||||
const int ga_n = params.grp_attn_n;
|
||||
const int ga_w = params.grp_attn_w;
|
||||
@ -471,7 +506,12 @@ struct llama_server_context
|
||||
GGML_ASSERT(ga_w % ga_n == 0 && "ga_w must be a multiple of ga_n"); // NOLINT
|
||||
//GGML_ASSERT(n_ctx_train % ga_w == 0 && "n_ctx_train must be a multiple of ga_w"); // NOLINT
|
||||
//GGML_ASSERT(n_ctx >= n_ctx_train * ga_n && "n_ctx must be at least n_ctx_train * ga_n"); // NOLINT
|
||||
LOG_TEE(" -> Slot %i - self-extend: ga_n = %d, ga_w = %d\n", slot.id, ga_n, ga_w);
|
||||
|
||||
LOG_INFO("slot self-extend", {
|
||||
{"slot_id", slot.id},
|
||||
{"ga_n", ga_n},
|
||||
{"ga_w", ga_w}
|
||||
});
|
||||
}
|
||||
|
||||
slot.ga_i = 0;
|
||||
@ -765,10 +805,16 @@ struct llama_server_context
|
||||
img_sl.img_data = clip_image_u8_init();
|
||||
if (!clip_image_load_from_bytes(image_buffer.data(), image_buffer.size(), img_sl.img_data))
|
||||
{
|
||||
LOG_TEE("slot %i - failed to load image [id: %i]\n", slot->id, img_sl.id);
|
||||
LOG_ERROR("failed to load image", {
|
||||
{"slot_id", slot->id},
|
||||
{"img_sl_id", img_sl.id}
|
||||
});
|
||||
return false;
|
||||
}
|
||||
LOG_TEE("slot %i - loaded image\n", slot->id);
|
||||
LOG_VERBOSE("image loaded", {
|
||||
{"slot_id", slot->id},
|
||||
{"img_sl_id", img_sl.id}
|
||||
});
|
||||
img_sl.request_encode_image = true;
|
||||
slot->images.push_back(img_sl);
|
||||
}
|
||||
@ -828,7 +874,10 @@ struct llama_server_context
|
||||
|
||||
all_slots_are_idle = false;
|
||||
|
||||
LOG_TEE("slot %i is processing [task id: %i]\n", slot->id, slot->task_id);
|
||||
LOG_INFO("slot is processing task", {
|
||||
{"slot_id", slot->id},
|
||||
{"task_id", slot->task_id},
|
||||
});
|
||||
|
||||
return true;
|
||||
}
|
||||
@ -1391,7 +1440,7 @@ struct llama_server_context
|
||||
if (slot == nullptr)
|
||||
{
|
||||
// if no slot is available, we defer this task for processing later
|
||||
LOG_VERBOSE("no slot is available", {});
|
||||
LOG_VERBOSE("no slot is available", {{"task_id", task.id}});
|
||||
queue_tasks.defer(task);
|
||||
break;
|
||||
}
|
||||
@ -1467,7 +1516,17 @@ struct llama_server_context
|
||||
}
|
||||
slots_data.push_back(slot_data);
|
||||
}
|
||||
LOG_TEE("task %i - slots data: idle=%i processing=%i\n", task.id, n_idle_slots, n_processing_slots);
|
||||
LOG_INFO("slot data", {
|
||||
{"task_id", task.id},
|
||||
{"n_idle_slots", n_idle_slots},
|
||||
{"n_processing_slots", n_processing_slots}
|
||||
});
|
||||
LOG_VERBOSE("slot data", {
|
||||
{"task_id", task.id},
|
||||
{"n_idle_slots", n_idle_slots},
|
||||
{"n_processing_slots", n_processing_slots},
|
||||
{"slots", slots_data}
|
||||
});
|
||||
task_result res;
|
||||
res.id = task.id;
|
||||
res.multitask_id = task.multitask_id;
|
||||
@ -1519,7 +1578,7 @@ struct llama_server_context
|
||||
bool update_slots() {
|
||||
if (system_need_update)
|
||||
{
|
||||
LOG_TEE("updating system prompt\n");
|
||||
LOG_INFO("updating system prompt", {});
|
||||
update_system_prompt();
|
||||
}
|
||||
|
||||
@ -1529,12 +1588,13 @@ struct llama_server_context
|
||||
{
|
||||
if (system_prompt.empty() && clean_kv_cache)
|
||||
{
|
||||
LOG_TEE("all slots are idle and system prompt is empty, clear the KV cache\n");
|
||||
LOG_INFO("all slots are idle and system prompt is empty, clear the KV cache", {});
|
||||
kv_cache_clear();
|
||||
}
|
||||
return true;
|
||||
}
|
||||
|
||||
LOG_VERBOSE("posting NEXT_RESPONSE", {});
|
||||
task_server task;
|
||||
task.type = TASK_TYPE_NEXT_RESPONSE;
|
||||
task.target_id = -1;
|
||||
@ -1548,10 +1608,20 @@ struct llama_server_context
|
||||
{
|
||||
// Shift context
|
||||
const int n_keep = slot.params.n_keep + add_bos_token;
|
||||
const int n_left = system_tokens.size() + slot.n_past - n_keep;
|
||||
const int n_left = (int) system_tokens.size() + slot.n_past - n_keep;
|
||||
const int n_discard = n_left / 2;
|
||||
|
||||
LOG_TEE("slot %d: context shift - n_keep = %d, n_left = %d, n_discard = %d\n", slot.id, n_keep, n_left, n_discard);
|
||||
LOG_INFO("slot context shift", {
|
||||
{"slot_id", slot.id},
|
||||
{"task_id", slot.task_id},
|
||||
{"n_keep", n_keep},
|
||||
{"n_left", n_left},
|
||||
{"n_discard", n_discard},
|
||||
{"n_ctx", n_ctx},
|
||||
{"n_past", slot.n_past},
|
||||
{"n_system_tokens", system_tokens.size()},
|
||||
{"n_cache_tokens", slot.cache_tokens.size()}
|
||||
});
|
||||
llama_kv_cache_seq_rm (ctx, slot.id, n_keep , n_keep + n_discard);
|
||||
llama_kv_cache_seq_shift(ctx, slot.id, n_keep + n_discard, system_tokens.size() + slot.n_past, -n_discard);
|
||||
|
||||
@ -1565,17 +1635,12 @@ struct llama_server_context
|
||||
slot.n_past -= n_discard;
|
||||
|
||||
slot.truncated = true;
|
||||
|
||||
LOG_VERBOSE("context shift", {
|
||||
{ "n_ctx", n_ctx },
|
||||
{ "n_keep", n_keep },
|
||||
{ "n_left", n_left },
|
||||
});
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// decode any currently ongoing sequences
|
||||
LOG_VERBOSE("decoding ongoing sequences", {});
|
||||
for (auto & slot : slots)
|
||||
{
|
||||
// release the slot
|
||||
@ -1585,7 +1650,15 @@ struct llama_server_context
|
||||
slot.command = NONE;
|
||||
slot.t_last_used = ggml_time_us();
|
||||
|
||||
LOG_TEE("slot %d released (%d tokens in cache)\n", slot.id, (int) slot.cache_tokens.size());
|
||||
LOG_INFO("slot released", {
|
||||
{"slot_id", slot.id},
|
||||
{"task_id", slot.task_id},
|
||||
{"n_ctx", n_ctx},
|
||||
{"n_past", slot.n_past},
|
||||
{"n_system_tokens", system_tokens.size()},
|
||||
{"n_cache_tokens", slot.cache_tokens.size()},
|
||||
{"truncated", slot.truncated}
|
||||
});
|
||||
queue_tasks.notify_slot_changed();
|
||||
|
||||
continue;
|
||||
@ -1733,7 +1806,12 @@ struct llama_server_context
|
||||
slot.ga_i = ga_i;
|
||||
}
|
||||
|
||||
LOG_TEE("slot %d : in cache: %i tokens | to process: %i tokens\n", slot.id, slot.n_past, slot.num_prompt_tokens_processed);
|
||||
LOG_INFO("slot progression", {
|
||||
{ "slot_id", slot.id },
|
||||
{ "task_id", slot.task_id },
|
||||
{ "n_past", slot.n_past },
|
||||
{ "num_prompt_tokens_processed", slot.num_prompt_tokens_processed }
|
||||
});
|
||||
}
|
||||
|
||||
slot.cache_tokens = prompt_tokens;
|
||||
@ -1741,7 +1819,10 @@ struct llama_server_context
|
||||
if (slot.n_past == slot.num_prompt_tokens && slot.n_past > 0)
|
||||
{
|
||||
// we have to evaluate at least 1 token to generate logits.
|
||||
LOG_TEE("slot %d : we have to evaluate at least 1 token to generate logits\n", slot.id);
|
||||
LOG_INFO("we have to evaluate at least 1 token to generate logits", {
|
||||
{ "slot_id", slot.id },
|
||||
{ "task_id", slot.task_id }
|
||||
});
|
||||
slot.n_past--;
|
||||
if (slot.ga_i > 0)
|
||||
{
|
||||
@ -1749,9 +1830,13 @@ struct llama_server_context
|
||||
}
|
||||
}
|
||||
|
||||
LOG_TEE("slot %d : kv cache rm - [%d, end)\n", slot.id, (int) system_tokens.size() + slot.n_past);
|
||||
|
||||
llama_kv_cache_seq_rm(ctx, slot.id, system_tokens.size() + slot.n_past, -1);
|
||||
int p0 = (int) system_tokens.size() + slot.n_past;
|
||||
LOG_INFO("kv cache rm [p0, end)", {
|
||||
{ "slot_id", slot.id },
|
||||
{ "task_id", slot.task_id },
|
||||
{ "p0", p0 }
|
||||
});
|
||||
llama_kv_cache_seq_rm(ctx, slot.id, p0, -1);
|
||||
|
||||
LOG_VERBOSE("prompt ingested", {
|
||||
{"n_past", slot.n_past},
|
||||
@ -1786,7 +1871,13 @@ struct llama_server_context
|
||||
|
||||
if (has_images && !ingest_images(slot, n_batch))
|
||||
{
|
||||
LOG_TEE("failed processing images\n");
|
||||
LOG_ERROR("failed processing images", {
|
||||
"slot_id", slot.id,
|
||||
"task_id", slot.task_id,
|
||||
});
|
||||
// FIXME @phymbert: to be properly tested
|
||||
// early returning without changing the slot state will block the slot for ever
|
||||
// no one at the moment is checking the return value
|
||||
return false;
|
||||
}
|
||||
|
||||
@ -1928,6 +2019,8 @@ struct llama_server_context
|
||||
slot.i_batch = -1;
|
||||
}
|
||||
}
|
||||
|
||||
LOG_VERBOSE("slots updated", {});
|
||||
return true;
|
||||
}
|
||||
|
||||
@ -2005,6 +2098,7 @@ static void server_print_usage(const char *argv0, const gpt_params ¶ms,
|
||||
printf(" -ctv TYPE, --cache-type-v TYPE\n");
|
||||
printf(" KV cache data type for V (default: f16)\n");
|
||||
printf(" --mmproj MMPROJ_FILE path to a multimodal projector file for LLaVA.\n");
|
||||
printf(" --log-format log output format: json or text (default: json)\n");
|
||||
printf(" --log-disable disables logging to a file.\n");
|
||||
printf(" --slots-endpoint-disable disables slots monitoring endpoint.\n");
|
||||
printf(" --metrics enable prometheus compatible metrics endpoint (default: %s).\n", sparams.metrics_endpoint ? "enabled" : "disabled");
|
||||
@ -2458,6 +2552,27 @@ static void server_params_parse(int argc, char **argv, server_params &sparams,
|
||||
}
|
||||
params.mmproj = argv[i];
|
||||
}
|
||||
else if (arg == "--log-format")
|
||||
{
|
||||
if (++i >= argc)
|
||||
{
|
||||
invalid_param = true;
|
||||
break;
|
||||
}
|
||||
if (std::strcmp(argv[i], "json") == 0)
|
||||
{
|
||||
server_log_json = true;
|
||||
}
|
||||
else if (std::strcmp(argv[i], "text") == 0)
|
||||
{
|
||||
server_log_json = false;
|
||||
}
|
||||
else
|
||||
{
|
||||
invalid_param = true;
|
||||
break;
|
||||
}
|
||||
}
|
||||
else if (arg == "--log-disable")
|
||||
{
|
||||
log_set_target(stdout);
|
||||
@ -2571,32 +2686,40 @@ static json format_partial_response(
|
||||
|
||||
static json format_tokenizer_response(const std::vector<llama_token> &tokens)
|
||||
{
|
||||
return json{
|
||||
{"tokens", tokens}};
|
||||
return json {
|
||||
{"tokens", tokens}
|
||||
};
|
||||
}
|
||||
|
||||
static json format_detokenized_response(std::string content)
|
||||
{
|
||||
return json{
|
||||
{"content", content}};
|
||||
return json {
|
||||
{"content", content}
|
||||
};
|
||||
}
|
||||
|
||||
|
||||
static void log_server_request(const httplib::Request &req, const httplib::Response &res)
|
||||
{
|
||||
// skip GH copilot requests when using default port
|
||||
if (req.path == "/v1/health" || req.path == "/v1/completions")
|
||||
{
|
||||
return;
|
||||
}
|
||||
|
||||
LOG_INFO("request", {
|
||||
{"remote_addr", req.remote_addr},
|
||||
{"remote_port", req.remote_port},
|
||||
{"status", res.status},
|
||||
{"method", req.method},
|
||||
{"path", req.path},
|
||||
{"params", req.params},
|
||||
});
|
||||
{"remote_addr", req.remote_addr},
|
||||
{"remote_port", req.remote_port},
|
||||
{"status", res.status},
|
||||
{"method", req.method},
|
||||
{"path", req.path},
|
||||
{"params", req.params},
|
||||
});
|
||||
|
||||
LOG_VERBOSE("request", {
|
||||
{"request", req.body},
|
||||
{"response", res.body},
|
||||
});
|
||||
{"request", req.body},
|
||||
{"response", res.body},
|
||||
});
|
||||
}
|
||||
|
||||
struct token_translator
|
||||
@ -2873,9 +2996,6 @@ int main(int argc, char **argv)
|
||||
// Set the base directory for serving static files
|
||||
svr.set_base_dir(sparams.public_path);
|
||||
|
||||
// to make it ctrl+clickable:
|
||||
LOG_TEE("\nllama server listening at http://%s:%d\n\n", sparams.hostname.c_str(), sparams.port);
|
||||
|
||||
std::unordered_map<std::string, std::string> log_data;
|
||||
log_data["hostname"] = sparams.hostname;
|
||||
log_data["port"] = std::to_string(sparams.port);
|
||||
|
@ -32,6 +32,7 @@ It's possible to override some scenario steps values with environment variables:
|
||||
- `PORT` -> `context.server_port` to set the listening port of the server during scenario, default: `8080`
|
||||
- `LLAMA_SERVER_BIN_PATH` -> to change the server binary path, default: `../../../build/bin/server`
|
||||
- `DEBUG` -> "ON" to enable steps and server verbose mode `--verbose`
|
||||
- `SERVER_LOG_FORMAT_JSON` -> if set switch server logs to json format
|
||||
|
||||
### Run @bug, @wip or @wrong_usage annotated scenario
|
||||
|
||||
|
@ -29,9 +29,9 @@ Feature: llama.cpp server
|
||||
And prometheus metrics are exposed
|
||||
|
||||
Examples: Prompts
|
||||
| prompt | n_predict | re_content | n_predicted |
|
||||
| I believe the meaning of life is | 8 | read | 8 |
|
||||
| Write a joke about AI | 64 | (park<or>friends<or>scared)+ | 32 |
|
||||
| prompt | n_predict | re_content | n_predicted |
|
||||
| I believe the meaning of life is | 8 | (read<or>going)+ | 8 |
|
||||
| Write a joke about AI | 64 | (park<or>friends<or>scared<or>always)+ | 32 |
|
||||
|
||||
Scenario Outline: OAI Compatibility
|
||||
Given a model <model>
|
||||
|
@ -792,6 +792,8 @@ def start_server_background(context):
|
||||
server_args.extend(['--api-key', context.server_api_key])
|
||||
if context.debug:
|
||||
server_args.append('--verbose')
|
||||
if 'SERVER_LOG_FORMAT_JSON' not in os.environ:
|
||||
server_args.extend(['--log-format', "text"])
|
||||
print(f"starting server with: {context.server_path}", *server_args)
|
||||
context.server_process = subprocess.Popen(
|
||||
[str(arg) for arg in [context.server_path, *server_args]],
|
||||
|
@ -14,6 +14,7 @@
|
||||
using json = nlohmann::json;
|
||||
|
||||
extern bool server_verbose;
|
||||
extern bool server_log_json;
|
||||
|
||||
#ifndef SERVER_VERBOSE
|
||||
#define SERVER_VERBOSE 1
|
||||
@ -27,14 +28,14 @@ extern bool server_verbose;
|
||||
{ \
|
||||
if (server_verbose) \
|
||||
{ \
|
||||
server_log("VERBOSE", __func__, __LINE__, MSG, __VA_ARGS__); \
|
||||
server_log("VERB", __func__, __LINE__, MSG, __VA_ARGS__); \
|
||||
} \
|
||||
} while (0)
|
||||
#endif
|
||||
|
||||
#define LOG_ERROR( MSG, ...) server_log("ERROR", __func__, __LINE__, MSG, __VA_ARGS__)
|
||||
#define LOG_WARNING(MSG, ...) server_log("WARNING", __func__, __LINE__, MSG, __VA_ARGS__)
|
||||
#define LOG_INFO( MSG, ...) server_log("INFO", __func__, __LINE__, MSG, __VA_ARGS__)
|
||||
#define LOG_ERROR( MSG, ...) server_log("ERR", __func__, __LINE__, MSG, __VA_ARGS__)
|
||||
#define LOG_WARNING(MSG, ...) server_log("WARN", __func__, __LINE__, MSG, __VA_ARGS__)
|
||||
#define LOG_INFO( MSG, ...) server_log("INFO", __func__, __LINE__, MSG, __VA_ARGS__)
|
||||
|
||||
//
|
||||
// parallel
|
||||
@ -133,26 +134,48 @@ struct completion_token_output
|
||||
std::string text_to_send;
|
||||
};
|
||||
|
||||
static inline void server_log(const char *level, const char *function, int line,
|
||||
const char *message, const nlohmann::ordered_json &extra)
|
||||
static inline void server_log(const char *level, const char *function, int line, const char *message, const nlohmann::ordered_json &extra)
|
||||
{
|
||||
nlohmann::ordered_json log
|
||||
{
|
||||
std::stringstream ss_tid;
|
||||
ss_tid << std::this_thread::get_id();
|
||||
json log = nlohmann::ordered_json{
|
||||
{"tid", ss_tid.str()},
|
||||
{"timestamp", time(nullptr)},
|
||||
{"level", level},
|
||||
{"function", function},
|
||||
{"line", line},
|
||||
{"message", message},
|
||||
};
|
||||
|
||||
if (!extra.empty())
|
||||
{
|
||||
log.merge_patch(extra);
|
||||
}
|
||||
if (server_log_json) {
|
||||
log.merge_patch(
|
||||
{
|
||||
{"level", level},
|
||||
{"function", function},
|
||||
{"line", line},
|
||||
{"msg", message},
|
||||
});
|
||||
if (!extra.empty()) {
|
||||
log.merge_patch(extra);
|
||||
}
|
||||
|
||||
const std::string str = log.dump(-1, ' ', false, json::error_handler_t::replace);
|
||||
printf("%.*s\n", (int)str.size(), str.data());
|
||||
fflush(stdout);
|
||||
std::cout << log.dump(-1, ' ', false, json::error_handler_t::replace) << "\n" << std::flush;
|
||||
} else {
|
||||
char buf[1024];
|
||||
snprintf(buf, 1024, "%4s [%24s] %s", level, function, message);
|
||||
|
||||
if (!extra.empty()) {
|
||||
log.merge_patch(extra);
|
||||
}
|
||||
std::stringstream ss;
|
||||
ss << buf << " |";
|
||||
for (const auto& el : log.items())
|
||||
{
|
||||
const std::string value = el.value().dump(-1, ' ', false, json::error_handler_t::replace);
|
||||
snprintf(buf, 1024, " %s=%s", el.key().c_str(), value.c_str());
|
||||
ss << buf;
|
||||
}
|
||||
|
||||
const std::string str = ss.str();
|
||||
printf("%.*s\n", (int)str.size(), str.data());
|
||||
fflush(stdout);
|
||||
}
|
||||
}
|
||||
|
||||
//
|
||||
@ -234,6 +257,7 @@ struct llama_server_queue {
|
||||
std::unique_lock<std::mutex> lock(mutex_tasks);
|
||||
if (task.id == -1) {
|
||||
task.id = id++;
|
||||
LOG_VERBOSE("new task id", {{"new_id", task.id}});
|
||||
}
|
||||
queue_tasks.push_back(std::move(task));
|
||||
condition_tasks.notify_one();
|
||||
@ -249,7 +273,9 @@ struct llama_server_queue {
|
||||
// Get the next id for creating anew task
|
||||
int get_new_id() {
|
||||
std::unique_lock<std::mutex> lock(mutex_tasks);
|
||||
return id++;
|
||||
int new_id = id++;
|
||||
LOG_VERBOSE("new task id", {{"new_id", new_id}});
|
||||
return new_id;
|
||||
}
|
||||
|
||||
// Register function to process a new task
|
||||
@ -290,8 +316,7 @@ struct llama_server_queue {
|
||||
void start_loop() {
|
||||
running = true;
|
||||
while (true) {
|
||||
// new task arrived
|
||||
LOG_VERBOSE("have new task", {});
|
||||
LOG_VERBOSE("new task may arrive", {});
|
||||
{
|
||||
while (true)
|
||||
{
|
||||
@ -303,7 +328,7 @@ struct llama_server_queue {
|
||||
task_server task = queue_tasks.front();
|
||||
queue_tasks.erase(queue_tasks.begin());
|
||||
lock.unlock();
|
||||
LOG_VERBOSE("callback_new_task", {});
|
||||
LOG_VERBOSE("callback_new_task", {{"task_id", task.id}});
|
||||
callback_new_task(task);
|
||||
}
|
||||
LOG_VERBOSE("callback_all_task_finished", {});
|
||||
@ -384,11 +409,13 @@ struct llama_server_response {
|
||||
std::condition_variable condition_results;
|
||||
|
||||
void add_waiting_task_id(int task_id) {
|
||||
LOG_VERBOSE("waiting for task id", {{"task_id", task_id}});
|
||||
std::unique_lock<std::mutex> lock(mutex_results);
|
||||
waiting_task_ids.insert(task_id);
|
||||
}
|
||||
|
||||
void remove_waiting_task_id(int task_id) {
|
||||
LOG_VERBOSE("remove waiting for task id", {{"task_id", task_id}});
|
||||
std::unique_lock<std::mutex> lock(mutex_results);
|
||||
waiting_task_ids.erase(task_id);
|
||||
}
|
||||
@ -401,7 +428,6 @@ struct llama_server_response {
|
||||
condition_results.wait(lock, [&]{
|
||||
return !queue_results.empty();
|
||||
});
|
||||
LOG_VERBOSE("condition_results unblock", {});
|
||||
|
||||
for (int i = 0; i < (int) queue_results.size(); i++)
|
||||
{
|
||||
@ -426,20 +452,20 @@ struct llama_server_response {
|
||||
// Send a new result to a waiting task_id
|
||||
void send(task_result result) {
|
||||
std::unique_lock<std::mutex> lock(mutex_results);
|
||||
LOG_VERBOSE("send new result", {});
|
||||
LOG_VERBOSE("send new result", {{"task_id", result.id}});
|
||||
for (auto& task_id : waiting_task_ids) {
|
||||
// LOG_TEE("waiting task id %i \n", task_id);
|
||||
// for now, tasks that have associated parent multitasks just get erased once multitask picks up the result
|
||||
if (result.multitask_id == task_id)
|
||||
{
|
||||
LOG_VERBOSE("callback_update_multitask", {});
|
||||
LOG_VERBOSE("callback_update_multitask", {{"task_id", task_id}});
|
||||
callback_update_multitask(task_id, result.id, result);
|
||||
continue;
|
||||
}
|
||||
|
||||
if (result.id == task_id)
|
||||
{
|
||||
LOG_VERBOSE("queue_results.push_back", {});
|
||||
LOG_VERBOSE("queue_results.push_back", {{"task_id", task_id}});
|
||||
queue_results.push_back(result);
|
||||
condition_results.notify_all();
|
||||
return;
|
||||
|
Loading…
Reference in New Issue
Block a user